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The chemical master equation (CME) and the mathematically equivalent stochastic simulation al-
gorithm (SSA) assume that the reactant molecules in a chemically reacting system are “dilute” and
“well-mixed” throughout the containing volume. Here we clarify what those two conditions mean,
and we show why their satisfaction is necessary in order for bimolecular reactions to physically oc-
cur in the manner assumed by the CME and the SSA. We prove that these conditions are closely
connected, in that a system will stay well-mixed if and only if it is dilute. We explore the implica-
tions of these validity conditions for the reaction-diffusion (or spatially inhomogeneous) extensions
of the CME and the SSA to systems whose containing volumes are not necessarily well-mixed, but
can be partitioned into cubical subvolumes (voxels) that are. We show that the validity conditions,
together with an additional condition that is needed to ensure the physical validity of the diffusion-
induced jump probability rates of molecules between voxels, require the voxel edge length to have
a strictly positive lower bound. We prove that if the voxel edge length is steadily decreased in a
way that respects that lower bound, the average rate at which bimolecular reactions occur in the
reaction-diffusion CME and SSA will remain constant, while the average rate of diffusive trans-
fer reactions will increase as the inverse square of the voxel edge length. We conclude that even
though the reaction-diffusion CME and SSA are inherently approximate, and cannot be made exact
by shrinking the voxel size to zero, they should nevertheless be useful in many practical situations.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863990]

I. INTRODUCTION

Stochastic chemical kinetics is concerned with a system
of molecules of N chemical species S1, . . . , SN undergoing
M chemical reactions R1, . . . , RM inside some volume � at
some temperature T. Its aim is to describe the behavior of X(t)
≡ (X1(t), . . . , XN(t)), where Xi(t) is the number of Si molecules
in � at time t. Its key premise is that there exists, for each
reaction Rj, a propensity function aj(x) which satisfies

aj (x) dt ≡ the probability, if X(t) = x, that Rj will fire

somewhere inside � in the next infinitesimal

time interval [t, t + dt) (j = 1, . . . ,M). (1)

It is further assumed that when an Rj reaction does occur, it
changes the molecular population of species Si by ν ij, thus
changing the system’s state from x to x + ν j where ν j ≡ (ν1j,
. . . , νNj).

Under these assumptions, the laws of probability im-
ply that the time evolution of X(t) can be described ex-
actly in two equivalent ways: first via the chemical master
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equation (CME),

∂P (x, t | x0, t0)

∂t
=

M∑
j=1

[aj (x−νj )P (x − νj , t |x0, t0)

− aj (x)P (x, t |x0, t0)], (2)

where P(x, t | x0, t0) is the probability that X(t) will be equal to
x given that X(t0) = x0 for t ≥ t0; and second via the stochastic
simulation algorithm (SSA):

1◦ In state x at time t, generate two random num-
bers τ and j according to the joint probability den-
sity function p(τ, j | x, t) = e−a0(x) τ aj (x), where a0(x)
≡ ∑M

k=1 ak(x).
2◦ Actualize the next reaction by replacing t ← t + τ and

x ← x + ν j.
3◦ Record the new (x, t). Return to 1◦, or else end the

simulation.

Since the CME and the SSA can each be derived via math-
ematically rigorous reasoning from the above definitions of
the propensity functions aj and the state-change vectors ν j,1 it
follows that the CME and the SSA are logically equivalent
to each other. Anything that validates or invalidates or ex-
tends one will validate or invalidate or extend the other. In this
paper, we are going to be concerned with validating and
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extending the CME and the SSA, so we will often refer to
them jointly as the CME/SSA.

The only problematic step in establishing the physical
validity of the CME/SSA is proving that chemical reactions
physically occur in the manner prescribed by hypothesis (1).
There is a close relationship between the propensity function
defined in (1) and the reaction “rate” that appears in the ordi-
nary differential equations of traditional deterministic chemi-
cal kinetics. Early work in stochastic chemical kinetics tended
to view the propensity function as a kind of ad hoc stochastic
extension of the classical reaction rate, with the latter hav-
ing the more rigorous physical justification. But in fact, the
reaction rates turn out to be approximations of the propen-
sity functions in the thermodynamic (large system) limit. That
being the case, we cannot rigorously derive propensity func-
tions from the reaction rates. Propensity functions can be re-
liably inferred only by looking to molecular physics to see
how molecules actually behave. Doing that inevitably requires
adopting a specific, usually idealized model for bimolecular
chemical reactions. The model we shall adopt here is a fairly
common one which assumes that: (i) the reacting molecules
are hard spheres which move about as solute molecules in
a sea of very many, much smaller, chemically inert solvent
molecules; (ii) two solute molecules chemically react by first
colliding with each other, their velocities at the instant of col-
lision being distributed according to the Maxwell-Boltzmann
distribution; and (iii) two colliding molecules will immedi-
ately undergo a specific bimolecular reaction Rj with proba-
bility qj (0 < qj ≤ 1), a parameter which in principle is deter-
mined by the physics of the two molecules.

In Secs. II and III, we review the derivations of the
propensity function from molecular physics, with the aim of
illuminating and clarifying the conditions that must be sat-
isfied if those derivations are to be valid. In Secs. IV–VI,
we discuss the implications of these validity conditions for
the reaction-diffusion extension of the CME/SSA to sys-
tems that are not completely homogeneous. In Sec. VII, we
show that, provided its validity conditions are satisfied, the
reaction-diffusion CME/SSA will give a plausible modeling
of bimolecular chemical reactions in a solution. In Sec. VIII,
we summarize our conclusions, and offer some comments
on the advantages and limitations of the reaction-diffusion
CME/SSA.

