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ABSTRACT The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of
shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescence microscopy images
can be challenging due to low signal/noise ratios and other artifacts. To address these issues, we develop a suite of tools for
image processing and spectral data analysis that is based on a biopolymer contour representation expressed in a spectral basis
of orthogonal polynomials. We determine biopolymer shape and stiffness using global fitting routines that optimize a utility
function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of
high-frequency noise and interpolation over sporadic gaps in fluorescence. We use benchmarking to demonstrate the validity
of our methods, by analyzing an ensemble of simulated images generated using a simulated biopolymer with known stiffness
and subjected to various types of image noise. We then use these methods to determine the persistence lengths of taxol-
stabilized microtubules. We find that single microtubules are well described by the wormlike chain polymer model, and that
ensembles of chemically identical microtubules show significant heterogeneity in bending stiffness, which cannot be attributed
to sampling or fitting errors. We expect these approaches to be useful in the study of biopolymer mechanics and the effects of
associated regulatory molecules.
INTRODUCTION AND BACKGROUND
Cytoskeletal polymers, including actin and microtubules,
are stiff, multistranded filaments that are essential to cell
organization, motility, and division; to the transport of intra-
cellular cargos by motor proteins; and to the generation and
transmission of forces within and across cells. Because of
their important role in establishing and regulating cellular
mechanics, the elasticity of filaments and entangled cyto-
skeletal networks has been studied extensively. However,
many important questions remain about the relationships
between structure and mechanics (1). In particular, although
in vitro measurements of single filament elasticity have
consistently shown significant variations in stiffness over
roughly an order of magnitude, the molecular origins of
these variations are incompletely understood (2–7). This is
largely a result of an inability to distinguish real heteroge-
neity in elasticity from variations that arise from sources
of experimental and statistical uncertainty.

For microtubules (MTs), the stiffest cytoskeletal fila-
ments, distinguishing between signals and noise is particu-
larly challenging because the exhibited bending amplitudes
are small and often of a comparable magnitude to
experimental noise. MTs are formed from the head-to-tail
polymerization of tubulin dimers in long protofilaments
that interact laterally to form a closed tubular structure,
with outer diameter of roughly 25 nm (8–11). Structural
studies have demonstrated that the number of MT protofila-
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ments varies within in vitro and in vivo systems, and can
even change along the length of a single MT (12–14).
Because the bending stiffness of a biopolymer scales as the
fourth power of its radius, even small changes in the effective
radius of theMT could have a largemechanical effect. Under
some in vitro conditions, MT stiffnesses appear to depend on
both the length and the polymerization velocity, suggesting
that lattice shear and structural defects may also play an
important role (5,15–17). Unfortunately, the large variation
in experimental estimates ofMT stiffness values has severely
compromised our ability to correlate changes in mechanical
response and filament composition, and has led to an incom-
plete understanding of the origins and regulation of MT
mechanics.

To help address these issues, we have developed what
to our knowledge are new methods to determine and
analyze the motions of stiff, isolated, thermally fluctuating
biopolymers visualized using fluorescence microscopy.
Using approaches from statistical mechanics, we then infer
mechanical properties from a spectral analysis of the ensem-
ble of biopolymer configurations at thermal equilibrium.
A central challenge in using this approach is the sensitivity
of the spectral analysis methods to experimental noise
(4,18). Previous methods to characterize the fluctuation
spectra of biopolymer filaments made use primarily of local
information in the fluorescent image, and typically involved
three distinct operations: Step 1. Filament tracing to deter-
mine biopolymer configurations. Step 2. Calculation of
spectral components from estimated contours. Step 3. Anal-
ysis of the spectral components using statistical mechanics
to ascertain mechanical properties (4,5,18). Step 1 typically
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involved interpolating individual configuration points that
were determined by manual selection or by local fitting
of the cross-sectional intensity profiles of fluorescently
labeled filaments (4,5,18). Because each control node is fit
independently, any local aberration (such as irregularity
in fluorophore labeling or the interference of a nearby
physical object) in the image near a control point could
have a large influence on the entire fitted contour. Though
these approaches have been successfully employed to
provide important mechanical information for many types
of biopolymers, for the stiffest biopolymers, results vary
by roughly an order of magnitude, motivating the develop-
ment of improved fitting and analysis methods (7,20).

In this work, we develop a unified approach that combines
Steps 1 and 2 into a single procedure, thus minimizing the
introduction of errors. This is achieved by representing the
biopolymer shape in terms of a contour expanded in an
orthogonal polynomial basis. We fit the coefficients of the
expansion directly to the fluorescence image by optimizing
a utility function that measures the overlap of the entire
contour with fluorescence intensity. This global approach
is more robust to local disturbances in the fluorescence
signal, and allows for the determination of biopolymer
shape even in the presence of significant noise and artifacts
in the images. To estimate the flexural rigidity of the
biopolymer, we develop a statistical mechanics theory based
on an energy formulated directly in terms of the coefficients
of our spectral biopolymer representation.

