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Abstract: A decentralized control method with improved robustness and design flexibility is proposed for reducing vibrations of
seismically excited building structures. In a previous study, a control scheme was developed for multistory building models using
nonlinear, decentralized control theory. This control method has now been improved in this study in that less information about material
properties and geometrical parameters of the building is needed and the selection of control design parameters is more flexible. The
nonlinear behavior of the proposed control system is studied and its stability property is proven mathematically. To evaluate the effec-
tiveness and robustness of the proposed method, three illustrative structural models, i.e., an eight-story elastic shear beam model, a
two-story nonlinear elastic shear beam model, and a 20-story elastic benchmark model are studied. The 1940 El Centro and the 1995 Kobe
earthquakes are used in these examples. The performance of the current control design, as applied to these examples, has shown to be
more effective in reducing structural responses and improving robustness.
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Introduction

Since the concept of using control methods to reduce structural
vibrations due to external excitations was proposed in the 1960s
�Yao 1972; Yang 1975�, a vast amount of research efforts in struc-
tural control have been devoted to the development of a variety of
control algorithms based on different control design criteria.
Some examples include: classical optimal control �Martin and
Soong 1976�, pole assignment �Rohman and Leipholz 1978�, co-
variance control �Lu and Skelton 1998�, multiobjective control
�Johnson et al. 1998; Whorton et al. 1998; Brown et al. 1999�,
sliding mode control �Adhikari et al. 1998; Wu et al. 1998�, ro-
bust control �D’Amato and Rotea 1998; Balas 1998; Young and
Bienkiewicz 1998�, and predictive control �Xu and Yang 1999;
Mei et al. 2001�. Research effort has also been devoted to the
implementation of these control schemes using various control
devices such as active �Reinhorn et al. 1992� and semiactive de-
vices �Dyke et al. 1998�. Recently, attempts to employ decentral-
ized control methods in buildings have explored alternative
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methods �Lynch and Law 2002; Nishitani et al. 2003; Xu et al.
2003�.

In this study, a modified decentralized control technique based
on the theory of sliding mode control is presented for applications
to seismically excited civil infrastructures, such as multistory
buildings. Unlike the previously developed method �Ma et al.
2008�, prior, detailed knowledge about the structural parameters,
such as material properties and geometric parameters, is no longer
required in order that greater model uncertainty can be accommo-
dated. The applicability of the proposed approach to structural
control is demonstrated and its stability property analytically
studied. Design guidelines are drawn from a qualitative analysis
of the nonlinear behavior of the system. Finally, the effectiveness
of the method in reducing vibrations and its robustness to factors
such as variation of structural parameters and nonlinearities are
studied using numerical examples.

Problem Formulation

The equations of motion of an n-story building structure sub-
jected to external excitations and control forces can be written as

Mẍ + Cẋ + K�x�x = B0 · u + G · ẍg�t� �1�

where M, C, and K�x�=mass, damping, and stiffness matrices,
respectively. Symbol x represents the n�1 vector of structural
displacement relative to the ground. Symbol B0 denotes an n
�r matrix of control force position �r�n�. Symbol u is the
r�1 vector of control force. Symbol G denotes the excitation
location matrix defined by G=−M ·1, where 1 is a n�1 vector
with all elements being unity. Symbol ẍg represents the time his-
tory of the ground acceleration components of an earthquake.

In this study, it is assumed that actuators are placed between

floors so that they apply a pair of forces to the connecting floors



with the same magnitude but opposite direction. The actuator
forces f that are exerted between floors, give a net force u on the
floors, where

u = �
�1
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in which �i
−1 are related to the geometry of how the actuators are

oriented between the floors. The inverse relationship is
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For use in a chevron brace, �i
−1=1, thus

f i = �
j=1

i

uj �4�

Using the total control force vector u in the control design for-
mulation, B0= In is an identity matrix of n�n. Note that in the
case where not every floor is equipped with actuators, the actuator
force should be used for controller design and B0� In.

Derivation of the proposed decentralized control strategy is
based on the decomposition of the system dynamics of Eq. �1�. A
civil structure, e.g., a multistory building, can be considered as an
entity of a number of connected substructures. Mathematically,
the global system behavior reflects the resultant dynamics of these
substructures coupled through interconnections. If the local dy-
namics of a single substructure are concerned, the effects of in-
terconnections can be represented as additional external loads
applied to the substructure. Feedback controllers designed based
on the individual substructures result in a decentralized control
implementation for the global structure. As the interconnections
are not included in the local dynamics of the substructures, they
are unknowns to these controllers. Thus, effective decentralized
controllers based on substructuring must have the capability of
accommodating such “unknown” loads in order to produce a de-
sired global system behavior.

Assume that the structure is decomposed into N subsystems
with every set of ni adjacent stories being one of the subsystems,
i.e., �i=1

N ni=n , x= �x1
T ,x2

T , . . . ,xN
T� and for every subsystem,

there are ri floors subjected to control forces; obviously ri�ni,
u= �u1

T ,u2
T , . . . ,uN

T�, and B0=blockdiag�B01 ,B02 , . . . ,B0N�, where
ui is the vector of control force for the ith subsystem. In this
study, ri=ni, thus B0i=Ini

. Note that depending on the definition
of the local states xi, there are generally two natural ways of
substructuring: xi defined as interstory drifts or displacements
relative to the ground. Since these two types of local states are
linear mappings of each other, the equations of motion of the
system are mathematically the same irrespective of the definition
of the local states. However, when local states are used to define
the control objective, the resulted controllers may be different.

