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a b s t r a c t

This paper examines the use of eigenvector orientation method to detect the onset of

subsonic and supersonic flutter of panels modeled by finite elements. The accuracy of

the eigenvector orientation method for prediction of the flutter boundary (indicated by

a gradual loss of orthogonality between two eigenvectors) is demonstrated by using the

examples of a swept-back cantilever plate model at subsonic speed and a simply

supported plate model at supersonic speed. Piezoelectric layers are assumed to be

bonded to the top and bottom surfaces of the simply supported plate in order to provide

bending moments to control motions of each finite element. An approach of optimal

control design is presented to actively suppress the possible flutter based on linear

quadratic regulator theory and the nonlinear modal equations of motions. To illustrate

the applicability and effectiveness of using the piezoelectric layers as controllers,

several cases are studied and presented. The effects of varying locations of control

moments are studied so as to fulfill the objective of adjusting the flutter speed to be

within a desirable range. The results illustrate that the control moment manipulation

can offset the flutter occurrence and additionally generate a lead time for possibly

executing flutter control.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Flutter has been considered as one of the most destructive causes of failure in aircrafts, missiles and various flight
vehicles [1–4]. In the past seven decades, this phenomenon has continuously motivated researchers and designers to use a
variety of methods to analyze, predict, and most importantly, avoid the flutter. The predominant dynamic flutter
instability needs to be investigated for the design optimization of most flight vehicles. There are several methods used to
predict the onset of flutter instability in aeroelastic design optimization. One popular approach is to use finite elements in
the form of beam, plate, and shell elements to take advantage of their versatility in geometry, boundary, and material
modeling [5]. The finite element method was first applied to the problem of panel flutter by Olson [6] in 1967. Olson, in
Ref. [7], extended the finite element method to three dimensional applications by using the concept of formulating an
aerodynamic matrix in addition to the stiffness and mass matrices of rectangular and triangular plate bending elements,
and predicted a definition that flutter occurs when the lowest two vibration modes coalesce. Later, Yang applied the finite
element method to the nonlinear panel flutter in supersonic potential flow [8–10]. In a more recent work by Afolabi,
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Pidaparti and Yang [11–13], an alternative approach based on the eigenvector orientation method was developed to detect
the onset of flutter for the isotropic and composite plate.

Active control of flutter suppression is an important component of aircraft design. A significant amount of research has
been carried out on flutter suppression by the use of advanced materials. Among these materials, piezoelectric materials
have drawn attention as possible actuation mechanisms for flutter prevention systems because of their simple material
properties and fast response time. Scott and Weisshaar [14] were among the earliest to perform active suppression control
on linear panel flutter with piezoelectric material using the Ritz method. Zhou et al. [15] presented a finite element
formulation for the nonlinear flutter suppression of an isotropic panel under uniform thermal loading by using the modal
reduction scheme and feedback linear control. Forster and Yang [16] used piezoelectric actuators to control supersonic
flutter of wing boxes. Sebastijanovic et al. [17] used the eigenvector orientation method and piezoelectric layers to shift
flutter speeds of a simple finite element with beam model. In the study, they generate a ‘lead-time’ by tracking the
eigenvectors and the angle between them as it gradually approaches zero. This potential lead-time may provide more
room for the study of a more timely and effective control and prevention of flutter that flight vehicles with plate and shell
structures might experience.

In this study, the application realm of eigenvector orientation approach is extended from the wide-beam model to the
wing panel model with the examples of a cantilever plate in subsonic flow and a simply supported plate in supersonic
flow. The aeroelastic formulation of the plates has been derived by using the finite element method and panel
aerodynamic theory. To further illustrate the validity and suitability of the developed methods, some results with flutter
speeds and mode shapes are verified by comparing the present results with those given in Refs. [11,18]. Piezoelectric
layers are used as actuators that produce counter balancing bending moments at each controlled subcomponent to
suppress the flutter and shift the flutter speed. The linear quadratic regulator controller design is developed for various
attempts to change piezoelectric actuators placements. To illustrate the usefulness and applicability of the piezoelectric
actuators, several specific panel examples with different locations of piezoelectric layers are studied and provided.