Our approach has a number of distinct advantages. The
description of the biopolymer by a smooth contour that is
fit to the entire image at once naturally handles sporadic
gaps in fluorescence intensity along the biopolymer through
interpolation, and shows improvement in both filament
tracing and determination of persistence length as compared
to pointwise tracing. Because these methods are more
robust against common sources of experimental noise, it is
possible to analyze a larger number of images, giving rise
to smaller sampling errors and improving measurement
precision. Additionally, we achieve a more accurate descrip-
tion of the biopolymer near the end-points through the use
of a basis of orthogonal polynomials. This is in contrast to
the use of a trigonometric Fourier basis that implicitly
requires a periodic function, and thus a no-curvature condi-
tion at the contour end-points to reduce spurious oscillations
arising from Gibb’s Phenomena (4,18,21). Our method
can, in principle, allow for curvature near the end-points,
and could potentially facilitate studies of a wider class of
biopolymers.

To assess the sensitivity of the proposed methods to
experimental noise and sampling error, we introduce a
benchmarking approach in which an ensemble of simulated
images is generated from simulations of a fluctuating
biopolymer with known mechanical properties. We intro-
duce noise and artifacts into the images that are similar to
those observed in experimental data. This approach allows
for the systematic study of the roles played by different
types of experimental noise, and the resultant uncertainty
of estimated mechanical properties. The benchmarking
approach we propose provides a potentially powerful metric
for rating different spectral analysis methods and for under-
standing the statistical significance of differences reported
in experimental results. We then apply the techniques to
an experimental data set of fluorescence images of fluctu-
ating MTs. For even these stiff biopolymers, we find our
methods reliably estimate the flexural rigidity and produce
modal covariances in agreement with a wormlike-chain
(WLC) model for MT mechanics. Interestingly, we find
that the level of heterogeneity in persistence length in an
ensemble of chemically identical MTs vastly exceeds that
predicted from algorithmic error analysis, indicating that
significant structural heterogeneity may be present in these
samples. We anticipate that these approaches will facilitate
the development of more sensitive assays based on the
thermal fluctuations of biopolymers, and will enable central
questions concerning the molecular origins of cytoskeletal
mechanics to be answered.
METHODOLOGY

Variational contour fitting method

In developing this method, we have designed our algorithm for use with

images of stiff, isolated filaments, such as MTs, in which a direct determi-

nation of the tangent-angle decorrelation function is not possible. Instead,

we use information obtained from a description of the biopolymer shape

in terms of a curve x(s) of length L, where s ˛[0,L] is the arc-length param-

eter of the contour. To measure how well the contour x overlaps with the

fluorescence signal of the biopolymer, we use the utility function

U½x; I� ¼ �
ZL

0

Z
U

kðjy� xðsÞjÞIðyÞdyds: (1)

The fluorescence image intensity is given by I¼ I(y) parameterized over the

spatial domain U and k(r) is a smoothing kernel vanishing for r > r0. The

inner-integral of Eq. 1 gives the average intensity in a region near the loca-

tion x(s) by using the weighting specified by k(r). The outer-integral

collects these values to provide a measure of the total amount of overlap

of a contour with the biopolymer fluorescence signal. The convolution by

k(r) with I filters the high spatial-frequency noise inherent in the image

intensity.

We use the following kernel function (see Fig. 1), which has a number of

desirable properties when used for discrete pixel maps and lattice models

(see (22,23)):

kðrÞ ¼
�
a½1þ cosðpr=r0Þ� r%r0
0 r>r0:

(2)

Here, r0 is chosen to be approximately equal to the width of the imaged

polymer. In the case of MTs, with a diameter of ~25 nm, r0 is taken to

be approximately equal to the width of the point-spread function of the

microscope. The a is a normalization constant ensuring the kernel function

weighting integrates to one.

The contour configuration that minimizes the utility function U provides

a fit that maximizes the overlap within the image between the contour and
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FIGURE 1 Schematic of the methodology. (A) The intensity of the fluo-

rescence signal of the biopolymer (inset) and the fluorescence microscopy

image being fit by a trial contour (solid line). (Arrows) Direction of evolu-

tion of the trial contour when using the method of steepest descent for the

utility function given in Eq. 1. (B) The radially symmetric kernel function

k(r) having cut-off radius r0 (indicated by dotted circle). (C) Close-up of

fluorescence image data within the range of influence given by r0. In this

case, the fluorescence image exhibits gaps in intensity along the biopolymer

that are handled naturally by the utility function and the inherent interpola-

tion of the trial contour.

A

B

C

FIGURE 2 Representation of the biopolymer shape using orthogonal

polynomials. (A) The contour tracing out the shape of the biopolymer is

described by parameterizing the shape using arc-length s and the local angle

q(s) of the tangent vector t with respect to the x axis. The point x0 is used to

uniquely determine the position of the contour. (B) To work with this

description in practice, we expand q(s) in an orthogonal polynomial basis

to obtain coefficients an. (C) We use the Chebyshev orthogonal polynomial

basis for this purpose. The first four nonconstant orthogonal polynomial

modes are shown.
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the biopolymer fluorescence signal. This minimization requires a represen-

tation for the contour amenable to calculations, so we represent the contour

by its tangent angle q(s) along the length and by a reference point at the left

end-point x0 ¼ x(0). These physically meaningful degrees of freedom

uniquely specify the contour curve x(s),

xðsÞ ¼
Zs

0

tðqðs0ÞÞds0 þ x0: (3)

The tangent vector t for a given angle q is given by

tðqÞ ¼ ðcosðqÞ; sinðqÞÞ:
This representation is used to minimize the utility function by evolving the

degrees of freedom (q(s), x0) using the steepest-descent dynamical

equations

vqðsÞ
vt

¼ �dU

dq
ðsÞ

vx0
vt

¼ �Vx0U:
(4)

The term dU/dq denotes the variational derivative of the utility function,

which generalizes the usual vector derivative and captures how values

change when the entire collection of tangent vectors along the contour

are varied (24). The Vx0
U denotes the usual vector derivative in x0 of the

utility function.