Defining the local states to be relative to ground, the equations
of motion of the ith subsystem can be written as

Miẍi�t� + Ciẋi�t� + Ki�xi�xi = �i, i = 1,2, . . . ,N �5�

where Mi, Ci, and Ki=mass, damping, and stiffness matrices of
the ith system, respectively. The generalized force vector �i�t� is

defined as �Ma et al. 2008�

JO
�i�t� = ui − zi�x, ẋ� − di, di = − Giẍg�t� �6�

where Gi=−Mi ·1ni
and zi�x , ẋ�=vector of interconnection

strength. Obviously, zi�x , ẋ� and thus �i�t� depend on the states of
all subsystems including the local states xi and ẋi. The objective
of decentralized control is to design the controllers based on in-
dividual subsystems �Eq. �5�� such that only local feedback is
needed for every controller and yet the global system response is
reduced.

Decentralized Control Design

Define a sliding mode variable for every subsystem as

si � ẋi + �ixi = ẋi − ẋi
r, ẋi

r � − �ixi �7�

In this study, local controllers of the following form are proposed.

ui = − Lisi + wi�si� �8�

where Li=positive-definite linear local feedback gain of the ith
subsystem to ensure the desired local dynamics of the subsystems
and wi�si�=used to compensate for effects of uncertainties such as
disturbances and interconnections so that the desired global be-
havior is achieved. Substituting Eq. �8� into Eq. �5� and consid-
ering definition �7� gives the closed-loop system equations of the
ith subsystem as

Miṡi + �Ci + Li�si = − Yi�i − zi�x, ẋ� − di + wi �9�

where Yi�i=Miẍi
r+Ciẋi

r+Ki�xi�xi.
In this study, the local controllers are design such that the

following positive-definite Lyapunov function is bounded, i.e., the
resultant feedback system is globally stable

V�t� = �
i=1

N

Vi�t� �
1

2�
i=1

N

si
TMisi �10�

Since the mass matrix Mi is symmetric and bounded, i.e., for
some m̄i�mi�m� i	0, m� iIni

�Mi� m̄iIni
, it is clear that

mini�m� i	
2


si
2 � V�t� �
maxi�m̄i	

2

si
2, ∀ t � 0 �11�

Taking the time derivative of the Lyapunov function and consid-
ering Eq. �9� yields

V̇ = �
i=1

N

si
TMiṡi = − �

i=1

N

si
T�Ci + Li�si + �

i=1

N

�si
T�− Yi�i − zi − di + wi�	

�12�

According to Tang et al. �2000�, there exist constants a1 ,a2�0
such that


ẋi
 � a1
xi
 + a2 �13�

If 
m�A� denotes the minimum eigenvalue of matrix A, for suffi-
ciently large 
m��i�, i.e., 
m��i�	a1, it is possible to find �ij

such that the generalized force, i.e., −Yi�i−zi�x , ẋ�−di is bounded

as �Tang et al. 2000�
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− Yi�i − zi�x, ẋ� − di
 � �
j=1

N

��ijSj	, Sj � 1 + 
s j
 + ¯ + 
s j
P

�14�

Eq. �14� implies that for every subsystem, the input �including
excitation and interconnections� is bounded. If the upper bound is
considered in controller design, the global stability of the system
can be ensured. As the upper bound can be represented using only
local states, it is possible to design local controllers to achieve
desired global performance.

Let � be defined as

� � N max
i,j

��ij	 �15�

Thus �Si represents largest possible load to the ith subsystem—
the worst case scenario.

Using Eqs. �14� and �15�, and expression �i=1
N 
si
� j=1

N Sj

�N�i=1
N 
si
Si, the second term of the right-hand side of Eq. �12� is

bounded by

�
i=1

N

�si
T�− Yi�i − zi − di + wi�	 � �

i=1

N

�si
Twi + 
si

− Yi�i − zi − di
	

� �
i=1

N �si
Twi + 
si
�

j=1

N

�ijSj�
� �

i=1

N

�si
Twi + �Si
si
	 �16�

If the nonlinear local feedback is selected as

wi�si� = − ��Si�2 si

�Si
si
 + �i

��i 	 0� �17�

then

�
i=1

N

�si
T�− Yi�i − zi − di + wi�	 � �

i=1

N

�si
Twi + �Si
si
	 � �

i=1

N

�i = �

�18�

Furthermore, considering that the damping matrix Ci is positive-
definite and for some c� i	0, c� iIni

�Ci=Ci
T, the following relation-

ship can be obtained:

V̇ � − �
i=1

N

�si
T�Ci + Li�si	 + �

� − min
i

�i	�
i=1

N

si
TMisi + � � − 2V + �

i �

m�c� iIni

+ Li	

m̄i

,  � min
i

�i	 �19�

Expression �19� implies

V�t� � V�t0 −
�

2
��e−2�t−t0� +

�

2
�20�

Thus, the closed-loop system �9� is globally stable in the sense

that all signals are uniformly bounded by
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s�t�
2 � mr�
s�t0�
2 −
�

 maxi�m̄i	
�e−2�t−t0� + mr

�


� m�c� iIni
+ Li	

�21�

where 
s�t�
2=�
si
2, mr�maxi�m̄i	 /mini�m� i	, and for some set of
matrices T1 ,T2 , . . . ,TN—where the set is denoted �Ti	 for short—
the notation 
� m��Ti	� is defined to be mini�
m�Ti�	; m̄i and m� i