2. Structure model

The first example studied is a swept-back cantilever plate in subsonic flow, similar to that used in Ref. [18]. This plate is
assumed to have a span of 15.75 in., a chord of 7.87 in., a thickness of 0.045 in. and a swept-back angle of 301, respectively.
In the current illustrative example, a mesh of 6�7 triangular plate bending elements, with each element possessing three
degrees of freedom at each of the three corner node (transverse displacement and derivatives w, wx, wy) [19], is used to
model the cantilever plate as shown in Fig. 1a. The second example is a simply supported rectangular plate by assumed
stringers and ribs in supersonic flow. Both length and width of this plate are assumed to be 10 in., and the thickness is
assumed to be 0.1 in. In this example, a mesh of 4�4 rectangular plate bending elements, with each element possessing
four degrees of freedom at each of the four corner node (transverse displacement and derivatives w,wx, wy, wxy) [20], is
used to model the simply supported plate as shown in Fig. 1b. It must be noted that the 16 degrees of freedom conforming
rectangular element has long been shown as the most effective rectangular plate bending element [21]. However, it cannot
be used to model quadrilateral plate with corner angles other than 901 such as those in a swept plate. Because of this
limitation, the current swept plate is modeled using 9 degrees of freedom triangular elements in Example 1.

The top and bottom layers of the rectangular plate are symmetrically bonded with piezoelectric actuators, which are
applied to produce control bending moments, as shown in Fig. 1c. The materials properties of the base plates and
piezoelectric actuators are presented in Table 1. Because the thickness of these piezoelectric actuators are assumed to be
very small as compared with the thickness of the plates, the structure changes due to these piezoelectric layers can be
considered negligible.

In this study, piezoelectric patches are assumed to be applied as bimorph actuator on the top and bottom part of each
panel element independently. This allows each element to experience a positively or negatively defined bending moment
by having the top layer in compression and the bottom layer in tension, or vice versa. As shown in Fig. 2, only three simple
cases are considered for illustrative purpose. Depending on the direction of airflow, controllers are designed to modify the
system stiffness matrix by assuming that control bending moments are applied to all the 16 elements, to the eight end
elements, or to the eight interior elements.

3. Finite element formulation

The linear constitutive equations of the piezoelectric material can be written as [22]

r¼ cEe�eTE, D¼ eeþeSE (1)

where cE is the elastic stiffness matrix, superscript T denotes transpose, E is the electric field vector, D is the electric
displacement vector, eS is the dielectric constant matrix, and e is the piezo stress/charge constant.

As stated earlier, the plates are modeled by using the three-corner-node triangular plate elements and the four-corner-
node rectangular plate elements [21]. There are three bending degrees of freedom (w, wx, wy) at each node of the triangular
element, four bending degrees of freedom (w, wx, wy, wxy) at each node of the rectangular element, and two electrical
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degrees of freedom (f) per piezoelectric layer per element. The related vectors are given as

we1 ¼ fw1,w1x,w1y,w2,w2x,w2y,w3,w3x,w3ygT ,

we2 ¼ fw1,w1x,w1y,w1xy,w2,w2x,w2y,w2xy,w3,w3x,w3y,w3xy,w4,w4x,w4y,w4xygT ,

u¼ ff11,f12,f21,f22,f31,f32,. . .,fn1,fn2g, (2)

where we1 and we2 are the nodal displacement vectors of triangular plate element and rectangular plate element,
respectively, u is the plate electric potential vector, and n is the number of piezoelectric layers.

30.0°

Fig. 1. (a) Configuration of swept-back cantilever plate, (b) configuration of simply supported plate and (c) moments created by piezoelectric layers for

each elements of (b).

Table 1
Material properties of the plates and piezoelectric actuators.