II. PHYSICAL JUSTIFICATION FOR THE PROPENSITY
FUNCTION HYPOTHESIS

The implicit assumption in (1) that a chemical reaction
is a physical event that occurs practically instantaneously dic-
tates that every Rj in the CME/SSA will always be one of
two types: either unimolecular or bimolecular. Reactions that
are commonly called trimolecular or reversible practically
always occur, at least in the cellular chemistry setting that
we are primarily concerned with here, as a series of two or
more unimolecular or bimolecular reactions. The rarity of true
trimolecular reactions is a simple consequence of the rarity
with which three molecules simultaneously collide with each
other under well-mixed conditions; indeed, with hard-sphere
molecules that virtually never happens.

Since quantum mechanics governs the way in which
atoms arrange themselves into molecules, the dynamics of
any unimolecular reaction S1 → ··· is inherently stochastic.
More specifically, quantum mechanics implies, at least on
time scales of practical interest, that the probability that a par-
ticular S1 molecule will undergo a unimolecular reaction in
the next infinitesimal time dt will practically always be equal
to some constant cj multiplied by dt.2 Summing the single-
molecule reaction probability cjdt over all x1 S1 molecules
in � gives, by the addition law of probability, Eq. (1) with
aj(x) = cjx1.

A propensity function for the bimolecular reaction
S1 + S2 → ··· has been shown to be justified by molecular
physics in two cases: when the reactant molecules are a dilute
well-mixed gas, and when they are solute molecules in a di-
lute, well-mixed solution. Although the latter case is the only
one of relevance for cellular chemistry, the simpler derivation
in the former case illustrates more clearly the necessity of the
dilute and well-mixed requirements. The propensity function
for a dilute well-mixed gas is3

aj (x1, x2) = (
πσ 2

12v̄12qj |�|−1) · x1x2 (dilute gas). (3)

Here, σ 12 is the average distance between the centers of a
pair of reactant molecules at collision (the sum of their radii
for hard sphere molecules); v̄12 = √

(8kBT )/(πm12) is their
average relative speed, with m12 their reduced mass, kB Boltz-
mann’s constant, and T the absolute temperature of the sys-
tem; and qj is the probability that an S1−S2 collision will
result in an Rj reaction. The derivation of Eq. (3) goes as
follows: πσ 2

12 · v̄12dt is the average “collision volume” that
a randomly chosen S2 molecule sweeps out relative to the
center of a randomly chosen S1 molecule in time dt. Divid-
ing that collision volume by the system volume |�| gives, for
reasons that will be elaborated below, the probability that the
center of the S1 molecule lies inside the collision volume, and
hence the probability that the two molecules will collide in
the next dt. That collision probability multiplied by the con-
ditional probability qj of a reaction given a collision yields,
by the multiplication law of probability, the probability that
the two molecules will react in the next dt. And finally, that
single-pair reaction probability summed over all x1x2 distinct
reactant pairs gives, by the addition law of probability, the
probability defined in Eq. (1), thus establishing Eq. (3). For
the bimolecular reaction 2S1 → ···, the sum over all distinct
reactant pairs would give a factor 1

2x1(x1 − 1) instead of x1x2.
A “collision energy threshold” reaction model yields for qj

the well-known Arrhenius factor; however, we need not as-
sume anything specific here about qj other than it will have
some value between 0 and 1.

The critical step in the foregoing derivation is the as-
sertion that the ratio of {the average collision volume πσ 2

12 ·
v̄12dt} to {the total system volume |�|} provides a valid esti-
mate of the probability that the center of the S1 molecule will
lie inside the collision volume. This key assertion entails two
assumptions: First, the probability that a reactant molecule
will be found inside any small subvolume of � is indepen-
dent of where inside � that subvolume is. That will be our
definition of a “well-mixed” system. Note that this definition
does not require that there be a perfectly regular placement
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of the reactant molecules inside �, nor that there be a large
number of those molecules.

The second assumption implicit in the aforementioned
assertion is that all but a negligibly small fraction of the con-
taining volume � is physically accessible to the center of the
randomly chosen S1 molecule. That of course assumes � to
be sufficiently convex that this would be true in the absence
of any other molecules. But the presence of other reactant
molecules will inevitably occlude some of �. Just how that
occluded volume should be quantitatively taken into account
is far from clear. But it is clear that the argument leading to
Eq. (3) will be valid only if the volume occluded by the reac-
tant molecules inside � is very small compared to |�|. That
will be our definition of a “dilute” system. If we make the sim-
plifying approximation that each S1 molecule and S2 molecule
has a diameter that is the average of the two, namely, σ 12, then
a rough estimate of the total volume that all those molecules
occlude is

(x1 + x2) · 4
3π

(
1
2σ12

)3 = π
6 (x1 + x2)σ 3

12.

Therefore, the diluteness assumption is essentially the order-
of-magnitude requirement

(x1 + x2)σ 3
12 	 |�|. (4a)

Since |�| / (x1 + x2) is the average volume allotted to each
reactant molecule inside �, then the cube root of that quan-
tity estimates the average distance between the reactant
molecules. Condition (4a) evidently requires that average dis-
tance to satisfy ( |�|

x1 + x2

)1/3


 σ12. (4b)

So an equivalent way of stating the diluteness requirement
is to say that the average distance between a pair of reac-
tant molecules must be very large compared to their average
diameter.

Since the minimum value of the factor (x1 + x2) in
Eq. (4a) for a reaction to occur is 2 (when x1 = x2 = 1), then
a minimal practical requirement for diluteness would appear
to be that the diameter |�|1 / 3 of the system must be at least
an order of magnitude larger than the average diameter σ 12

of a reactant molecule. It might be thought that this dilute-
ness requirement is simply the requirement that the reactant
molecules be “points.” But that would not be a correct assess-
ment. As can be seen by putting σ 12 = 0 in the propensity
function (3), two point molecules have zero probability of re-
acting with each other; therefore, satisfying the dilute condi-
tions (4) by simply assuming the reactant molecules are points
and setting σ 12 = 0 is not viable option.