=upper and lower bounds of the masses in substructure i, respec-
tively, hence mr�1 is a measure of the level of unevenness of
mass distribution of the system. Using Eqs. �21� and �7�, the
norms of the displacements converge to


xi
2 � mr
�


� m
2 ��i�
� m�c� iIni

+ Li	
�22�

As seen in the above derivation, the local stability of the control-
ler is achieved through proper design of the linear feedback gain
Li. As there is no communication or information exchange among
the subsystems, the global stability of the controller is ensured by
using an ultimate upper bound of the combined effect of excita-
tion and interconnections for all subsystems �see Eqs. �14� and
�15��. This upper bound represents the largest possible external
load of the subsystems and every local controller is designed
against such worst scenario using a nonlinear feedback term as
defined in Eq. �17�. Therefore, desired global system behavior
may be achieved. Note that in the previous method �Ma et al.
2008� �i�Yi�i is included such that the control law is

ui = �i − Lisi + wi �23�

In this case, the right-hand-side of Eq. �9� becomes −zi�xi , ẋi�
−di+wi, which generally results in a smaller upper bound � and
thus smaller control force. The benefit of removing �i is that the
control force can be determined without precise information
about the structural parameters. The controller may be more ro-
bust and more suitable for applications of complex structures.

Performance Analysis

The system equation of the ith subsystem �5� can be written as

�̇i = Ai�i + Biui − zi�xi, ẋi� − di �24�

with

�i = xi

ẋi
�, Ai �  0ni

Ini

− Mi
−1Ki − Mi

−1Ci
�

Bi �  0ni

Mi
−1B0i

�
The sliding mode variable may thus be written as si=Qi�i with
Qi=blockdiag��i Ini

�. A block diagram of the subsystem is shown
in Fig. 1. It is seen that in this case there appears a new feedback
channel with a gain of Mi�is+Ci�i−Ki from output �xi�t�� di-
rectly to input �−di−zi�xi , ẋi�� as compared to the previous
method �see Fig. 2 in Ma et al. �2008��. Note that while zi�xi , ẋi�
is part of the dynamics of the system, it may be treated as an input
to the ith subsystem if only the local dynamics of subsystem are

of concern.



Case 1

�Si
si
→�
si
p+1��i for relatively large 
si
. In this case, the non-
linear compensation term, wi simplifies to

wi = − �Si

si/
si

1 + �i/��Si
si
�

� − �Si�1 −
�i

�Si
si

� si


si

�25�

Thus

Miṡi + �Ci + Li�si � − �Si�1 −
�i

�Si
si

� si


si

− Yi�i − zi�x, ẋ� − di

�26�

A block diagram of the ith subsystem with simplified system
Eq. �26� is shown in Fig. 2�a�.

In this case, the control force vector can be determined as

1

s

MiΛis + CiΛi − Ki

xi(t)

δ

ui = −Lis̄i + wi

s̄i(t)

_

ξ̇i

ξi(t) =

[
xi(t)

ẋi(t)

]

[
Ini

0ni

]
+

zi(x, ẋ)

Ai

Bi

Q
i

DRCi

di

_

Fig. 1. Block diagram of a structure controlled by the present method

MiΛis + CiΛi − Ki

xi(t)

δ

s̄i(t)
 

−di(t) − zi(x, ẋ)
[Mis + (Ci + Li)]

−1 [Ini
s + Λi]

−1

Si

(
1 −

ǫi

δSi ‖ s̄i ‖

)
s̄i

‖ s̄i ‖

 

MiΛis + CiΛi − Ki

xi(t)

δ

s̄i(t)
 

−di(t) − zi(x, ẋ)
[Ini

s + Λi]
−1

[
Mi +

(
Ci + Li +

δ
2

ǫi

Ii

)]
−1

(a)

(b)

+

+

Fig. 2. Block diagram of equivalent systems for �a� �Si
si
��i; �b�
�Si
si
��i
JO
ui � − Li + �1 −
�i

�Si
si

� �Si


si

Ini�s̄i � − Lisi − ��
si
p�si

�27�

Eqs. �7� and �27� imply that the linear feedback channel �Li�
provides additional passive viscous damping and passive linear
stiffness to the system, whereas the role of the nonlinear portion
of the control force �wi� is somewhat similar to that of additional
nonlinear damping and nonlinear elastic stiffness. For a sub-
system that includes only one floor level and p=2, �i�−�s̄i

3.
Note that large 
si
 corresponds to large structural response,
which may be due to strong excitations and/or ineffective control
performance.

Case 2


si
→0+ and hence �Si
si
→�
si
��i. Eq. �17� simplifies to

wi = −
�2

�i
Si

2 si

1 +
�Si
si


�i

→

si
→0

−
�2

�i
si �28�

The system equations of the ith subsystem can thus be written as

Miṡi + �Ci + Li +
�2

�i
Ini
�si � − Yi�i − zi�x, ẋ� − di �29�

The system can be approximately treated as a linear system.
A block diagram of the approximate linear system is given in
Fig. 2�b�. The closed-loop transfer function from the input
�−di−zi�x , ẋ�� to output xi�t� can be obtained as

Gi�s� = �Mis
2 + �2Mi�i + Ci + Li +

�2

�i
Ini
�s

+ �2Ci + Li +
�2

�i
Ini
��i − Ki��−1

�30�

In order to ensure that the above closed-loop subsystem is stable,
Gi must not have poles on the right-hand complex plane,
i.e., none of the roots of Eq. �31� has positive real part. This
condition implies that matrices Mi, 2Mi�i+Ci+Li+ ��2 /�i�Ini

,
and �2Ci+Li+ ��2 /�i�Ini

��i−Ki must be positive-definite.