Material properties Swept-back

cantilever plate

Simply supported

rectangular plate

Piezoelectric

actuators

Young’s modulus,106 psi 10.0 10.0 9.135

Density (lb/in.3) 0.1 0.1 0.275

Poisson’s ratio 0.3 0.3 0.35

Tensile strength (ksi) 65.0 65.0 9.135

Compressive strength (ksi) 65.0 65.0 75.4

Piezo constant (m/V) – – �166�10�12

Fig. 2. Placement of the piezoelectric actuators (in shaded elements) in the three illustrated cases: (a) all 16 elements, (b) eight end elements, and

(c) eight interior elements.
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For low Mach number subsonic flow (M151), the self-induced aerodynamic pressure is approximately given as [2,23]

pa1 ¼ 2A0qa
@2w

@x2
þ 2

U1

@2w

@x@t
þ 1

U2
1

@2w

@t2

 !
(3)

where A0 ¼ b=p
R 1�ðx=aÞ
�x=a ln9y=b9dy is the coefficient of aerodynamic pressure for subsonic flow, qa ¼ raU

2
1=2 is the free

stream dynamic pressure, ra is the air mass density, UN is the free stream airflow speed and w is the transverse
displacement of panel.

The aerodynamic pressure parameter is defined as

l1 ¼ 2A0qa (4)

For high Mach number supersonic flow (
ffiffiffi
2

p
oM1o5), the first-order piston theory is suitably used to describe the

aerodynamic pressure loads acting on the plate [2,7,9]. The aerodynamic pressure can be expressed as
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2qaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where the aerodynamic pressure parameter is defined as

l2 ¼
2qaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2
1�1Þ

q (6)

By using the above equations, the element matrices can be obtained. The detailed derivation of these element matrices
can be found in Refs. [7,9]. We can derive the equation of motion for an actively controlled finite element plate subjected
to aerodynamic loads as follows:

Me
€WeþCe

_WeþðKeþAeþK1þK2�KwjK
�1
jjKwjÞWe ¼KwjVa (7)

where Me, Ce, Ke are the mass, damping, and stiffness matrices, Ae is the aerodynamic matrix, K1 and K2 are the first-order
nonlinear stiffness and second-order nonlinear stiffness matrices which depend linearly and quadratically on the
displacements, respectively, Kwj is the elastic–electric coupling stiffness matrix, Kjj is the dielectric stiffness matrix,
We is the vector of node displacements, and Va is the vector of applied voltages. It should be noted that Eq. (7) can be
applicable for both subsonic and supersonic situation, but their aerodynamics matrixes are different, and can be deduced
from Eqs. (3) and (5) by using the principle of virtual work, respectively.

Since the linear panel flutter is unstable when l is above a critical aerodynamic pressure parameter, indicated as lcr,
whereas the nonlinear panel flutter is a stable limit-cycle oscillation, we can neglect the nonlinear stiffness matrixes in the
suppression of panel flutter. By assembling the element matrices and ignoring the nonlinear terms, the equation of motion
for the entire structure can be written as

M €WþC _WþðKþlAÞW¼U (8)

where M, C, K, A are the mass, damping, stiffness and aerodynamic matrixes by assembling the element matrixes and
introducing the boundary conditions, l is the aerodynamic pressure parameter and can be found in Eqs. (4) and (6) for
subsonic and supersonic flow, U¼KwjVaþKwjK

�1
jjKwjW is the control moments in the controller design instead of Va for

simplicity.
When l¼0, the generalized eigenvalues are real and positive definite. As l increases from zero, the eigenvalues of two

lowest modes will usually approach each other and coalesce at a critical value lcr and become complex conjugate pairs.
The corresponding eigenvectors will lose their orthogonality and become complex. Hence the onset of flutter can be
predicted by using the eigenvector orientation method to track the angle between the two eigenvectors. Here, The angle
between two eigenvectors can be derived from their scalar product [11]. For two real vectors, the angle is the arc cosine

y¼ cos�1 v1Uv2
:v1::v2:

 !
(9)

The angle between two complex vectors is calculated by mapping a complex vector into a real vector by grouping the
imaginary components after the real components, so that

y¼ cos�1 v1Uv2
:v1::v2:

 !
(10)

where an overbar denotes complex conjugation.
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4. Optimal control design

Based on the reduced model of entire structure, an output feedback controller can be designed by using the linear
quadratic regulator theory [24]. Introducing the state-space variables

x¼ ½Wi
_W i�T , u¼ ½0 U�T (11)

