Table of Contents for the 2nd Edition of

Process Dynamics & Control

By

Dale E. Seborg, Thomas F. Edgar, and Duncan A. Mellichamp

PART ONE: INTRODUCTION TO PROCESS CONTROL

1. Introduction to Process Control
 1.1 Representative Process Control Problems
 1.2 Illustrative Example
 1.3 Classification of Process Control Strategies
 1.4 A More Complicated Example--A Distillation Column
 1.5 The Hierarchy of Process Control Activities
 1.6 An Overview of Control System Design

2. Theoretical Models of Chemical Processes
 2.1 The Rationale for Process Modeling
 2.2 General Modeling Principles
 2.3 Degrees of Freedom Analysis
 2.4 Dynamic Models of Representative Processes
 2.5 Solution of Dynamic Models and the Use of Digital Simulators

PART TWO: DYNAMIC BEHAVIOR OF PROCESSES

3. Laplace Transforms
 3.1 The Laplace Transform of Representative Functions
 3.2 Solution of Differential Equations by Laplace Transform Techniques
 3.3 Partial Fraction Expansion
 3.4 Other Laplace Transform Properties
 3.5 A Transient Response Example

4. Transfer Function and State-Space Models
 4.1 Development of Transfer Functions
 4.2 Properties of Transfer Functions
 4.3 Linearization of Nonlinear Models
 4.4 State-Space and Transfer Function Matrix Models

5. Dynamic Behavior of First-Order and Second-Order Systems
 5.1 Standard Process Inputs
5.2 Response of First-Order Systems
5.3 Response of Integrating Process Units
5.4 Response of Second-Order Systems

6. Dynamic Response Characteristics of More Complicated Systems
 6.1 Poles and Zeros and Their Effect on System Response
 6.2 Time Delays
 6.3 Approximation of Higher-Order Systems
 6.4 Interacting and Noninteracting Processes
 6.5 Multiple-Input, Multiple-Output (MIMO) Processes

 7.1 Model Development Using Linear or Nonlinear Regression
 7.2 Methods for Fitting First-Order and Second-Order Models Using Step Tests
 7.3 Neural Network Models
 7.4 Development of Discrete-Time Dynamic Models
 7.5 Identifying Discrete-Time Models from Experimental Data

PART THREE: FEEDBACK AND FEEDFORWARD CONTROL

8. Feedback Controllers
 8.1 Introduction
 8.2 Basic Control Modes
 8.3 Features of PID Controllers
 8.4 On-Off Controllers
 8.5 Typical Responses of Feedback Control Systems
 8.6 Digital Versions of PID Controllers

9. Control System Instrumentation
 9.1 Transducers and Transmitters
 9.2 Final Control Elements
 9.3 Transmission Lines
 9.4 Accuracy in Instrumentation

10. Overview of Control System Design
 10.1 Introduction
 10.2 The Influence of Process Design on Process Control
 10.3 Degrees of Freedom for Process Control
 10.4 Selection of Controlled, Manipulated, and Measured Variables
 10.5 Process Safety and Process Control

11. Dynamic Behavior and Stability of Closed-Loop Control Systems
 11.1 Block Diagram Representation
 11.2 Closed-Loop Transfer Functions
11.3 Closed Loop Responses of Simple Control Systems
11.4 Stability Criteria
11.5 Pole-Zero Diagrams

12. PID Controller Design, Tuning, and Troubleshooting
 12.1 Performance Criteria for Closed-Loop Systems
 12.2 Model-Based Design Methods
 12.3 Controller Tuning Relations
 12.4 Controllers with Two Degrees of Freedom
 12.5 On-Line Controller Tuning
 12.6 Guidelines for Common Control Loops
 12.7 Troubleshooting Control Loops

13. Frequency Response Analysis
 13.1 Sinusoidal Forcing of a First-Order Process
 13.2 Sinusoidal Forcing of an nth-Order Process
 13.3 Bode Diagrams
 13.4 Nyquist Diagrams