�Mis
2 + �2Mi�i + Ci + Li +

�2

�i
Ini
�s

+ �2Ci + Li +
�2

�i
Ini
��i − Ki�� = 0 �31�

Since Mi, Ci, and Ki are positive-definite for a structure, for any
positive-definite �or positive semidefinite� Li, a sufficient condi-
tion for stability is that �2Ci+Li+ ��2 /�i�Ini

��i−Ki is positive-
definite. Thus, a controller may be designed so that

�2

�i
�i − Ki � 0 and Li � 0, or Li � Ki�i

−1 and
�2

�i
	 0

�32�

Note that A−B�0 means A−B is positive semidefinite. A design
with relatively large stability margin may be chosen as

Li � Ki�i
−1 and

�2

�i
Ini

	 Ki�i
−1 �33�
Under such a design, control force can be estimated as
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ui � − �Li +
�2

�i
Ini
�si = − �Li +

�2

�i
Ini
��ẋi + �ixi� �34�

In this case, the controller simply provides additional passive vis-
cous damping and passive linear stiffness to the system.

It is interesting to note that for both cases, the controllers
provide additional passive viscous damping and passive linear
stiffness. In Case 1 particularly, the controllers also provide addi-
tional nonlinear damping and nonlinear elastic stiffness. If xi is
defined as interstory drift, the additional damping and stiffness are
essentially passive internal damping and interstory stiffness, re-
spectively, whereas if xi is defined as displacement relative to the
ground, the controllers generate additional passive external damp-
ing and passive stiffness relative to ground. The former case re-
sults in a stronger structure whereas the latter is similar to the
case where additional global supports from the ground are pro-
vided.

The two special cases represent the two extreme conditions.
The actual closed-loop system behavior may be located some-
where in-between these two cases. Depending on the selection of
controller parameters, i.e. �i, Li, �i, and �, as well as the level of
excitation, the behavior of the resultant closed-loop system
may be closer to that in either case. Generally, system behavior
closer to Case 2 may be more favorable as it corresponds to small
structural responses. Note that while a controller designed using
Eq. �33� may offer good performance in response reduction due to
its large feedback gains, it may also demand large control forces,
which may become a problem when the capacity of the actuators
are limited.

Estimate of Control Force Level

According to the bound of the sliding mode variable �21�, the
magnitude of the control forces can be estimated using Eq. �8�
so that the controllers may be designed according to realistic fac-
tors such as the capacity of the actuators to be used, maximum
allowable structural responses, etc. To illustrate this process, let

s�0�
=0 for simplicity. The control force of the jth floor in the
ith subsystem is then bounded as


uij�t�
 � � l̄i +
��Si�2

�Si
si
 + �i
�
s
, i = 1,2, . . . ,N, j = 1,2, . . . ,ni

�35�

where l̄i=maximum eigenvalue of Li. For a proper control design,

s�t�
2�mrN�̄i / �c� i+ l�i� �see Eq. �21��, where an overbar and an
underbar represent the maximum and minimum values, respec-

tively. If the parameters are selected such that �2 / �̄i=�il̄i, it can be
shown that the control force is bounded as


uij�t�
 � ��mrN�i�i + 1 + � + �2��, �i �
l̄

c� i + l�i

� ��mrN�̄i

c� i + l�i
�36�

In this study, ��1 and the same parameters are used for the local
controllers, thus �i=1 and �i�1. The bound of peak control force

becomes
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�ij�t�
 � ��mrN + 3�� �37�

Eqs. �36� and �37� suggest that the peak control force may in-
crease monotonically with the level of unevenness in structural
mass distribution, the level of decentralization �indicated by N�
and the strength of the excitation �indicated by �; see Eqs. �14�
and �15��. For a given structure, mr is fixed. If the capacity of
the actuators to be used is of primary concern, smaller number
of subsystem and lower � should be used. Note that when N=1,
the control scheme becomes a centralized one. Selecting a smaller
value of � may lower the bound of peak control force; however,
excessively small � may cause the condition for convergence
to be violated �see Eqs. �14� and �15��. In such a case, Eqs. �36�
and �37� are invalid. The resultant controller may still stabilize
the structure if 2Mi�i+Ci+Li+ ��2 /�i�Ini

and �2Ci+Li

+ ��2 /�i�Ini
��i−Ki are positive-definite �see Eq. �30��, however,

the level of control force required may still be high.

Selection of �i

In order to achieve the desired control performance as defined in
Eqs. �22� and �36�, the minimum eigenvalue of �i should be
greater than a1, defined in Eq. �13�. Due to the uncertainties in the
system, precisely determining a1 can be difficult. However it can
be estimated using the modal properties of the structure.

The structural response due to an earthquake can be written as

�xi�t� = A0 + A1 cos��1t + �1� + A2 cos��2t + �2� + ¯

ẋi�t� = A1�1 sin��1t + �1� + A2�2 sin��2t + �2� + ¯

�
�38�

In the case where the first vibration mode dominates, the ampli-
tudes of xi�t� and ẋi�t� are approximately A1 and A1�1, respec-
tively. Thus, �i may be selected such that its smallest eigenvalue
is greater than the frequency of the first vibration mode �1.
�i may also be selected following the procedure based on an
optimization process �Ma et al. 2008�, i.e., �i=��iMi

−1Ki, where
�i	0 is a weighting factor.