A convincing physics derivation of a bimolecular propen-
sity function for the situation in which the reactant molecules
are solute molecules in a solution eluded researchers for a
long time. The fact that the standard diffusion equation im-
plies that the average displacement of a solute molecule in
time dt is proportional to

√
dt seemed to suggest, at least

on the basis of the foregoing derivation of the dilute gas re-
sult, that the probability of a reaction between two solute
molecules in the next dt might be proportional to

√
dt instead

of dt. That would be totally inconsistent with hypothesis (1).

But in what might be described as a refined, corrected, and
stochastically extended version of the analysis of Collins and
Kimball,4 it was recently shown that if the reactant molecules
are dilute and well-mixed in the senses defined above, then a
propensity function for S1 + S2 → ··· as defined in (2) does
exist and is given by?

aj (x1, x2) =
(

4πσ 2
12D12v̄12qj |�|−1

4D12 + σ12v̄12qj

)
·x1x2

(dilute solution). (5)

Here, D12 is the sum of the diffusion coefficients of the S1

and S2 molecules, and the other quantities are as previously
defined. Note that the requirement for diluteness in a so-
lution applies only to the reactant (solute) molecules, and
not to the chemically inert solvent molecules. In the “fast-
diffusion” regime 4D12 
 σ12v̄12qj , Eq. (5) reduces to the di-
lute gas result (3). At the opposite extreme 4D12 	 σ12v̄12qj ,
which is the “diffusion-limited” or “Smoluchowski” regime
which typifies cellular systems, the factor in parentheses in
Eq. (5) reduces to 4πσ 12D12|�|−1. This result corresponds
to a well known deterministic rate result that can be ob-
tained by adapting Smoluchowski’s famous analysis of col-
loidal coagulation.6 The more rigorous derivation of Eq. (5)
actually makes use of Smoluchowski’s reasoning, but does so
in a way that takes account of the often overlooked fact? that
the standard diffusion equation on which the Smoluchowski
analysis is based is physically incorrect on small length scales
(we will return to this point in Sec. V). As in the case of the
derivation of the dilute gas result (3), the derivation of Eq. (5)
fails if the system is not dilute and well-mixed, for reasons
that are basically the same as in the dilute gas case.

To summarize: Molecular physics provides the following
justification for the CME/SSA when the reactant molecules
are solute molecules in a solution with very many, much
smaller, chemically inert solvent molecules:

(i) A propensity function for the unimolecular reaction S1

→ ··· normally exists in the form aj(x) = cjx1, where cj

is independent of both x and |�|.
(ii) A propensity function for the bimolecular reaction S1

+ S2 → ··· normally exists provided the reactant (so-
lute) molecules are dilute and well-mixed inside �. The
propensity function then has the form aj(x) = cjx1x2,
where cj is independent of x and inversely proportional
to |�|.
An examination of the derivation of Eq. (5)? reveals that

the bimolecular reaction results in (ii) will not be true if the
reactant molecules are not dilute and well-mixed. In those sit-
uations, there is at present no valid physics-based derivation
of a propensity function, and hence no valid physics-based
CME and SSA.

III. BEING DILUTE IS A NECESSARY AND
SUFFICIENT CONDITION FOR STAYING WELL-MIXED

Diffusion not only serves to bring solute molecules to-
gether so that they can chemically react, it is also the main
mechanism by which the system stirs itself. In order for the
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bimolecular reaction S1 + S2 → ··· to occur in the well-mixed
setting assumed by the propensity function hypothesis (1), the
S1 and S2 molecules need to diffuse around for a while before
they react with each other. We will now show that will happen
if and only if the system is dilute.7

Consider a randomly chosen S1 molecule. According to
the standard theory of diffusion, this molecule will move an
average net distance

√
2D1τ in a time τ . So since the diam-

eter of � is on the order of |�|1 / 3, the time needed for the
S1 molecule to randomly reposition itself inside � will be
roughly the time τ d defined by

√
2D1τd = |�|1/3:

τd = |�|2/3

2D1
. (6)

According to Eqs. (1) and (5), the probability that this S1

molecule will react with one of the x2 S2 molecules inside
� in the next infinitesimal dt is(

4πσ 2
12D12v̄12qj |�|−1x2

4D12 + σ12v̄12qj

)
· dt.

But in the “diffusion-limited” regime assumed by Eq. (6),
which as noted in connection with Eq. (5) is defined by
4D12 	 σ12v̄12qj , this probability reduces to(

4πσ12D12|�|−1x2
) · dt.