The second-order nonlinear coupled-modal equation given by Eq. (8) can be converted to a first-order state space form
as

_x ¼ SUxþBUu (12)

where S is the system matrix, and B is the control influence coefficient matrix, determined according to the actuator
configuration, which are given by

S¼
0 I

�M�1ðKþlAÞ �M�1C

" #
,

B¼ 0 M�1E
h iT

(13)

where E is determined according to the actuator configuration, for example, E¼I when all 16 elements are controlled.
The linear quadratic performance index for optimal control can be formulated as

J¼
Z 1

0
ðxTUQUxþuTURUuÞdt (14)

where Q is a positive semidefinite penalty weighting matrix, and R is a positive definite control weighting matrix. In this
study, Q¼q� I and R¼r� I, where r is identity, and q is an appropriately chosen constant.

From the optimal control theory, the optimal linear feedback control force vector can be written as

u¼�R�1UBTUPUx (15)

where P is a positive so-called Riccati matrix obtained by solving the following algebraic Riccati equation:

STUPþPUS�PUBUR�1UBTUPþQ ¼ 0 (16)

From Eq. (15), the feedback gain matrix for this control design is defined as

G¼R�1UBTUP (17)

Substituting Eq. (15) into Eq. (12), we obtain

_x ¼ ðS�BUGÞUx¼ ScUx (18)

where Sc¼S�BUG is the ‘‘closed-loop’’ dynamics matrix, and the system coefficient change induced by the feedback
control is

DS¼ BUG (19)

This system matrix change represents the effect that would be created by applied control moments which are produced
by piezoelectric layers. By adding the change to Eq. (8), the controller is able to restabilize the system. The block diagram
representation of the controller is illustrated in Fig. 3.

It should be noted that the design process requires a specific airspeed and altitude condition, which mean that each
controller is based on the structural model with a design specific aerodynamic pressure, indicated as ld. After each design,
the maximum control output is measured when the system is perturbed by exciting the piezoelectric actuators using an
impulsive input. The value of dynamic pressure is increased and the design process for different weighting matrices is
carried out. This process is repeated up to a certain value beyond which the linear quadratic regulator controller could not
stabilize the system without saturation.

Kwϕ
U

- -

-

W

MC-1

M-1 (K+�A)

Va
W W

-1KwϕKϕϕKwϕ

Fig. 3. Block diagram for linear quadratic regulator feedback controller design.
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5. Numerical simulations and results

Computer programs are developed and tested for the present isotropic plate finite element formulations and their
application to subsonic and supersonic panel flutter analysis. Firstly, the computed results of the natural frequencies and
mode shapes of the examples using the present finite element models are obtained from the presently developed
computer programs, and the results are compared with the analytical and experimental solution as given in Refs. [11,18];
Secondly, both the present eigenvector orientation method and the method of coalescence of eigenvalues are used to
detect the onset of flutter; finally, the piezoelectric layer actuators are applied to the second test model, and the actual
effect is analyzed and discussed by changing the location of piezoelectric layers.

5.1. Swept-back cantilever plate under subsonic flow

This example is used to verify the validity of the present finite element and eigenvector orientation methods. As a first
step, a free vibration analysis is performed for this cantilever plate model by neglecting the damping and aerodynamic
effect. The natural frequencies are first obtained and compared with those values presented by Han et al. [18]. The material
properties and dimensions used for this comparison are the same, as shown in Table 1 and Fig. 1a. The details of
comparison can be found in Table 2. It is seen that the first five natural frequencies obtained by the present 6�7 triangular
elements are in good agreement with those obtained in Ref. [18] by using both the experimental method and the 20�40
four-node elements.