Illustrative Examples

In order to evaluate and assess the performance of the proposed
method, three models are chosen as illustrative examples for this
study. They are an eight-story shear beam model �Ma et al. 2005;
Spencer et al. 1994; Yang 1982�, a two-story nonlinear shear
beam model �Yang and Lin 2005�, and a 20-story elastic bench-
mark model �Spencer et al. 1998a�. In these examples, sensor
noise, sensor and actuator dynamics are not considered. Actuators
are assumed to be installed using chevron braces.

Example 1: Eight-Story Shear Beam Model

An eight-story shear beam model is considered first. The mass,
stiffness, and damping coefficient for every floor are assumed
to be m=3.456�105 kg, c=2.4�106 N·s /m, and k=3.404
�108 N /m, respectively. The first three natural frequencies of
the model are 5.79, 17.18, and 27.98 rad/s, respectively; the
corresponding damping ratios are 2, 6, and 10%, respectively.
This model is decomposed into eight subsystems, every story
being a subsystem. Actuators are assumed to be installed between

adjacent stories to provide control forces for every floor. The



sliding mode variable is defined based on the displacement rela-
tive to the ground. The same controller design is used for all
subsystems. Thus the control parameters are the same for every
subsystem and they are denoted as L, �, and �—the subscript i is
dropped hereafter.

The control performance is first studied using the N-S compo-
nent of ground acceleration from the 1940 El Centro earthquake
under different values of linear feedback gain L. Namely, L is
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Fig. 4. Convergence regions of the present method for
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selected between 0 and 3�107 N·s /m. The earthquake is scaled
so that the peak ground acceleration is 0.35 m/s2 in order to be
consistent with the previous study. �=�km=31.38 rad /s is se-
lected ��i=1� �Ma et al. 2008�. The regions, within which the
ultimate bound of the parameter uncertainty � and the design
parameter � can be freely selected to achieve the same control
performance, are obtained for every value of L selected through
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extensive simulations. These regions are shown in Figs. 3 and 4
for L=0–5�106 N·s /m and L=107–3�107 N·s /m, respec-
tively. For this example, it is seen that the region of effective
control performance and the region of undesired control per-
formance are clearly separated by an almost straight line in
the logarithmic scale. Specifically, as shown in Figs. 3�a–c�, for
L=0–106 N·s /m, two regions of effective control performance
are identified, which are named as the suboptimal convergence
region and optimal convergence region. In the suboptimal con-
vergence region, the percent reduction in the maximum interstory
drift �occurring on the first floor in this example� is greater
than 75%, while in the optimal convergence region, greater than
98.5% reduction can be achieved. When L is relatively small, i.e.,
L=0–104 N·s /m, both regions are restricted within the two nar-
row bands above a boundary described by �2 /��107 �N·s /m�
and �	2�104 N, as indicated by Eqs. �15� and �33�. As L
increases to 106 N·s /m, the suboptimal region expands sub-
stantially �see Fig. 3�c��. When L reaches 5�106 N·s /m, there is
no longer an upper limit on this region as shown in Fig. 3�d�. In
Fig. 4�a�, it is shown that as L reaches 107 N·s /m ���km�, the
two regions merge into one and the optimal region falls above
the boundary line defined by �2 /��107 �N·s /m�. Further in-
creasing L allows for a smaller value of � to be used and when
L�3�107 N·s /m there is no lower limit on the value of � for
convergence purpose. It is noted that all the plots in Figs. 3 and 4
are limited by �=1020 N·m /s and �=1012 N. The region beyond
these values may not be necessary or practical for controller de-
sign as these limits far exceed the values of the capacity of typical
large-scale actuators. In this study, the performance of the present
method is thus evaluated within the region confined by these lim-
its. The proposed method is essentially a sliding mode control
method. When the parameters are not selected properly, it may
have the problem of chattering as does a typical sliding mode
method. In this example, controllers designed with smaller values
of � and � are more sensitive to such problem. The regions of
chattering are identified and shown also in Figs. 3 and 4.

The E-W component of ground acceleration of the 1995 Kobe
earthquake is also considered in this example. The regions of
control performance obtained are shown in Fig. 5 for L
=107 N·s /m. It is seen that the regions of the two earthquakes
almost overlap completely except that for the Kobe earthquake, a
larger value of � �approximately 5�105 N as opposed to approxi-
mately 2�104 N for the El Centro earthquake� is required to

10
4

10
6

10
8

10
10

10
1210

0

10
5

10
10

10
15

10
20

δ (N)

ε
(N

−
m

/s
)

IV

I
Kobe

El Centro
δ2/ε ≈ 107(N−s/m)

L = 107 N−s/m

III

−∆− El Centro
−o− Kobe
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avoid chattering. This is due, in part to the fact that the ground
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accelerations of Kobe earthquake have much larger crests and
troughs as compared to those of the scaled El Centro earthquake.

Fig. 6 shows the comparison between these regions of the
previous method �Ma et al. 2008� and the present method for
L=107 N·s /m under the El Centro earthquake. It is seen that the
optimal region of the previous method is confined within a nar-
row band, whereas that of the present method covers the entire
half-plane over the boundary defined by �2 /�=107 N·s /m. Con-
trollers can thus be designed with greater flexibility using the
present method.