It can be shown that for all possible variations of (q(s), x0), the direction

in configuration space giving the most rapid decrease in the utility function

U is the negative of the gradient

�VqðsÞ;x0U ¼ �
�
dU

dq
;Vx0U

�
:

This motivates the choice for the dynamics, which ensures the contour

configuration moves in a manner that steadily decreases the value of U

over time. The limiting contour configuration that is stationary under these
Biophysical Journal 102(5) 1144–1153
dynamics has a zero gradient and is a critical point of the utility function U.

Such a contour is a candidate for minimizing U (24).

To work with this description in practice, we expand the tangent angles in

an orthogonal polynomial basis

qðsÞ ¼
X
n

anTnðsÞ: (5)

Each Tn(s) is a polynomial of degree n satisfying the orthonormal inner-

product condition hTi,Tji ¼ dij, where dij is the Krönecker delta-function.

The Tn values are shown in Fig. 2. In practice, this expansion is truncated

after a finite number of terms N, allowing for representation up to degree

N polynomials. Dynamical equations are obtained readily for the coeffi-

cients an(t) by plugging this expansion into Eq. 4 and projecting the direc-

tion of evolution on the polynomials up to degree N (see the Supporting

Material).

A particularly useful feature of this coefficient representation is that even

when only a finite number of coefficients are used, the contour recovered by

Eqs. 3 and 5 has total arc-length L throughout the minimization procedure.

Experimentally, this is a very reasonable constraint, as MT length is typi-

cally held constant by the use of small molecule inhibitors (such as taxol)

during the course of the measurement. Although the total length of the poly-

mer is held constant, the fitted contour can slide freely within the fluores-

cence signal of the illuminated filament during fitting. In practice, we

determine the filament length from the average of the length of the contours

obtained from our initial fits, then truncate by a fixed amount (typically by

10–20% of the initial length) to obtain a working length for final fitting.

This truncation is implemented to avoid possible high-frequency oscilla-

tions that can sometimes arise due to compression of the fitted contour

within the polymer after photobleaching has dimmed the fluorescence

signal at the polymer ends. Even in the absence of spurious oscillations,

the fluorescence signal at the ends of the microtubule tends to be of poor

quality. By using a slightly shortened fitting contour, we avoid corrupting

the spectral results with MT blurring and other imaging artifacts. Using

benchmarking, we have determined the effect of contour truncation on

the calculated persistence length, and for the simulated and experimental

images analyzed here, the errors are typically <2–3%.
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In presenting our approach, we use throughout the Chebyshev orthogonal

polynomials defined by

TnðsÞ ¼ cos

�
n arccos

��
2s

L

�
� 1

��

(see Trefethen (21)). This choice was motivated by the ability to take advan-

tage of fast Fourier transform methods; however, other orthogonal polyno-

mial bases could also be used. For more details concerning the particular

forms of the variational derivatives used and truncation of the dynamics

for a finite number of coefficients, see the Supporting Material.
Determining persistence length from the
spectrum of biopolymer fluctuations

Using results from equilibrium statistical mechanics, we can estimate the

elastic properties of isolated, thermally fluctuating biopolymers (4). We

focus here on determining the persistence length; however, these methods

can be applied more generally to other mechanical moduli. To describe

the elastic responses of biopolymers, we use the WLC model (25), which

associates to a given biopolymer configuration x(s) a bending energy

Ebend½x� ¼ EI

2

ZL

0

�
_qðsÞ�2ds: (6)

The EI denotes the flexural rigidity and _qðsÞ ¼ dq=ds denotes the derivative

of the tangent angle in s. For an isotropic elastic structure, EI is the product

of the Young’s modulus E and the geometric moment of inertia I. At ther-

modynamic equilibrium, the biopolymer thermal fluctuations have a Gibbs-

Boltzmann distribution with the probability density

rbend½x� ¼
1

Z
exp

��Ebend½x�
kBT

�
; (7)

where T is the temperature, kB is the Boltzmann constant, and Z denotes the

partition function (see Reichl (26)).

Using our representation of the biopolymer configuration x(s) in terms of

coefficients of the orthogonal polynomial expansion (see Eq. 5), the energy

can be expressed as

Ebend½a� ¼ EI

2
aTSa

Sij ¼
ZL

0

_TiðsÞ _TjðsÞds:
(8)

The term a denotes the composite vector of coefficients with [a]n¼ an and S

denotes the stiffness matrix of the biopolymer modes. The entries Sij are

given by the L2-inner product of the orthogonal polynomials with index i

and j, so the matrix is not necessarily diagonal. For example, for our choice

of Chebyshev polynomials the off-diagonal entries of S are nonzero.