By using the coalescence of eigenvalues method and the eigenvector orientation method, the flutter predictions are
obtained when subjected to subsonic flow. The reference Mach number is assumed to be 0.05 (35.3 m/h at sea level), and
the structural damping is not taken into account. Fig. 4a shows the variation of frequencies for the two fundamental modes
as a function of the aerodynamics pressure parameter for this model. It can be seen that when the aerodynamic pressure
parameter reaches 5.6, the natural frequencies of modes 1 and 2 coalesce and exhibit complex eigenvectors, which means
that modes 1 and 2 are participating in the dynamics in such a way as to give rise to a flutter condition. Fig. 4b shows the
variation of the angle between the two eigenvectors as a function of the aerodynamic pressure parameter. It can be seen
that the angle between the two eigenvectors drops from 901 to zero as the plate approaches the flutter condition at
lcr¼5.6. This phenomenon indicates that the eigenvectors initially are oriented orthogonally but gradually lose their
orthogonality as the aerodynamic pressure parameter is varied.

Fig. 5 shows the first two mode shapes of lifting surface at three stages with different values of aerodynamic pressure
parameter. During the free vibration at l1¼0, it can be seen that the first mode is dominated by a bending mode, whereas
the second mode is mainly dominated by a torsional mode. As aerodynamic pressure parameter increased from zero, the

Table 2
Natural frequencies of the swept-back cantilever plate.

Mode number Ref. [18] Present analysis (6�7

three-node elements) (Hz)
Experiment (Hz) 20�40 four-node

elements model (Hz)

1 2.03 2.13 2.17

2 10.9 10.4 10.3

3 14.5 14.3 14.8

4 31.2 29.6 33.3

5 43.9 41.7 41.8

real

imag.

Fig. 4. Flutter prediction of the swept-back cantilever plate by using both methods: (a) coalescence of eigenvalues and (b) eigenvector orientation.
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first mode keeps the original modality while the second mode gradually loses its torsion dominant modality under the
effect of airflow. Finally, the lowest two modes become similar at lcr¼5.6, indicating the coalesce and the onset of flutter.

Both the coalescence of eigenvalues method and the eigenvector orientation method are used to find the flutter
frequency of 7.1 Hz and the flutter aerodynamic pressure parameter of 5.6, which can be converted to the flutter speed
16.8 m/s by Eq. (4). Table 3 compares the flutter boundaries with Ref. [18]. It can be seen that the present results show
reasonably good agreement with the experimental and analytical results, which indicates that the current finite element
model and eigenvector orientation method can predict the onset of flutter for the swept-back cantilever plate under
subsonic flow with reasonable accuracy. It should be noted that a distinct characteristic of the eigenvector orientation

Fig. 5. Mode shapes of lifting surface at three stages: (a) free vibration, (b) aerodynamic pressure parameter l1¼4 and (c) coalesce of lowest two modes

at lcr¼5.6.

Table 3
The comparison of the flutter speed and frequency.

Ref. [18] Present analysis (eigenvector

orientation method)
Experiment V-g method

Flutter speed (m/s) 17.1 15.1 16.8

Flutter frequency (Hz) 7.2 8.2 7.1

Z. Wang et al. / Journal of Sound and Vibration 331 (2012) 1469–1482 1475
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method is that it can predict the flutter condition by tracking the angle between the two eigenvectors and its deviation
from 901. Thus, for a real-time flutter control process and design, in which the response time is critical, the eigenvector
orientation method has its practical value because it can be easily monitored.

5.2. Simply supported plate under supersonic flow

To further illustrate the application of eigenvector orientation method in the flutter process and design, the example of
a simply supported plate bonded with piezoelectric layers under supersonic flow is considered. This model is analyzed to
find combinations of control parameters that would result in offsetting flutter to a higher speed. The structural model can
be seen in Fig. 1b. As a first step, the flutter prediction of uncontrolled case is analyzed by using both methods: the
coalescence of eigenvalues, and the eigenvector orientation. As shown in Fig. 6a, flutter occurs as the eigenvalues of the
two lowest modes coalesce around a critical value of aerodynamic pressure at lcr¼480. This corresponds to the flutter
condition when the angle between the two eigenvectors drops to zero and yield the same value at lcr¼480 as shown in
Fig. 6b.

To further observe the control effect, a set of examples are considered by changing locations for the application of
piezoelectric layers. For each example, different controllers are obtained by fixing the control weighting matrix R while
varying the penalty weighting matrix Q, and each controller is designed based on a model with a specific aerodynamic
pressure parameter ld. So the actual control parameters are the constant q and design aerodynamic pressure parameter ld
in the controller design procedure.