Table 1 summarizes the results of the two methods for
the scaled El Centro earthquake with the following controller
parameters: �=31.38 rad/s, L=107 N·s/m, �=106 N, and �
=106 N·m/s. As a comparison, a passively controlled case where
significant passive damping is added to the structure is consid-
ered. More specifically, additional viscous damping of 8.4
�106 N·s /m is added to every floor such that the damping ratios
of the first three modes are 9.19, 27.25, and 44.38%, respectively.
Damping ratios of the higher modes are much larger, approaching
100%. The results of the three cases are normalized against those
of the uncontrolled case—the values shown in the table represent
the ratios between the results of the controlled and uncontrolled
cases. Moreover, the numbers on the top of every cell refer to the
peak values and those on the bottom refer to the root-mean-square
�RMS� values. Note that the control force at a single floor is not
the same as that provided by the actuators on the same floor. The
forces requested from the actuators are determined using Eq. �4�
with �i=1. It is seen that the structural displacements �relative to
ground� and interstory drifts are more significantly reduced by
the two active control methods as compared to the passively
controlled case. The present method, achieves the most reduction
in displacements and drifts, however, as compared to the previous
method, it requires larger control forces, resulting in larger accel-
erations.

The robustness of the present method with regard to structural
parameter uncertainty is then evaluated. The masses of the sec-
ond, fourth, sixth, and eighth floor are assumed to be twice as
large as their original values, i.e., m2=m4=m6=m8=6.912
�105 kg and the stiffness coefficients of the corresponding floors
are assumed to be reduced by 50%, i.e., k2=k4=k6=k8=1.702
�108 N /m. The controllers are first designed using both methods
assuming that the changes are unknown to the designer. The same
parameters are selected for the two controllers: �=31.38 rad /s,
L=107 N·s /m, �=106 N, and �=106 N·m /s. When the control-
lers are applied to the structure, the unchanged values of mass and
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stiffness, i.e., m=3.456�10 kg and k=3.404�10 N /m are



used to calculate the term � in Eq. �23� for the controller designed
with the previous method. Note that the term � does not exist in
the present method. The case in which the actual changed mass
and stiffness, i.e., m=6.912�105 kg and k=1.702�108 N /m are
used to calculate � is also considered. The results obtained are
again normalized with respect to those of the uncontrolled case
and are tabulated in Table 2. The normalized results of the pas-
sively controlled case are also included for comparison. As seen
here, the active controllers reduce the structural displacements
and drifts much more significantly than the passive controller,
however with noticeably larger accelerations. While both active
methods are shown to be robust to the parameter changes, the
structural response is reduced more significantly with the present
method, however with larger control forces. The robustness of the
present method has also been validated by other cases with dif-
ferent parameter variations. The results are similar and are omit-
ted here for simplicity of presentation. The reader is referred to a
Ph.D. thesis �Johansen 2008� for a detailed presentation of these

Table 1. Performance of Passive, Previous �Method I�, and Present �M
Stacked on Top of RMS Values�

Floor level 1st 2nd 3rd

Displacement relative to gro

Passive 62.11 60.99 60.02

44.59 44.56 44.58

Method I 8.69 6.26 4.82

4.18 3.19 2.43

Method II 6.25 4.36 3.25

3.14 2.24 1.71

Interstory drift �per

Passive 62.11 60.17 58.88

44.59 44.59 44.72

Method I 8.69 4.37 2.11

4.18 2.17 1.55

Method II 6.25 2.67 1.30

3.14 1.37 0.63

Absolute acceleration

Passive 88.91 57.53 57.92

73.63 55.03 46.23

Method I 120.00 84.09 75.51

87.50 63.64 46.67

Method II 129.44 107.52 94.34

101.65 80.62 60.03

Contro

Method I 103 112 116

16 22 24

Method II 100 143 152

19 27 29

Actuato

Method I 901 836 736

185 170 148

Method II 1,153 1,053 910

227 208 182
results.

JO
It should be noted that reducing structural response has been
the primary objective in controller design in the above case stud-
ies. The resultant controller is effective when the earthquake is
relatively weak, as demonstrated in the case of the scaled earth-
quake, in which the control forces are somewhat large but are still
within a realistic limit. In the case of a strong earthquake such as
the full-scale 1940 El Centro earthquake, the same controller may
demand significantly larger forces, e.g., more than half of the
story weight �Johansen 2008�, which may cause other problems in
practice. In such a case, the control parameters need to be ad-
justed to accommodate the capacity of the actuators. For instance
if the control force of every floor level is to be limited by 700 kN,
the controller may be designed as follows. According to Eq. �37�,
the controller is designed as �=1.7�105 N, L=1.7�105 N·s /m,
and �=1.7�105 N·m/s. Parameter �=10 rad/s	�1=5.79 rad/s
is selected. The controller results in peak displacement �relative to
ground� of 94.8 mm on the roof, peak interstory drift of 17.93 mm
at the first floor, and peak acceleration of 0.56 g on the roof. The

II� Methods under the Scaled 1940 El Centro Earthquake �Peak Values

th 5th 6th 7th 8th

ercentage of uncontrolled�

.28 58.53 57.65 57.03 56.80

.62 44.66 44.70 44.72 44.73

.78 3.14 2.75 2.53 2.44

.09 1.77 1.57 1.46 1.41

.59 2.18 1.92 1.77 1.70

.38 1.18 1.05 0.98 0.95

e of uncontrolled�

.83 54.26 52.57 50.81 50.00

.90 45.04 45.09 45.04 44.94

.96 0.71 0.43 0.42 0.38

.87 0.77 0.54 0.43 0.22

.62 0.32 0.18 0.11 0.09

.31 0.16 0.10 0.07 0.06

tage of uncontrolled�

.30 62.18 57.17 53.33 51.72

.52 45.54 45.17 45.55 45.91

.00 65.45 54.55 46.15 42.35

.89 33.33 29.17 26.92 25.92

.18 79.88 66.29 56.04 51.41

.72 42.31 36.88 33.99 32.72

�kN�

124 125 125 125

25 25 25 25

152 152 152 152

31 31 31 31

e �kN�

498 374 249 125

99 74 49 25

605 453 302 151

122 91 61 31
ethod

4

und �p

59

44

3

2

2

1

centag

56

44

0

0

0

0

�percen

62

45

72

38

89

49

l force

122

25

153

30

r forc

621

124

758

152
largest control force is on the roof, 691 kN, which is about 20%
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of the story weight. As a comparison, the passive controller re-
sults in peak displacement of 114.32 mm, peak interstory drift of
21.03 mm, and peak acceleration of 0.44 g. The maximum floor
force from the dampers is 863 kN at the first floor, about 25% of
the story weight.