The Gibbs-Boltzmann distribution can be expressed using this coefficient

representation as

rbend½a� ¼
1

~Z
exp

�
� 1

2
Lpa

TSa

�
; (9)

where Lp ¼ EI/kBT gives the persistence length of the correlations of fluc-

tuations along the contour and ~Z is the partition function of this representa-

tion. Throughout, we treat the metric of the generalized coordinates as
constant. In this form, we see that rbend has the convenient form of a multi-

variate Gaussian with mean zero and covariance

	
aaT


 ¼ 1

Lp

S�1: (10)

In our analysis, we find it convenient for finite contours of length L to define

a nondimensional persistence length ‘p ¼ Lp/L. The covariance structure

for biopolymer fluctuations derived from the WLC model and Eq. 10 is

given by

Cwlc

�
‘p
� ¼ 1

‘p
~S
�1
: (11)

We have used the nondimensional WLC stiffness matrix defined by ~S ¼ LS.

This provides a covariance structure predicted by the WLC model when the

nondimensional persistence length is ‘p.

In experiments, the covariance is estimated by fitting contours to the fluo-

rescence images and estimating modal coefficients. For M samples, the

covariance is estimated by

Cexp ¼ 1

M

X
m

aðmÞaðmÞT : (12)

The a(m) denotes the mth sampled modal coefficient.

A central relation we use to interpret experimental fluctuations of

a biopolymer and to infer its mechanical properties is

Cexp ¼ Cwlc

�
‘p
�
: (13)

This expression provides the key link between observed biopolymer fluctu-

ations (left-hand side) and the biopolymer mechanical properties (right-

hand side). To infer mechanical properties in experiments, we seek to

find a value of ‘p so that Cwlc matches, to a good approximation, the covari-

ance of the experimentally observed biopolymer fluctuations Cexp.

This requires minimizing the least-squares error given by

V
�
‘p
� ¼

X
n

�
cn � 1

‘p
dn

�2

: (14)

In principle, any one entry in the covariance matrix could be used to deter-

mine persistence length, although it is possible to make use of redundant

terms to increase accuracy (because there is sampling error in the coeffi-

cients), at the expense of additional computation time. We find in practice

that it is sufficient to consider just the diagonal entries, thus the

cn ¼ ½Cexp�n;n are the diagonal entries of the covariance matrix for the

experimentally observed biopolymer fluctuations. The dn ¼ ½~S�1�n;n are

the coefficients used for representing the covariances obtained from the

WLC model (see Eq. 11). The fit for ‘p is obtained by minimizing V(‘p)

and is given by

‘p ¼ kdk2
ðd$cÞ: (15)

We use composite vector notation for the experimental covariance data

[c]n ¼ cn and for the coefficients of the WLC model [d]n ¼ dn,

kdk2 ¼
X
n

d2
n and d$c ¼

X
n

cndn:

We remark that other approaches making use of additional features beyond

the covariance matrix of the WLC model could also be used to estimate the

persistence length, such as the maximum-likelihood method (27).
Biophysical Journal 102(5) 1144–1153
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RESULTS AND DISCUSSION

Role of sampling error on estimated persistence
length

There are two fundamentally independent sources of error to
consider for this analysis. The first is the inherent problem
of sampling error, where the derivation of mechanical quan-
tities leads to errors due to an averaging over a finite number
of experimental observations. The second is the effect of
different types of noise in the microscopy images on the
estimated values of physical quantities.

To determine the error in the estimated biopolymer
persistence length ‘p in terms of the number of sampled
images M, we assume a biopolymer exhibits fluctuations
given by the WLC model, and estimate the covariance using
Eq. 12. The sampling error can be expressed as

~CM ¼ Cwlc

�
‘p
�þ x: (16)

The Cwlc (‘p) denotes the covariance structure obtained from

theWLCmodel in Eq. 7. For a sufficient number of samples,
x is approximately aGaussianwithmean zero and covariance
hxxTi ¼ Cov(aaT)/M. Expressions for this covariance can be
obtained by computing the fourth moments of the Gaussian
distribution given in Eq. 7. The tilde notation will be used
throughout to distinguish variables that model quantities
that would be estimated experimentally.

To simplify the presentation, we assume that the compo-
nents of [a]n can be treated as statistically independent.
Additionally, we describe our theory only for estimates
of the diagonal entries of the covariance matrix, which are
the only entries used in the least-squares fitting. We denote
the diagonal entries of the covariance by the vectors
~cM ¼ diagð~CMÞ and cwlc ¼ diag(Cwlc). We model the covari-
ance estimates for M samples by

~cM ¼ cwlc
�
‘p
�þ x: (17)

The x denotes a Gaussian with independent components
T
each having mean zero and covariance hxx i ¼ DM. The

covariance has diagonal entries

½DM�n;n ¼ E
�
x2n
� ¼ 2

�
cwlc

�
‘p
��2

n
=M (18)

with the off-diagonal entries zero.
This model can be used to study how sampling errors
from the estimate of the modal covariances ~cM propagate
into the estimation of the persistence length ~‘p. In particular,
from the least-squares fit of Eq. 15, we have