From this it is easy to show that the average time τ r before the
S1 molecule will react with one of the x2 S2 molecules inside
� in the next infinitesimal dt is

τr = (
4πσ12D12|�|−1x2

)−1
. (7)

What is needed to secure the well-mixed condition for this
reaction is that {the average time required for the S1 molecule
to become randomly repositioned inside �} be much less than
{the average time before the S1 molecule reacts with one of
the x2 S2 molecules inside �}, i.e., τ d 	 τ r. Substituting into
this condition from Eqs. (6) and (7) yields the requirement

2πσ12(D12/D1)x2 	 |�|1/3. (8)

Since D1 and D2 are typically the same order of magnitude,
we can further approximate D12 / D1 ≈ 2, and so conclude that
the well-mixed condition requires

4π x2 σ12 	 |�|1/3. (9)

In words, the sum of the diameters of x2 (and also by symme-
try x1) “average” reactant molecules must be much less than
the diameter of the system. From a practical point of view,
this is basically the diluteness condition (4b). Thus we have
shown that the reactant molecules in a diffusion-limited sys-
tem will remain well-stirred if and only if they are dilute. We
note in passing that essentially this same result can also be
established in the ideal gas regime, 4D12 
 σ12v̄12qj .8

This is an intuitively plausible result that seems not to be
widely appreciated: If the system is “dilute,” so that the av-
erage distance between reactant molecules is large compared
to their average diameter, then a reactant molecule will usu-
ally have to wander around for a relatively long time before it
chances to collide with another reactant molecule. That wan-
dering around makes the system well-mixed. But if the re-
actant molecules crowd each other, then they will likely find

reacting partners before they have wandered very far, and con-
sequently they will react in a system that is not well-mixed.

IV. THE REACTION-DIFFUSION CME/SSA

If the system is not well-mixed in �, but can be con-
sidered approximately well-mixed inside each subvolume or
“voxel” �k of some partitioning {�1, . . . , �K} of �, then
one can try the following: Model the chemical reactions as
events occurring wholly inside single voxels as is done in
the standard CME/SSA, and model the diffusional movement
of reactant molecules between adjacent voxels as concurrent
“diffusive transfer reactions” in a way that is consistent with
the standard diffusion equation. This is the strategy of what
is commonly called the “reaction-diffusion master equation
(RDME)” and the “spatial SSA” (or rather less commonly, the
“spatial CME” and the “reaction-diffusion SSA”). We shall
refer to these jointly as the “reaction-diffusion CME/SSA.”
The original paper on this strategy was the 1976 paper of Gar-
diner et al.9 As was done in that paper, we will take the voxels
to be cubes of edge length h, since that greatly simplifies the
mathematics of the diffusive transfer reactions.

Parceling the chemical reactions out to the K voxels has
the effect of replacing the M nominal reactions {Rj} by KM
reactions {Rjk}, where Rjk is reaction Rj inside voxel �k. The
propensity function ajk for Rjk is the propensity function aj for
Rj, but now referred to the voxel �k and regarded as a func-
tion of xk = (x1k, . . . , xNk), where xik is the current number of
Si molecules in �k. If Rj is a unimolecular reaction, the co-
efficient cjk in the Rjk propensity function will be identical to
the coefficient cj for Rj. If Rj is a bimolecular reaction, the co-
efficient cjk will be the factor in parentheses in Eq. (5), except
the factor |�|−1 there must be replaced by h−3, the reciprocal
of the voxel volume. In all cases, the state-change vector ν jk

for Rjk is the ν j for Rj, but confined to the space of xk.
The reaction-diffusion CME/SSA aims to model the

movement of an Si molecule inside � in accordance with the
standard Einstein diffusion equation

∂p(r, t)
∂t

= Di∇2
r p(r, t), (10)

where p is the position PDF of a single Si molecule, and Di is
the molecule’s diffusion coefficient. But since in the reaction-
diffusion CME/SSA we do not know the position r of any re-
actant molecule—we know only that the molecule is equally
likely to be anywhere inside a particular voxel—we must be
content to model only the transfer of some Si molecule from
its current voxel �k to an adjacent voxel �l. The reaction-
diffusion CME/SSA accomplishes this by positing a “diffu-
sive transfer reaction” R

(d)
ikl , which has propensity function

a
(d)
ikl (xk) = Di

h2
xik. (11)

Thus, the reaction-diffusion CME/SSA assumes that
a

(d)
ikl (xk)dt is the probability that an Si molecule in �k will

move to �l in the next dt. We will examine in detail the
justification for this assumption in Sec. VI. The state-change
vector ν

(d)
ikl for reaction R

(d)
ikl simply decreases xik by 1 and

increases xil by 1.
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Since the state jumps induced by diffusional transfers of
reactant molecules between voxels have the same mathemat-
ical character as the state jumps induced by chemical reac-
tions (both are described by propensity functions and state-
change vectors), then the reaction-diffusion CME/SSA is just
the standard CME/SSA described in Sec. I, but with the fol-
lowing re-interpretation of its symbols: the N-dimensional
state vector x = {xi} is now regarded as the KN-dimensional
state vector {xik}; and the M propensity functions {aj} and
their associated state-change vectors {ν j} are now regarded
as those for the KM chemical reactions {Rjk} and the 2NB
diffusive transfer reactions {Rd

ikl}, where B is the total number
of boundaries between adjacent voxels. The factor 2N here
comes from the fact that a molecule of any of the N species
can cross the boundary in either direction.

It is important to understand that the voxel strategy of
the reaction-diffusion CME/SSA is inherently approximate.
This can be seen in two ways. First is the artificiality of its
assumption that the position PDFs of the reactant molecules
are uniform inside each voxel and change discontinuously at
the boundaries between voxels. Since the boundaries between
voxels are imaginary constructs, no real chemical system will
ever present itself in this way. Second is the artificiality of
its assumption that each reactant molecule is always wholly
inside a single voxel. Even if we were to stipulate (as we usu-
ally do) that a reactant molecule is “in” the voxel that contains
its center of mass, the molecule’s non-zero size can extend
its physical presence to neighboring voxels. Since these arti-
ficialities are most severe near the boundaries of the voxels,
and least severe near the centers of the voxels, it follows that
the reaction-diffusion CME/SSA describes the system only to
resolution h. Increased accuracy can thus be obtained only by
decreasing h.