5.2.1. Case 1: Applying control moments on all 16 elements

When the control bending elements are applied on all 16 elements, the flutter speed can be both decreased and
increased depending on the control parameters q and ld. This concept is illustrated in Fig. 7. It can be seen that a series of
combinations of control parameters q and ld are used to obtain seven critical flutter speeds varying from lcr¼200 to 840
including the uncontrolled case of lcr¼480.

To be more specific numerically, all critical flutter speeds and the corresponding control parameters q and ld are listed
in Table 4. It is noticed that for ld¼0, flutter speed seems to increase as the control parameter q decreases. Because the
controller is only affected by the control parameter q at ld¼0, the stiffness of the structure is actually decreased and the

Fig. 6. Flutter prediction of the simply supported plate by using both methods: (a) coalescence of eigenvalues and (b) eigenvector orientation.

q=0.03, d=0
q=0.02, d=0
no control
q=0.0001, d=200
q=0.001, d=200
q=0.0001, d=300
q=0.001, d=300

Fig. 7. Angle between the two lowest modes with control moments on all 16 elements.
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flutter speeds cannot be increased above lcr¼480 (uncontrolled case). Once the control parameter ld is increased to 200 or
300, flutter speeds can be increased above the uncontrolled case at lcr¼480. In both cases, flutter speeds seem to increase
as the control parameter q increases. It is opposite of that observed for the case when ld¼0.

The eigenvalues for the lowest two modes are plotted in Fig. 8 for the uncontrolled case and a specific case with
q¼0.001 and ld¼200. It is seen that the lowest two eigenvalues coalesce and become complex at lcr¼480 and 680,
indicating the onset of flutter in the two, respectively, cases. The effect of the piezoelectric actuator increases the critical
aerodynamic pressure due to the application of controlled bending moments to move the flutter speed to that of a higher
flutter speed.

Fig. 9 shows a specific control moment combinations at l2¼240 with q¼0.001 and ld¼200. Depending on the actual
deflections and slopes of all nodes, controller is designed to determine the necessary change DS in the system matrix to
stabilize the system. This DS can then be used to calculate the direction and magnitude of the external control moments,
which are needed to be applied at the appropriate edges of each element.

Table 4

Flutter speed for different combinations of control parameters q and ld
with control moments applied on all 16 elements.

Controller parameters Critical flutter

speed, lcr
ld q

0 0.03 200

0 0.02 360

Uncontrolled case 480

200 0.0001 560

200 0.001 680

300 0.0001 600

300 0.001 840

1st mode uncontrolled
2nd mode uncontrolled
1st mode controlled
2nd mode controlled

Fig. 8. Eigenvaues for q¼0.001 and ld¼200 with control moments on all 16 elements.

Fig. 9. The configuration of specific control moment combinations at l2¼240 with q¼0.001 and ld¼200.

Z. Wang et al. / Journal of Sound and Vibration 331 (2012) 1469–1482 1477
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The corresponding modes shapes for the uncontrolled case and specific case are shown in Fig. 10 for four specific values
of l2 from zero to 680. For the uncontrolled case, it is seen that the first mode is dominated by a bending mode and the
second mode is mainly dominated by a torsion mode at l2¼0, indicating stability. As aerodynamic pressure is increased
from zero, the first mode keeps the original modality, but the maximum deflection point moves from the center of plate
along the direction of airflow while the second mode gradually loses its torsion dominant modality under the effect of
airflow. Finally, the lowest two modes become similar at lcr¼480, indicating the onset of flutter.

When the control moments are added, it can be seen that the lowest two controlled mode shapes are still distinct at
l2¼480, as well as in all other values below lcr¼680 , indicating stability. This interesting phenomenon indicates that the
critical aerodynamic pressure lcr is increased from 480 to 680 by using the piezoelectric actuators.

5.2.2. Case 2: Applying control moments on the eight end elements

When the control moments are assumed to be applied on the eight end elements (elements 1, 2, 3, 4, 13, 14, 15 and 16
in Fig. 1b), flutter speed can again be both decreased and increased depending on the controller design. This concept is
illustrated in Fig. 11. It can be seen that a series of combinations of control parameters q and ld are used to obtain seven
critical flutter speeds varying from lcr¼240 to 800 including the uncontrolled case of lcr¼480.