~‘
�1

p ¼
�
d$~cM

�
kdk2 ¼ ‘�1

p þ
X
n

xndn

kdk2: (19)

This shows the estimated inverse persistence length ~‘
�1

p is a
�1
Gaussian-distributed quantity with mean ~m ¼ ‘p and vari-

ance ~s2M ¼ dTDMd=kdk4.
Biophysical Journal 102(5) 1144–1153
The estimated persistence length ~‘p has the probability
distribution

rM
�
‘p
� ¼ ‘�2

pffiffiffiffiffiffiffiffiffiffiffi
2p~s2

M

q exp

"
�
�
‘�1
p � ~m

�2
2~s2

M

#
: (20)

Note that this distribution is not Gaussian; instead, it has
long-tails as a consequence of the ‘p

�2 term and yields an
infinite variance. For different values of M, this distribution
is shown in Fig. S1 in the Supporting Material.

The non-Gaussian form of the distribution requires that
some care is taken when characterizing how the sampling
errors influence the estimated value of ~‘p. We can no longer
make use of the standard deviation to give the magnitude of
errors because the second moment is infinite. Instead, we
use a confidence interval based on the above probability
distribution rM. Interestingly, although the second moment
is infinite, the distribution rM can be well approximated by
a Gaussian distribution for M sufficiently large (M > 100;
see Fig. S1). Through an asymptotic analysis of Eq. 20,
as M becomes large, we find rM is approximated by a
Gaussian with mean m ¼ ‘p and variance s2M ¼ ‘4p~s

2
M ¼

‘4pd
TDMd=kdk4. This can be used in practice to obtain

confidence intervals for errors in estimates of ~‘p.
Generating simulated fluorescence images
with controlled levels of noise and artifacts

To investigate effects of image noise on persistence length
determination, we develop a systematic benchmarking
approach, in which we generate an ensemble of simulated
images from the fluctuations of a simulated biopolymer
with known mechanical properties. We introduce in these
images simulated background noise and other artifacts.
We then use our contour tracing and spectral analysis
methods to determine the persistence length. A comparison
of the measured and actual persistence lengths provides
a well-controlled test for the reliability of the proposed
methods, and enables experimental conditions to be opti-
mized to improve measurement precision and accuracy.

To generate noise and artifacts similar to those encoun-
tered in experiments, we consider primarily two types of
noise: 1), background noise in which randomly varying
levels of intensity are seen throughout the image, and 2),
sporadic gaps in which intensity varies in the fluorescence
signal along the biopolymer. The background noise is moti-
vated by contributions from ambient light sources and out-
of-focus fluorophores, whereas gap artifacts are motivated
by the uneven binding of fluorescent labels along the
biopolymer, inherent fluorescence excitation inefficiencies,
and stochastic photobleaching.

To simulate the configurations of a biopolymer having
a specified persistence length, we generate modal coeffi-
cients for our orthogonal polynomial representation of the
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contour using the multivariate Gaussian distribution with
mean zero and covariance given by Eq. 10. Throughout
our presentation, we use ‘p ¼ 10 and calculate values for
the first eight modes (N¼ 8). To obtain an image with a fluo-
rescence signal for the biopolymer of thickness r0, we use
the kernel function of Eq. 2 to trace along the biopolymer
contour. For convenience, we normalize all fluorescence
intensity values to lie between zero and one. We have also
simulated filament contours using a random walk generator,
and we find no significant differences in algorithm perfor-
mance, thereby verifying that there is no bias introduced
when generating the contours by using the Chebyshev basis.

To introduce background noise, we perturb each pixel
value using two different Gaussian distributions. For pixels
that are located on the contour, we perturb by a random
value having mean mc ¼ 0 and variance s2c. For pixels not
located on the contour, we perturb using mean mb ¼ 0 and
variance s2b ¼ s2c. To characterize the noise, we define Ic
to be the characteristic intensity difference between the
contour and background Ic ¼ hI(y)ic � hI(y)ib, where h$i‘,
‘ ˛ {b,c} gives, respectively, the average of intensity values
over the contour or background pixels. To characterize the
level of background noise in our images, we use the ratio
sb/Ic.

To introduce gap noise along the contour, we modulate
the fluorescence signal by a weight function obtained from
a cosine series

cðsÞ ¼
XK�1

k¼ 0

wk cos

�
2pks

L

�
:

The random weight coefficients wk are chosen so that the
2
integral of c(s) over [0,L] has mean mg and variance s g.