But there is a price to be paid for making h smaller. For
example, halving h increases the total number of voxels by
a factor of 23 = 8. That causes factor-of-8 increases in the
number of state variables {xik}, and in the number of chem-
ical reaction channels {Rjk}, and (at least approximately) in
the number of diffusive transfer reaction channels {Rd

ikl}. Fur-
thermore, as we will see later, halving h will also increase
the average number of diffusive transfer events that will occur
between successive chemical reaction events by a factor of
(1/2)−2 = 4. In view of these substantial computational penal-
ties for adopting a finer spatial resolution, it would appear that
in making practical computations we should always choose h
as large as possible. We will have more to say about choosing
h later.

An often voiced concern with the reaction-diffusion
CME/SSA arises in connection with its rule that bimolecu-
lar chemical reactions can occur only between molecules that
are in the same voxel. That would seem to allow a reaction be-
tween two molecules that are relatively far apart in the same
voxel, yet not allow reactions between two molecules that are
very close together but separated by a voxel boundary. How-
ever, there is an answer to this concern: the hypothesis that re-
actant molecules are “well-mixed” inside any voxel precludes
us from making positional distinctions between molecules
in the same voxel. In particular, a reactant molecule that is
“near a boundary of its voxel” is not a reactant molecule that

is “uniformly distributed inside its voxel”, and the latter is
the only kind of reactant molecule that the reaction-diffusion
CME/SSA is able to say anything about.

V. DIFFUSIVE TRANSFER REACTIONS

The reaction-diffusion CME/SSA transfers an Si

molecule from its present voxel �k to an adjacent voxel
�l in accordance with the propensity function (11). In the
Appendix, we give a concise proof of the fact that in the limit
h → 0 this molecule transfer strategy exactly replicates the
dynamics prescribed by the standard diffusion equation (10).
Given that result, one might be tempted to conclude that,
at least in the absence of chemical reactions, the reaction-
diffusion CME/RRA becomes exact in the limit h → 0. But
that is not true.

To see why, consider a single Si molecule in some interior
voxel. Equation (11) stipulates that the probability that this
molecule will jump to a particular one of its adjacent voxels in
the next infinitesimal time dt is (Di / h2)dt. Then by the addi-
tion law of probability, the probability that the molecule will,
in the next dt, jump to either of the two adjacent voxels along
a particular Cartesian axis, say the x-axis, is 2(Di / h2)dt. That
implies that the time it takes the molecule to leave its present
voxel for either of those adjacent voxels is an exponential ran-
dom variable with mean h2 / (2Di). Thus, the average time it
takes the molecule to move to a distance h along the x-axis is
h2 / (2Di). Therefore, the average speed of the molecule along
the x-axis while making that voxel-to-voxel transition is

s̄vv = avg dist moved

avg time
= h

h2/(2Di)
= 2Di

h
. (12)

Note that this voxel transition speed will be less than
the molecule’s average instantaneous speed s̄ along the
x-axis,

s̄vv < s̄, (13)

since, owing to the irregular back and forth motion of the dif-
fusing molecule, the total distance it travels along the x-axis
during that voxel transition will be larger than h.

Equations (12) and (13) imply the disturbing result that
the molecule’s average instantaneous speed s̄ along any Carte-
sian axis, as well as the average speed s̄vv with which it moves
from voxel to voxel in a given Cartesian direction, both go to
infinity as h → 0. It is important to understand that this re-
sult is not a harmless reflection of the fact that the Maxwell-
Boltzmann velocity distribution allows molecular speeds to
be unbounded. The Maxwell-Boltzmann distribution says that
the velocity along any Cartesian axis of a particle of mass
m at absolute temperature T will be a normal random vari-
able with mean zero and variance kBT / m. That implies that
the root-mean-square velocity of our Si molecule along any
Cartesian axis is

√
kBT /mi , and to a factor of order unity that

is the “average speed” of the Si molecule along the x-axis. So
even though the Maxwell-Boltzmann distribution does allow
molecular speeds that are arbitrarily large, its average speed
is finite. In contrast, the average speed s̄ predicted by the
diffusional jumping rule (11) grows without bound as
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h → 0. There are at least two other ways of demonstrating this
unphysical prediction of the standard diffusion equation.10

Since, as we have just seen, the average instantaneous
x-axis speed of an Si molecule moving according to the
voxel-hopping rule of the reaction-diffusion CME/SSA is al-
ways greater than 2Di / h, and since statistical thermodynam-
ics stipulates that the average instantaneous x-axis speed of
a molecule of mass mi at temperature T is approximately√

kBT /mi , then a minimal condition for the reaction-diffusion
CME/SSA to conform to the requirements of statistical ther-
modynamics is

√
kBT /mi > 2Di/h. Solving this for h, we

conclude that a minimal condition for the reaction-diffusion
CME/SSA to be physically acceptable is

h > 2Di

√
mi

kBT
.

In fact, an analysis based on Langevin’s more accurate the-
ory of Brownian molecular diffusion reveals that the voxel-
hopping rule (11) will be accurate only if this inequality is
strongly satisfied, i.e., only if11

h 
 Di

√
mi

kBT
. (14)

To summarize: In the limit h → 0, the voxel-hopping
rule (11) converges exactly to the behavior predicted by the
diffusion equation. But the diffusion equation, despite its
name, does not accurately describe the physical motion of a
molecule undergoing simple Brownian diffusion on all length
scales; more specifically, it fails on length scales smaller than
that prescribed by condition (14), where the molecule actually
moves ballistically. If the voxel size h is steadily decreased
below the value in (14), the voxel-hopping rule’s modeling
of a diffusing molecule’s physical motion becomes more and
more inaccurate, and eventually catastrophically inaccurate.
For example, if h is reduced below 2Di / c where c is the speed
of light, then Eq. (12) implies that Si molecules will be mov-
ing from voxel to voxel at an average speed greater than c.
Even aside from the strictures of special relativity, it should
be obvious that there is no physically plausible mechanism
by which the velocity of a solute molecule could be contin-
ually and rapidly switched between “very fast in one direc-
tion” to “very fast in the opposite direction” by collisions
with the surrounding much smaller and much less massive
solvent molecules. We conclude that if the diffusional motion
of molecules in the reaction-diffusion CME/SSA is to remain
correct from the perspective of physics, then h must obey the
lower bound condition (14).