14. Control System Design Based on Frequency Response Analysis
 14.1 Closed-Loop Behavior
 14.2 Bode Stability Criterion
 14.3 Nyquist Stability Criterion
 14.4 Gain and Phase Margins
 14.5 Closed-Loop Frequency Response and Sensitivity Functions
 14.6 Robustness Analysis

15. Feedforward and Ratio Control
 15.1 Introduction to Feedforward Control
 15.2 Ratio Control
 15.3 Feedforward Controller Design Based on Steady-State Models
 15.4 Controller Design Based on Dynamic Models
 15.5 The Relationship Between the Steady-State and Dynamic Design Methods
 15.6 Configurations for Feedforward-Feedback Control
 15.7 Tuning Feedforward Controllers

PART FOUR: ADVANCED PROCESS CONTROL

16. Enhanced Single-Loop Control Strategies
 16.1 Cascade Control
 16.2 Time-Delay Compensation
 16.3 Inferential Control
 16.4 Selective Control/Override Systems
16.5 Nonlinear Control Systems
16.6 Adaptive Control Systems

17. Digital Sampling, Filtering, and Control
17.1 Sampling and Signal Reconstruction
17.2 Signal Processing and Data Filtering
17.3 z-Transform Analysis for Digital Control
17.4 Digital PID and Related Controllers
17.5 Direct Synthesis for Design of Digital Controllers
17.6 Minimum Variance Control

18. Multiloop and Multivariable Control
18.1 Process Interactions and Control Loop Interactions
18.2 Pairing of Controlled and Manipulated Variables
18.3 Singular Value Analysis
18.4 Tuning of Multiloop PID Control Systems
18.5 Strategies for Reducing Control Loop Interactions

19. Real-Time Optimization
19.1 Basic Requirements in Real-Time Optimization
19.2 The Formulation and Solution of RTO Problems
19.3 Unconstrained Optimization
19.4 Linear Programming
19.5 Quadratic Programming/Nonlinear Programming

20. Model Predictive Control
20.1 Overview of Model Predictive Control
20.2 Predictions for SISO Models
20.3 Predictions for MIMO Models
20.4 Model Predictive Control Calculations
20.5 Set-Point Calculations
20.6 Selection of Design and Tuning Parameters
20.7 Implementation of MPC

21. Process Monitoring
21.1 Traditional Monitoring Techniques
21.2 Quality Control Charts
21.3 Extensions of Statistical Process Control
21.4 Multivariate Statistical Techniques
21.5 Control Performance Monitoring

22. Batch Process Control
22.1 Batch Control Systems
22.2 Sequential and Logic Control
22.3 During the Batch Control
22.4 Run to Run Control
22.5 Batch Production Management

23. Introduction to Plantwide Control
 23.1 Plantwide Control Issues
 23.2 Hypothetical Plant for Plantwide Control Studies
 23.3 Internal Feedback of Material and Energy
 23.4 Interaction of Process Design and Control System Design

24. Plantwide Control Design Procedures
 24.1 Procedures for Design of Plantwide Control Systems
 24.2 A Systematic Approach for Plantwide Control
 24.3 Case Study: The Reactor/Flash Unit Plant
 24.4 Effect of Control Structure on Closed-Loop Performance

Appendix A: Digital Process Control Systems: Hardware and Software
 A.1. Disturbance Digital Control Systems
 A.2. Analog and Digital Signals and Data Transfer
 A.3. Microprocessors and Digital Hardware in Process Control
 A.4. Software Organization

Appendix B: Review of Thermodynamics Concepts for Conservation Equations

Appendix C: Use of MATLAB in Process Control
 C.1 MATLAB Operations and Equation-Solving with Simulink
 C.2 Computer Simulation with Simulink

Appendix D: Contour Mapping and the Principle of the Argument

Appendix E. Dynamic Models and Parameters Used for Plantwide Control
 E.1. Energy Balance and Parameters for the Reactor/Distillation Model (Chapter 23)
 E.2. Core Reactor/Flash-Unit Model and Parameters (Chapter 24)