The form of c(s) necessitates that w0¼ mg. To achieve a vari-
ance proportional to s2g, we use (w1,.,wK�1) uniformly
FIGURE 3 Ensembles of simulated fluorescence images. To investigate our s

found in experimental images, we simulate ensembles of images from a simula

generated from biopolymer configurations using our contour representation with

noise throughout the image and gap artifacts along the biopolymer contour. The b

top to bottom. The level of background noise is characterized by the ratio sb/Ic
difference of intensity between the contour and background Ic. The level of gap ar

cosine modulations used to generate the artifacts to obtain an effective mean m
distributed over the surface of a K�1 dimensional sphere
of radius

ffiffiffi
2

p
sg. To control how oscillatory the gap artifacts

appear in the image, we vary the number of modes K. The
random coefficients ensure random amplitude and phases
for each of the modes, creating an irregular, realistic gap
pattern. We find that K ¼ 25 provides a modulation that
agrees well with what is seen in experimental fluorescence
images. To characterize the level of gap artifacts in our
images we use the ratio sg/mg.
Benchmarking studies for different levels of noise
and artifacts

To investigate the robustness of our methodology, we
numerically generate ensembles of fluorescence images
with prescribed noise conditions, similar to those observed
in experiments (see Fig. 4). In contrast to prior works that
have modeled the role of noise on fitting using theoretical
assumptions (4), this benchmarking approach provides
a direct and realistic comparison with actual microscopy
data. The ensembles contain M ¼ 1000 images, simulating
the thermal fluctuations of a biopolymer with persistence
length Lp ¼ 9.45 L, where L is the polymer length (taken
to be ‘‘1’’ in arbitrary units). To minimize the effects of
sampling errors in these studies, we use the same underlying
configurations for the simulated biopolymer to generate
each ensemble of images. A sample image from each of
these ensembles is shown in Fig. 3.

To initialize the contour tracing routine, an initial contour
is chosen as the diagonal of a bounding box that encloses the
Z brightest pixels (Z is typically chosen to be 2500).
Because our algorithm is optimized to identify stiff, isolated
filaments, the bounding box is automatically drawn around
the filament of interest. We calculate the average intensity
at each corner, and choose the diagonal that connects the
pectral analysis methods when subjected to the types of noise and artifacts

ted biopolymer with known mechanical properties. Shown here are images

‘p ¼ 10, N¼ 8. The ensembles correspond to different levels of background

ackground noise increases left to right while the gap artifacts increase from

for the perturbed background pixel standard deviation sb and the average

tifacts is characterized by the ratio sg/mg obtained by integrating the random

g and standard deviation sg.

Biophysical Journal 102(5) 1144–1153
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two brightest corners as our initial contour for fitting.
This diagonal typically overlays the actual filament, with
numerous points of intersection and the length of the diag-
onal is roughly equal to the actual filament length.

To determine the effect of initial conditions on filament
tracing, we tested 300 perturbations to the best initial fit
of a single noisy numerically generated fluorescence image,
then recorded the maximal difference between the final fit
and the actual filament position to determine the robustness
of our tracking algorithm. For the perturbations, the angle of
the initial fit was chosen to lie within a range of [�p/8, p/8]
around the actual filament position, whereas the midpoint
was independently perturbed to lie within a circle of radius
20 pixels from the actual center. For noise levels, we chose
values that were similar to those observed experimentally.
Of these, 90% of the initial fits converged to within two
pixels (maximal deviation) of the correct contour, whereas
5% fit a portion of the filament well but failed to track the
filament ends, and another 5% were drawn in regions domi-
nated by noise and thus failed to converge to anything
reasonable. This reproducibility demonstrates that our
steepest-descent algorithm requires only a single point of
intersection between the initial contour and fluorescence
signal of the polymer to reliably trace the polymer shape.

Using an unperturbed initial fit, we find that in the
absence of any explicitly introduced background noise or
gap artifacts, our methods yield an estimated nondimen-
sional persistence length of ~‘p ¼ 9:38. We use this value
(which is well within the expected range given our sampling
error of 5.2% for M ¼ 1000 images) as our reference when
reporting relative errors to remove the baseline sampling
error from the reported results and better reflect the differ-
ences in the levels of noise and artifacts in the images.
For each simulated ensemble of images, we performed the
spectral analysis using the initial five Chebyshev modes,
which, for the stiff filaments we consider here, represent
physically meaningful fluctuations. We report the results
of the spectral analysis using our methods for each of the
image ensembles in Table 1. When performing fits, we
TABLE 1 Results for the simulated ensembles of fluorescence ima

Gap noise LP % Err % Conv LP % Err % Co

0 9.38 0.00 100 9.34 0.48 100

0.125 9.39 0.07 100 9.36 0.22 100

0.25 9.39 0.15 99 9.38 0.03 99

0.5 9.43 0.55 94 9.42 0.45 94

Bac

0 0.125

To test the robustness of our spectral analysis methods, we simulated ensemble

artifacts generated from the fluctuations of a simulated biopolymer with know

to be ‘‘1’’ in arbitrary units). At each condition we useM¼ 1000 simulated imag

tence length, for each image we generate modal coefficients for our orthogona

distribution with mean zero and covariance given by Eq. 10. We calculate value

(% Err) in these estimates and the percentage of images found to be of sufficien

(% Conv). Relative errors are reported with respect to the baseline case of no b

ordering and ratios used for characterizing the ensembles of images shown in F
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find that introduction of noise and gap artifacts can, in
a small number of cases, result in images of insufficient
quality. For such images (typically <5% of the ensemble),
the contour fitting does not converge in a manner that is
independent of the initial trial contour. These images are
ignored when estimating the modal covariances and persis-
tence length. In the case of experimental data, there is an
initial manual review of images to eliminate those which
show significant blurring of the filament contour or the pres-
ence of a very large interfering object. Additionally, we use
only those mode variances that lie withinz3 standard devi-
ations of the mean, to eliminate the possibility that a rare
fitting artifact could disproportionately change our stiffness
results. In practice, very few images (<10%) are rejected
based on these criteria.