Once again, all critical flutter speeds, control parameters q and ld are listed in Table 5 for simplicity. The same trends
can be seen as in the case when the control moments are assumed to be applied on all 16 elements: For ld¼0, flutter speed
increases as the control parameter q decreases, whereas for ld¼200 or 300 flutter speed increases as the control parameter
q increases. Flutter speed can be increased above lcr¼480 only when ld¼200 or 300. However, for this example studied,
the range of flutter speed variation changes less than the case 1 with the same control parameters q and ld, which may
mean that the actual control effect declined when the control moments are applied on the eight end elements.

The eigenvalues for the lowest two modes are plotted in Fig. 12 for the uncontrolled case and a specific case with
q¼0.0001 and ld¼300. It can be seen that the lowest two eigenvalues, respectively, coalesce and become complex at
lcr¼480 for the uncontrolled case and lcr¼560 for the specific controlled case, indicating the onset of flutter. The
corresponding mode shapes are shown in Fig. 13. Similar to the case when control moments are applied to all 16 elements,
the lowest two mode shapes become similar at lcr¼480 for the uncontrolled case and lcr¼560 for the specific controlled

U
Uncontrolled mode 2

Uncontrolled mode 1

Uncontrolled mode 2

Uncontrolled mode 1

Uncontrolled mode 1

Controlled mode 1

Controlled mode 2

Controlled mode 1

Controlled mode 2

U U

UU UU

U

Uncontrolled mode 2

Uncontrolled mode 1

Uncontrolled mode 2 Controlled mode 2

Controlled mode 1Controlled mode 1

Controlled mode 2

UU U

UU UU

U

Fig. 10. Mode shapes for q¼0.001 and ld¼200 with control moments on all 16 elements at (a) l2¼0; (b)l2¼240; (c) l2¼480; and (d) l2¼680.
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case, indicating the onset of flutter. The presence of the piezoelectric actuators increases the critical aerodynamic pressure
due to the effect of the added stiffness produced by the application of controlled bending moments to cause the two lowest
modes no longer coalesce or the angle between them vanish.

5.2.3. Case 3: Applying control moments on the eight interior elements

Assuming that the control bending moments are only applied on the eight interior elements (elements 5, 6, 7, 8, 9, 10,
11, and 12 in Fig. 1b), flutter speed can again be both decreased and increased depending on the controller design. This
concept is illustrated in Fig. 14. It can be seen that a series of combinations of control parameter q and ld are used to obtain
seven critical flutter speeds varying from lcr¼400 to 760 including the uncontrolled case of lcr¼480.

Once again, all critical flutter speeds, control parameters q and ld are listed in Table 6. The same trends can be seen as in
the previous two cases: for ld¼0, flutter speed increases as the control parameter q decreases, whereas for ld¼200 or 300
flutter speed increases as the control parameter q increases. Flutter speed can be increased above lcr¼480 only when
ld¼200 or 300. However, for this example studied, the range of flutter speed variation is the smallest in this three cases

0 200 400 600 800 1000

q=0.03, d=0
q= 0.02, d=0
no control
q= 0.0001, d=200
q= 0.001, d=200
q= 0.0001, d=300
q= 0.001, d=300

Fig. 11. Angle between the lowest two modes with control moments on eight end elements.

Table 5

Flutter speed for different combinations of control parameters q and ld
with control moments applied on eight end elements.

Controller parameters Critical flutter

speed, lcr
ld q

0 0.03 240

0 0.02 400

Uncontrolled case 480

200 0.0001 520

200 0.001 680

300 0.0001 560

300 0.001 800

1st mode uncontrolled
2nd mode uncontrolled
1st mode controlled
2nd mode controlled

Fig. 12. Eigenvalues for and with control moments on q¼0.0001 and ld¼300 eight end elements.
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with the same control parameters q and ld, which means that the actual control effect is the least when the control
moments are applied on the eight interior elements.