VI. LOWER BOUNDS ON h

Since smaller values of h (i) improve the accuracy of the
key assumption that the PDFs of the reactant molecules do
not vary appreciably over any one voxel and (ii) cause the
diffusive transfer propensity function (11) to more accurately
model the Einstein diffusion equation, it is tempting to con-
clude that the accuracy of the reaction-diffusion CME/SSA
can be made as great as desired simply by taking h sufficiently
small. However, in Sec. V we saw that there is a caveat to (ii),
in that if h is smaller than allowed by condition (14) then the

molecular motion prescribed by the diffusive transfer propen-
sity function (11) will be physically incorrect. This means that
we are not free to take h arbitrarily small, and we certainly
cannot take the limit h → 0.

There is, furthermore, another lower bound on h which in
practice is usually more restrictive than (14). It arises from the
presumption that the CME/SSA correctly describes bimolec-
ular reactions occurring inside individual voxels. In order for
that to be true, the reactant molecules for all bimolecular re-
actions must be dilute and well-mixed inside each voxel. As
shown in Secs. II and III for the bimolecular reaction S1

+ S2 → ··· inside a volume �, being dilute and staying well-
mixed requires satisfaction of conditions (4) and (9), condi-
tions which in all practical circumstances amount to the re-
quirement that |�|1 / 3 be very much larger than σ 12. Thus,
the reaction-diffusion CME/SSA requires that the voxel edge
length must be much larger than σ 12:

h 
 σ12. (15)

Calculations using parameter values roughly typical of pro-
tein molecules in water at room temperature suggest that the
h-bound in (15) will be several thousand times larger than the
h-bound in (14). In any case, both conditions (14) and (15)
must be satisfied if the reaction-diffusion CME/SSA is to be
physically valid.

VII. BEHAVIOR OF THE AVERAGE REACTION RATES
FOR SMALL VOXELS

It has been argued elsewhere12 that, in the limit h → 0,
bimolecular reactions stop occurring in the reaction-diffusion
CME/SSA. In view of the positive lower bounds on h in
Eqs. (14) and (15), it might be objected that the limit
h → 0 is not allowed. But let us suppose that h is decreased in
a restricted way that does not violate conditions (14) and (15).
In that case it is fair to ask, does the average rate at which bi-
molecular reactions occur inside � decrease along with h? In
this section, we will show that it does not.

For this demonstration, we will consider a system that
is well-mixed throughout its entire volume �. We begin by
examining how chemical and diffusive transfer reactions in a
single voxel behave as h is made smaller and smaller, but not
smaller than allowed by conditions (14) and (15). Since the
decrease in h is not accompanied by any change in either �

or the total number xi of Si molecules inside �, the average
density of the Si molecules in � will remain constant at the
value xi / |�|. The average number of Si molecules inside any
one voxel will therefore be (xi/|�|) · h3 ≡ x̄i , and thus will
decrease with h like h3. Notice that if h is taken small enough,
we could have x̄i 	 1; however, satisfaction of the general
diluteness condition ensures that that will not be due to the
voxel being too small to accommodate more than one reactant
molecule, but simply to there being many more voxels than
reactant molecules in �.

The average propensity function for the unimolecular
chemical reaction S1 → ··· inside a single voxel has the form
cx̄1, where c is independent of h. Since x̄1 ∝ h3, the average
propensity function for a unimolecular chemical reaction in a
single voxel will therefore decrease with h like h3.
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The average propensity function for the bimolecular
chemical reaction S1 + S2 → ··· inside a single voxel has the
form cx̄1x̄2 where c ∝ h−3. Here we have invoked the proviso
that h be large enough to satisfy condition (15)—see point
(ii) at the end of Sec. II. Since x̄i ∝ h3, the average propen-
sity function for a bimolecular chemical reaction in a single
voxel will therefore decrease with h like h−3h3h3 = h3. Note
that this is the same small-h behavior as for a unimolecular
chemical reaction.

By Eq. (11), the average propensity function for the dif-
fusive transfer reaction in which an Si molecule leaves a given
voxel for a particular adjacent voxel is (Di/h

2)x̄i , where Di is
independent of h. Since x̄i ∝ h3, the average propensity func-
tion for a diffusive transfer of an Si molecule from a particu-
lar voxel to a particular adjacent voxel will therefore decrease
with h like h−2h3 = h.

To summarize, the average propensity function for any
chemical reaction inside a particular voxel will decrease with
h like h3, while the average propensity function for any dif-
fusive transfer reaction from a particular voxel to a particular
adjacent voxel will decrease with h like h. However, our goal
is to assess the behavior of these reactions over the entire vol-
ume �. To do that, we will use the fact that propensity func-
tions are additive; because, the probability for an R1 reaction
or an R2 reaction to occur in the next infinitesimal time dt is,
by the addition law of probability,13

a1dt + a2dt = (a1 + a2)dt.

As a consequence of propensities being additive, the aver-
age propensity function for a chemical reaction anywhere in-
side � will be the sum of all the single voxel chemical re-
action propensities. We can estimate that sum as the product
of {the average single-voxel chemical reaction propensity},
which we have just seen is ∝h3, times {M × the total num-
ber of voxels}. Since the total number of voxels is |�| / h3,
we conclude that the h-dependence of the average propensity
function for a chemical reaction anywhere inside � will be
∝h3 × h−3 = h0, i.e., the average propensity function for
a chemical reaction anywhere inside � will be independent
of h.