As shown in Table 1, our global fitting approach enables
robust determination of persistence length, even in the pres-
ence of substantial background noise and gap artifacts,
which are frequently encountered in experiments. We find
relative errors for the estimated persistence length to
be <1% for a majority of low-to-moderate noise cases,
and <10% even for the largest background and gap noise
levels probed. We find similarly good agreement for simu-
lated filaments that are an order-of-magnitude stiffer and
tested using an even larger range of gap and background
noise conditions and sample sizes (see Table S3 in the Sup-
porting Material).

To further demonstrate the level of improvement in
filament tracing and persistence length determination in
comparison to more conventional approaches, we generated
and analyzed ensembles of 500 images of filaments with
known stiffness, and subjected them to known noise-back-
ground and gap-noise artifacts. To assess the quality of
contour fitting, we used two methods: the global contour
tracing routines described above, and a pointwise fitting
routine in which the filament position was determined by
fitting a Gaussian distribution to the cross-sectional intensity
profile of the filament at 200 points along the contour. We
compared the coordinates outputted from each fit routine
ges

nv LP % Err % Conv LP % Err % Conv

9.37 0.10 100 10.1 6.99 98

9.42 0.43 99 9.84 4.66 98

9.45 0.77 98 10.2 8.22 96

9.71 3.35 93 10.6 10.7 89

kground noise

0.25 0.5

s of fluorescence images with varying levels of background noise and gap

n persistence length, Lp ¼ 9.45 L, where L is the polymer length (taken

es. To simulate the configurations of a biopolymer having a specified persis-

l polynomial representation of the contour using the multivariate Gaussian

s for the first eight Chebyshev modes (N ¼ 8). We report the relative errors

t quality to allow for convergent fits independent of the initial trial contour

ackground noise or gap artifacts. The table indices correspond to the same

ig. 3.
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(xfit, yfit) to the coordinates used to generate the filaments
(xo, yo) and calculated the root mean square (rms) error at
each pixel position to be

Erms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xfit � xo

�2þ�
yfit � yo

�2q
:

For both fitting methods, we found the mean value of Erms to

be <1 pixel; however, we find the fit errors to be substan-
tially lower when using our global fitting routine (as shown
in Table S1). We see a factor-of-2 improvement in contour
fitting under low noise conditions, and a 10–20% improve-
ment in even the noisiest cases. To complete the compar-
ison, we then input the filament coordinates determined
via pointwise fitting into a Fourier-based spectral analysis
routine. We found reasonable agreement with the known
persistence length (<10% deviation) for all noise levels
when using only the first Fourier mode. However, we found
the higher modes to be unreliable, particularly under levels
of high background and gap noise (see Table S2). Noise
corruption in the higher modes limits the use of averaging
to improve measurement accuracy and prevents the identifi-
cation of deviations from WLC behavior. The ability to
average the response of the higher-order modes, each of
which fluctuates independently, is particularly important,
as sampling error dominates measurement uncertainty in
many cases.
FIGURE 4 Experimental results for a microtubule. We analyze, using

our spectral analysis methods, the thermal fluctuations of a microtubule

for M ¼ 147 images. (Inset) Exhibited thermal fluctuations in the microtu-

bule shape. The exhibited modal covariances of the microtubule fluctua-

tions agree well with a WLC model (dashed line). The error bars

correspond to the 95.5% confidence intervals using our sampling error anal-

ysis in Role of Sampling Error on Estimated Persistence Length (see main

text). Our methods yield an actual dimensional persistence length of
~Lp ¼ 3.45 5 0.52 mm.
Experimental results for microtubules

To demonstrate our approach in practice, we apply our fila-
ment tracing and spectral analysis methods to characterize
the persistence length of an isolated microtubule (MT)
imaged using total internal reflection fluorescence micros-
copy. The MT was labeled with rhodamine dyes to enable
visualization, and confined to move within a thin, well-
sealed sample chamber to ensure that the fluctuating fila-
ment remained in focus throughout the experiment and
only thermal forces acted upon the MT. The MTs were poly-
merized in the presence of the stabilizing compound taxol,
rendering their length constant over the time course of the
measurement, which is typically limited by fluorophore
bleaching to be <100 s. The experimental details are further
described in the Supporting Material.

MTs were visualized using an electron-multiplying
charge-coupled device camera in full frame transfer mode
at a frame rate of 10 Hz and using an exposure time of
0.1 s, which is comparable to the relaxation time of the
slowest hydrodynamic mode. To verify that filament motion
during this exposure time was not influencing our measure-
ment, we reduced the exposure time to 0.066 s or 0.033 s
(at a fixed frame rate of 10 Hz), and found no obvious trend
in our persistence length data that would indicate a system-
atic bias. We did, however, find that image noise increased
substantially for shorter exposure times, with an ~40%
increase in background noise for the 0.033-s exposure
time as compared to the 0.1-s exposure time. A smaller frac-
tion of images have convergent fits under these high noise
conditions, consistent with the benchmarking results shown
in Table 1.