The eigenvalues for the lowest two modes are plotted in Fig. 15 for the uncontrolled case and a specific case with
q¼0.001 and ld¼200. It can be seen that the lowest two eigenvalues, respectively, coalesce and become complex at
lcr¼480 for the uncontrolled case and lcr¼640 for the specific controlled case, indicating the onset of flutter. The
corresponding mode shapes are shown in Fig. 16. Similar to the case when control moments are applied at all 16 elements,
the lowest two mode shapes become similar at lcr¼480 for the uncontrolled case and lcr¼640 for the specific controlled
case, indicating the onset of flutter. The presence of the piezoelectric actuators increases the critical aerodynamic pressure
due to the effect of the added stiffness produced by the application of controlled bending moments to cause the two lowest
modes no longer coalesce or the angle between them vanish.

Uncontrolled mode 2

Uncontrolled mode 2

Uncontrolled mode 2

Uncontrolled mode 1

Controlled mode 2

Controlled mode 1Controlled mode 1

Controlled mode 2

UU U

UU UU

U

Fig. 13. Mode shapes for q¼0.0001 and ld¼300 with control moments on eight end elements at (a) l2¼0; (b) l2¼240; (c) l2¼480; and (d) l2¼560.

q=0.03, d=0
q=0.02, d=0
no control
q=0.0001, d=200
q=0.001, d=200
q=0.0001, d=300
q=0.001, d=300
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Fig. 14. Angle between the lowest two modes with control moments on eight interior elements.
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Table 6

Flutter speed for different combinations of control parameters q and ld
with control moments applied on eight interior elements.

Controller parameters Critical flutter

speed, lcr
ld q

0 0.03 400

0 0.02 440

Uncontrolled case 480

200 0.0001 520

200 0.001 560

300 0.0001 640

300 0.001 760

1st mode uncontrolled
2nd mode uncontrolled
1st mode controlled
2nd mode controlled

Aerodynamic parameter, 2

Fig. 15. Eigenvalues for q¼0.001 and ld¼200 with control moments on eight interior elements.

Uncontrolled mode 2

Uncontrolled mode 1

Uncontrolled mode 2

Uncontrolled mode 1

Controlled mode 2

Controlled mode 1Controlled mode 1

Controlled mode 2

UU U

UU UU

U

Fig. 16. Mode shapes for q¼0.0001 and ld¼200 with control moments on eight interior elements at (a) l2¼0; (b) l2¼240; (c) l2¼480; and (d) l2¼640.
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6. Concluding remarks

A method of flutter detection and suppression using the eigenvector orientation approach and piezoelectric layers has
been developed. The linear optimal control design is based on linear quadratic regulator theory and the nonlinear modal
equations of motions. For the example of rectangular plate, the performance of flutter suppression using piezoelectric
actuation is demonstrated by changing the piezoelectric actuator locations and the control parameters q and ld.

Considering only the three specific examples studied here, it is observed that when the control moments applied on all
16 sub-components of the panel, the flutter speed appears to be increased a little more than when applying the control
moment on only eight end or eight interior sub-components. The phenomena observed seems to be due to the differences
in added bending stiffness in suppressing the vibration modes to avoid the coalescence of the two lowest modes or to
avoid the angle between them to vanish. Results seem to reveal that using control moments on more elements seems to be
more effective in moving the flutter boundary to a higher speed.

It should be noted that there are several limitations as to offsetting the flutter speed in each case. One limitation is that
each controller can only achieve a certain amount of increase in the flutter speed. Another limitation is the power needed
from the piezoelectric layers, which is determined by the amplitude of the structural vibration as shown in Eq. (15). By
using different controller design to optimize the limitation, the critical aerodynamic pressure parameter can be increased
about two times, which reveals the great potential of piezoelectric materials to suppress flutter. While the demonstration
of the usefulness of the current methods appear to be simple, straightforward, yet original for a two dimensional panel, its
potential for application in aeronautical wing-type structures can be developed into an innovative technology, especially
in view of the fact that the eigenvector method may provide a precious ‘‘lead time’’ necessary to activate control to
suppress the destructive flutter.
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