Two-Story Nonlinear Elastic Shear Beam Model

A two-story nonlinear elastic shear beam model is chosen as the
second example. The governing equations of the model are �Yang

Table 2. Comparison of Performance of Passive, Previous, and Presen
Previous Method without Knowledge of Uncertainties, Method IB: Previ
�Peak Values Stacked on Top of RMS Values�

Floor level 1st 2nd 3rd

Displacement relative to gro

Passive 54.84 53.65 54.76

55.51 54.60 54.74

Method IA 12.27 9.11 6.76

6.86 5.00 3.85

Method IB 10.83 6.40 5.31

5.88 3.33 2.82

Method II 9.03 6.65 4.54

4.90 4.00 2.56

Interstory drift �per

Passive 60.59 60.27 64.92

55.51 54.20 55.76

Method IA 12.27 7.84 5.63

6.86 4.02 2.22

Method IB 10.83 4.29 3.90

5.88 2.01 2.22

Method II 9.02 6.72 4.76

4.90 3.52 2.22

Absolute acceleration

Passive 88.17 67.52 60.57

85.21 56.63 55.77

Method IA 102.86 105.71 112.50

100.12 88.89 77.78

Method IB 102.86 105.71 115.63

114.29 88.89 77.78

Method II 99.85 100.31 100.26

114.29 111.11 100.00

Contro

Method IA 101 170 115

18 37 33

Method IB 112 224 127

18 46 27

Method II 103 251 198

21 49 42

Actuato

Method IA 1,398 1,323 1,153

278 262 225

Method IB 1,423 1,262 1,139

290 275 230

Method II 1,739 1,666 1,435

364 345 297
and Lin 2005�
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�m1ẍ1 + c1ẋ1 − c2ẋ2 + k11x1 + k13x1
3 − k21x2 − k23x2

3 = − m1ẍg + u1

m2�ẍ2 + ẍ1� + c2ẋ2 + k21x2 + k23x2
3 = − m2ẍg + u2

�
�39�

where x1 and x2= interstory drifts of the first and second story,
respectively; u1 and u2 are the control forces for the first and
second floor, respectively. The structural parameters are assumed
as m1=m2=1 ,000 kg, c1=c2=600 N·s /m, k11=1.2�105 N /m,

7 3 4 6 3

hods with regard to Uncertainty in Structural Parameters �Method IA:
thod with Knowledge of Uncertainties, and Method II: Present Method�

4th 5th 6th 7th 8th

ercentage of uncontrolled�

56.23 57.55 58.80 59.58 60.38

54.61 54.86 54.69 54.72 54.61

5.74 4.52 4.44 3.80 4.56

3.06 2.57 2.44 2.19 2.42

3.92 3.63 3.07 3.01 2.91

1.98 1.77 1.49 1.42 1.33

4.20 3.12 3.29 2.69 3.41

2.34 1.77 1.76 1.42 1.81

e of uncontrolled�

63.16 69.43 65.65 57.97 51.77

54.10 55.21 52.76 52.30 49.88

2.53 7.41 3.79 9.43 12.03

1.76 2.86 1.61 4.88 5.26

0.69 3.70 2.07 5.66 4.43

0.52 1.43 0.81 2.44 1.75

3.46 8.64 4.83 12.26 12.66

1.76 4.29 2.42 4.88 7.02

tage of uncontrolled�

45.96 51.92 60.60 67.89 56.16

51.03 53.90 56.62 55.88 52.71

15.63 116.67 120.00 125.00 94.87

70.00 70.00 63.64 58.33 50.00

15.63 123.33 123.33 132.14 94.87

70.00 70.00 63.64 58.33 50.00

99.79 100.12 100.57 96.43 98.78

00.21 90.00 90.91 75.00 71.43

�kN�

44 114 137 115 150

40 34 40 35 44

48 132 249 133 251

49 28 49 28 50

64 203 264 210 302

54 43 54 45 61

e �kN�

83 787 607 407 150

92 153 118 79 44

13 766 633 384 251

03 154 127 127 78

41 978 775 512 302

56 202 159 105 61
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k13=2�10 N /m , k21=6�10 N /m, and k23=5�10 N /m .