As a test of our approach, an ensemble of M ¼ 147 fluo-
rescence microscopy images was analyzed using our
contour fitting method and least-squares estimator to
analyze the first four modes. From these, we determine a
nondimensional persistence length of ~‘p ¼ 176.6 using the
spectral characteristics of the fluctuating filament (see
Fig. 4). In this test case, the MT contour length was esti-
mated to be ~L ¼ 19.6 mm. This gives an actual dimensional
persistence length of ~Lp ¼ 3.45 mm. To determine the uncer-
tainty in this measurement, we consider errors arising from
both sampling and image artifacts. We estimate the sampling
error when using only M ¼ 147 images to be 50.48 mm
in ~Lp. From analysis of the experimental fluorescence
images, we estimate an average effective background noise
of sb/Ic ¼ 0.143 and average effective gap noise of sg/mg ¼
0.184. From the results of a benchmarking study performed
under similar noise conditions, we estimate the contribution
to ~Lp-uncertainty to be 50.2 mm. We anticipate that the
uncertainties due to sampling errors and noise artifacts
behave in a fairly independent manner. Under this assump-
tion, the total uncertainty can be estimated by adding these
two contributions in quadrature. Therefore, we estimate
~Lp¼3.4550.52mm.These results represent ameasurement
uncertainty of z15%. Our measured persistence length is
well within the range of previously reported values (7,20).
The dashed black line in Fig. 4 shows the variances for the
Chebyshev modes predicted using a WLC model with the
same mean bending stiffness. Although deviations from
WLC behavior have been reported for short MTs, for the
Biophysical Journal 102(5) 1144–1153
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range of MT lengths (z8–20 mm) reported here, we find the
predicted good agreement between the WLC model and our
spectral data, for at least six independent modes (28). This
validates our fitting algorithm under experimental conditions
and relatively small sample sizes.

We then applied this method to the study of an ensemble
of 54 different MTs, generated under chemically identical
conditions, and subjected to identical temperature, storage,
and handling conditions. For each MT, ~300 images were
analyzed to determine the single-filament persistence
length. Given the image noise and sampling errors, we
would predict a measurement uncertainty of z10%. As
shown in Fig. 5, we measure a much larger range of persis-
tence lengths, indicating that real sample heterogeneity, not
image processing uncertainty, is driving this broad distribu-
tion. Within this large variation, we find the persistence
length to be independent of the filament length, for the range
of lengths (10–20 mm) studied here (see Fig. S2).

In the limit of homogeneous isotropic materials at fixed
ambient temperature, the persistence length depends only
on the Young’s modulus E, contour length L, and filament
radius, r. Lp varies linearly with E, which has been found
to be in the range of 2–3 GPa for a wide range of proteins,
including tubulin and actin, likely due to van der Waals
interactions along the protein backbone (29). By contrast,
Lp varies as r

4, indicating that even small polydispersity in
MT radius could give rise to substantial variations in stiff-
ness. Interestingly, MTs have been shown to form with vari-
able numbers of protofilaments both in vivo and in the
presence of taxol in reconstituted systems (30). Thus, we
favor a model in which an ensemble of MTs with differing
radii give rise to a broad distribution of MT persistence
lengths. A less likely possibility, in our view, is that the
assumption of homogeneity and isotropy fails under some
conditions, in which case it is more difficult to relate
changes in Lp to a molecular mechanism. We would expect
FIGURE 5 Experimental results for an ensemble of microtubules. Histo-

gram of the persistence lengths of an ensemble of 54 different MTs, gener-

ated under chemically identical conditions, and subjected to identical

temperature, storage, and handling conditions. For each MT, ~300 images

were analyzed to determine the single-filament persistence length. Given

the image noise and sampling errors, we would predict a measurement

uncertainty of z10%, yet we measure a much larger range of persistence

lengths, indicating that real sample heterogeneity, not image processing

uncertainty, is driving this broad distribution.
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that in this limit, the fluctuation spectra would not follow
a WLC model, so we would argue that the assumption of
homogeneity and isotropy is appropriate in our analysis.
SUMMARY

We present what to our knowledge are new spectral analysis
methods for the measurement of biopolymer flexural
rigidity from observations of the biopolymer thermal fluctu-
ations. Our approach was based on global fitting of an entire
trial contour at once to the fluorescence image. We used
a contour representation expressed in terms of the curve
tangent angles parameterized by arc-length and expanded
in a basis of orthogonal polynomials. Using this representa-
tion, we performed statistical analysis of the modal coeffi-
cients to infer a flexural rigidity for the biopolymer. Our
spectral analysis methods were found to work very well
even in the case of images exhibiting significant background
noise and gap artifacts. The benchmarking approach we
propose provides a potentially powerful metric for rating
different spectral analysis methods and for understanding
the statistical significance of differences reported in experi-
mental results. Our data indicate that these spectral analysis
methods provide a substantial improvement in precision for
measurements of stiffness based on observed fluctuations of
a biopolymer. We expect these approaches will enable
future studies of the differential effects of polymerization
conditions and the binding of various regulatory molecules
on microtubule mechanics.
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