What about diffusive transfer reactions? The average
propensity function for those will be the product of {the aver-
age single-molecule diffusive transfer propensity}, which we
found above is ∝h, times {2 × N × the total number of in-
terfaces between adjacent voxels}; the factor 2 × N here ac-
counts for the fact that at each such interface, a molecule of
any of the N species can cross in either direction. An interior
voxel will have 6 such interface boundaries, each of which is
shared with one other voxel. Since the ratio of the number of
voxels on the boundary of � to the number of interior vox-
els will approach zero with h, the total number of interfaces
between adjacent voxels will be approximately 6 × 1

2× the
total number of voxels |�| / h3. The h-dependence of the to-
tal number of interfaces between adjacent voxels is therefore
approximately ∝h−3. Thus, the h-dependence of the average
propensity function for a diffusive transfer reaction anywhere
inside � will be approximately ∝h × h−3 = h−2.

Since the reciprocal of the propensity function of a reac-
tion gives the average time between those reactions, we have

thus proved the following: If h is decreased in a way that re-
spects the lower bounds (14) and (15), then the average time
between chemical reactions (unimolecular or bimolecular) in-
side � does not change, while the average time between dif-
fusive transfer reactions decreases approximately like h2.

VIII. SUMMARY AND CONCLUSIONS

The physical validity of the CME/SSA model of chem-
ical kinetics hinges solely on there being a sound basis
in molecular physics for the propensity function hypothe-
sis (1). We began by showing that if the reactant molecules
are hard-sphere solute molecules in solution with very many
much smaller chemically inert solvent molecules, then the
propensity function hypothesis can be justified from molec-
ular physics only if the reactant molecules of all bimolecular
reactions are dilute and well-mixed inside the containing vol-
ume �. Here, “dilute” means that the total volume occluded
by the reactant molecules (but not the solvent molecules) is
only a very small fraction of |�|, or equivalently that the av-
erage distance between two reactant molecules is very large
compared to their diameters. “Well-mixed” means that the
probability of finding the center of a reactant molecule inside
any small subvolume of � is independent of the location of
that subvolume. We presented an argument showing that or-
dinary diffusion will suffice to maintain the well-mixed con-
dition if and only if the diluteness condition is satisfied, i.e.,
the system will stay well-mixed if and only if it is dilute.

We next examined the reaction-diffusion extension of the
CME/SSA. It assumes that even if the reactant molecules are
not well-mixed inside �, we can partition � into a set of
cubic voxels �1, . . . , �K, each of edge length h, such that
the reactant molecules are approximately well-mixed inside
each voxel. Chemical reactions are then viewed as occur-
ring wholly inside single voxels in accordance with the usual
propensity functions of the CME/SSA, while the diffusion of
reactant molecules between adjacent voxels is modeled as dif-
fusive transfer reactions with propensity functions of the form
(11). The obvious physical artificiality of the two assumptions
(i) that the distributions of the reactant molecules are per-
fectly uniform inside each voxel and change discontinuously
at voxel boundaries, and (ii) that each reactant molecule al-
ways lies wholly inside a single voxel, makes it clear that this
is an inherently approximate, coarse grained description, its
spatial resolution being the voxel edge length h.

Although a smaller value of h will yield a more finely
resolved description, we showed that physics considerations
impose two lower bounds on h which prevent us from taking h
arbitrarily small. First is the lower bound stipulated by condi-
tion (14). It ensures that the propensity function (11) for diffu-
sive transfer reactions is physically accurate; taking h smaller
than allowed by condition (14) will result in movement of the
reactant molecules between voxels that is unphysical, despite
being consistent with the predictions of the standard diffusion
equation. Second is the lower bound on h stipulated by con-
dition (15). It ensures that bimolecular reactions occurring in-
side voxels can be described using propensity functions of the
form (5); taking h smaller than allowed by condition (15) will
make it impossible for two reactant molecules to be “dilute”
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inside a single voxel, as is required to derive the bimolecular
propensity function in a voxel. The lower bound (15), namely,
h 
 σ 12, will usually be the controlling one, since it will typ-
ically be several orders of magnitude larger than the lower
bound (14).

We finally showed that if a chemical system is well-
mixed inside its full volume � and we decrease h in a way
that respects the lower bounds (14) and (15), then contrary to
what might be inferred from a recent analysis,12 the average
rate at which both unimolecular and bimolecular chemical re-
actions occur inside � does not change. That, of course, is ex-
actly what we should expect: the rate at which chemical reac-
tions occur inside � should not be affected by how finely we
subdivide � into imaginary voxels. We also showed that the
average rate at which diffusive transfer reactions occur inside
� increases with decreasing h approximately like h−2. So, if
we imagine a time-line on which all reactions are recorded by
placing a dot at the instant they occur, then as h gets smaller,
the “chemical reaction dots” will on average stay as they are,
but the “diffusive transfer dots” will become more numerous,
filling in the spaces between the chemical reaction dots.