Note that the nonlinear stiffness coefficients �k13 and k23� are se-
lected such that under the earthquake considered, i.e., the 1940 El
Centro earthquake, the nonlinear restoring forces are comparable
to their linear counterparts in order to evaluate the robustness of
the proposed method. The natural frequencies of the correspond-
ing linear system are 5.93 and 14.30 rad/s with the damping ratios
being 2.2 and 5.4%, respectively. The system is decomposed as

�m1ẍ1 + c1ẋ1 + k11x1 + k13x1
3 = �1 = u1 − m1ẍg + c2ẋ2 + k21x2 + k23x2

3

m2ẍ2 + c2ẋ2 + k21x2 + k23x2
3 = �2 = u2 − m2ẍg + m2ẍ1

�40�
�

Control forces are assumed to be limited by 2 kN �20% story
weight�. The control parameters are thus selected as �=800 N,
L=800 N·s /m, and �=800 N·m /s. The time histories of the in-
terstory drifts and the control forces for the full-scale El Centro
earthquake are shown in Fig. 7. The linear and nonlinear portions
of the restoring forces of both floors are also shown in Fig. 7. It is
seen that the interstory drifts are significantly reduced with the
peak control force �1.88 kN� under the prescribed value �2 kN�.
The peak accelerations of both floors are also reduced signifi-
cantly from 0.88 g �first floor� and 1.48 g �second floor� to 0.46
and 0.59 g, respectively. Note that with the assumed nonlinear
stiffness coefficients, the nonlinear effect is quite apparent as
manifested by the magnitudes of the nonlinear portion of the re-
storing force shown in Fig. 7. In this example, the controllers
have been designed completely without the knowledge of the
level of system nonlinearity and yet their effectiveness is still
apparent. As a comparison, a passively controlled case is consid-
ered in which significant damping is added to every floor such
that the damping coefficient is c1=c2=2 ,400 N·s /m, resulting in
the modal damping ratios to be 8.87 and 21.52%. The resulted
peak interstory drifts are 0.049 and 0.071 m for the first and
second floor, respectively. The absolute accelerations are 0.34 g
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Fig. 7. Time histories of representative structural response of the tw
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Twenty-Story Benchmark Model

The third example considered in this study is a 20-story elastic
benchmark model �Spencer et al. 1998a�. This model is based on
a 20-story steel frame building designed according to seismic
codes for the Los Angeles, California region. There are five bays,
284 elements, and 180 joints in this benchmark frame. In the
evaluation model, the number of degrees of freedom is reduced
from the original number of 526 to 106. The source code is avail-
able in Spencer et al. �1998b�. The first three natural frequencies
of the model are 1.63, 4.71, and 8.17 rad/s, respectively. The
corresponding damping ratios are 2, 5, and 10%, respectively.

The frame is decomposed into 20 subsystems, every floor level
being a subsystem. Actuators are assumed to be located on every
floor of the center bay. Controllers are designed in the same way
for all floors. Parameter � is selected according to the first natural
frequency of the model, i.e., �=5	1.63 rad /s. The control force
at a single floor is limited by 400 kN, which is approximately 8%
of the story weight. The control parameters are then determined
as L=100 kN·s /m, �=100 kN, and �=100 kN·m /s. The full-
scale El Centro earthquake is used in this example to excite the
structure. The numerical results are shown in Fig. 8. It is seen
here that the structural responses in displacement �relative to
ground� and interstory drift are noticeably reduced as compared to
the uncontrolled case. Reduction rate ranges from 4 to 26%.
Structural accelerations, however, are reduced at a lower level.
The peak accelerations of floors one to three are slightly larger
than those in the uncontrolled case. The maximum percent reduc-
tion of acceleration is 37%, occurring on the 16th floor. The maxi-
mum control force required is on the roof, with the peak and RMS
values to be 142 and 51 kN, respectively. The actuators between
the ground and the first floor are requested with the largest force,
with the peak and RMS values of the total requested force being
2,173 and 607 kN, respectively.

The ability of this method to effectively accommodate strongly
uncertain structural properties, as in the case of this benchmark
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finite element model, while still delivering effective control result
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is an improvement over the previous method. Using the previous
method, the controller is seen to be effective for the cases where
uncertainties in structural parameters are somewhat moderate or
with simple patterns, e.g., uncertain lumped parameters. For this
large-scale example, the previous method does not seem to find
an effective control law.

It is noted that if a traditional centralized method is used to
design a controller for this model, a design model with reduced
order �e.g., 20 states� is usually needed as the full evaluation
model �212 states� may be too large for controller design. The
centralized controller designed using the reduced-order model
may not perform as well as expected when the controller is de-
signed to be very “aggressive,” e.g., allowing very large control
forces, because the controller becomes less robust for a more
aggressive design. In the proposed approach, however, a control-
ler performs better when it is more aggressive because the condi-
tion for convergence �see Eq. �19�� is more likely to be strictly
satisfied in a more aggressive control design. When such condi-
tion is satisfied, the influence of control force on the structural
behavior surpasses that of the excitation and interconnection
strength, thus significant response reduction can be achieved.

Concluding Remarks

In this paper, an improved decentralized control method has been
proposed for controlling multistory buildings subject to seismic
excitations. Numerical simulations with results obtained from the
three illustrative examples have demonstrated that this decentral-
ized method possesses the following features:
• Prior knowledge about parameters of structural model such as

material and geometrical properties is not required for control
force determination;

• The proposed decentralized control law is simpler than the
previous one �Ma et al. 2008� and hence more beneficial for
real-time structural control application;
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Fig. 8. Structural response and control forces of the 20-story bench
assumed to be placed on every floor of center bay�
• Controllers designed using the proposed method utilize only
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the local information and hence greatly reduce the communi-
cation load of the control system; and

• Controllers can be design without the need of system identifi-
cation for a structural model, whether with reduced order or
not. This feature makes the proposed method more advanta-
geous in applications of large-scale, complex system over
many tradition centralized control methods.
The presented study is an initial attempt in applying the de-

centralized control method to achieve earthquake resistant design
in civil structures. A logical next step of the study may include
optimization of subsystem decomposition, control design with
more accessible local feedback information �absolute acceleration
instead of displacement and velocity�, different ways of control
force implementation, as well as diverse types of structural failure
or damage.
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