At least three earlier works14–16 have suggested modi-
fications to the rate constant in the bimolecular propensity
function (5) in an attempt to allow the reaction-diffusion
CME/SSA to be used with very small values of h. These
three analyses differ in the specific reactions they consider,
the basic assumptions they make, the inference logic they
use, and the specific results they obtain; thus it is very dif-
ficult to compare them with each other or with our work here.
Fange et al.14 appear to push the lower bound on h all the way
to zero. That would contradict the lower bound (14), which
we claim arises whenever the diffusional hopping rule (11) is
used. But the results of both Erban and Chapman15 and Hel-
lander et al.16 do imply positive lower bounds on h. Hellander
et al.16 have suggested that those two lower bounds more or
less agree, and they concluded that no h-dependent modifica-
tion of the bimolecular rate constant in Eq. (5) will allow the
reaction-diffusion CME/SSA to be correct unless h > πσ 12. If
that is true, then it would appear that such modifications can-
not yield much in the way additional latitude for h beyond our
restriction of h 
 σ 12 on the conventional reaction-diffusion
CME/SSA. We have made no attempt in our paper to find a
generalization of the bimolecular propensity function (5) that
would make it correct when the volume occluded by all the re-
actant molecules in a single voxel is not negligibly small com-
pared to the voxel volume |�| = h3. But since that occluded
volume will depend on the numbers x1k, . . . , xNk of reactant
molecules that are currently in voxel k, then it would seem
that any physics-based correction to the propensity function
(5) will inevitably also change its dependence on the voxel
population variables x1k, . . . , xNk to something considerably
more complicated than the simple factor x1kx2k.

In the quest for a lower bound on h, we should bear in
mind that a practical lower bound might exist that is larger
than the lower bound h 
 σ 12, owing to the fact that the com-
putational complexity of the reaction-diffusion CME/SSA in-
creases so rapidly with decreasing h. For example, merely
halving h increases by a factor of 8 both the number of state
variables and the number of reaction channels, and also in-

creases by a factor of 4 the average number of diffusive
transfer events that occur between successive chemical re-
action events. So even if decreasing h is desirable, it might
not be feasible. From a practical standpoint, the goal in us-
ing the reaction-diffusion CME/SSA should be to use a value
for h that is just small enough to capture the spatial non-
uniformities in the system. Anything smaller will only make
the calculation more difficult.

Our conclusion that the reaction-diffusion CME/SSA is
inherently approximate, and cannot be made arbitrarily accu-
rate by taking h arbitrarily small, immediately prompts the
following question: Are there finer-scale models that can be
used in those regions of space where one requires greater
resolution than can be provided by the reaction-diffusion
CME/SSA? There is of course molecular dynamics, which
meticulously tracks the movement of not only all the reac-
tant (solute) molecules but also all the solvent (usually water)
molecules; however, that is such a computationally intensive
enterprise that it is rarely seen as a practical option. A less
detailed but more feasible approach would be to simulate the
movement of only the reactant (solute) molecules. But there
are serious difficulties in doing that too: It is true that we can
simulate the unimpeded x-displacement of a molecule, as pre-
scribed by the Einstein diffusion equation (A3), from time t to
a later time t + �t with the formula

xt+�t = xt + n
√

2D�t, (16)

where n is a sample of the normal random variable with mean
0 and variance 1; and similarly for the y- and z-displacements.
The problem is that we have no way of knowing where the
molecule went between times t and t + �t, and therefore no
way of knowing whether it might have reacted with another
solute molecule during that �t interval. Efforts to find out
by taking �t progressively smaller will initially be hampered
by the inherently fractal nature of the trajectory described by
Eq. (16), and will ultimately be thwarted by the fact that
Eq. (16) will be physically incorrect unless �t 
 τ , where
τ = mD / (kBT) and m is the molecule’s mass.10

One way around this problem might be to use, instead of
the stepping algorithm (16) which is prescribed by the Ein-
stein model of diffusion, the stepping algorithm that is pre-
scribed by the more accurate Langevin model of diffusion.17

The latter agrees with the former for �t 
 τ , but unlike
the former it properly segues to ballistic motion as �t is re-
duced below τ . At least for sufficiently small �t, the Langevin
stepping algorithm would solve the problem of not knowing
where the molecules went between times t and t + �t; be-
cause, for �t 	 τ , the predicted trajectory will be a nearly
straight line, and a smooth interpolation will therefore be war-
ranted. But using such a small �t will be extremely time
consuming.

A promising alternative molecule-tracking approach is
the extended Green’s Function Reaction Dynamics (eGFRD)
method of Takahashi, Tănase-Nicola, and ten Wolde.18 It cor-
rals each pair of solute molecules by surrounding the pair
with an imaginary absorbing surface, so that absorption of ei-
ther molecule on that surface will signal that the corral has
been breached. eGFRD then solves the two-molecule Ein-
stein diffusion equation to obtain the earliest of (i) the times to
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absorption of each molecule, and (ii) the time to a bimolecu-
lar reaction between the molecules. It avoids difficulties aris-
ing from the small-scale deficiencies of the Einstein diffu-
sion equation by imposing appropriate boundary conditions
on the solution of that equation, the most critical of which
is a special “radiation” boundary condition? at the collision
surface of the two molecules if they are able to react with
each other. The overall procedure allows one to advance the
system from one reaction to the next without skipping over
any reaction. A caveat is that the present eGFRD method ap-
pears to be computationally efficient only if the system is
fairly dilute.18 As we have shown in this paper, dilute systems
are typically amenable to the even more computationally effi-
cient CME/SSA. The development of efficient, fine-scale sim-
ulation strategies is an important on-going effort, but a more
detailed discussion of that topic is beyond the scope of this
paper.
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APPENDIX: PROOF THAT THE D/h2 VOXEL-JUMP
PROBABILITY RATE AGREES WITH THE EINSTEIN
DIFFUSION EQUATION IN THE LIMIT h → 0

Consider a system composed of a single molecule inside
a right cylindrical volume of length L and constant cross sec-
tional area A. Let the cylinder’s axis coincide with the x-axis,
and let the cylinder’s end faces be at x = 0 and x = L. Subdi-
vide this volume into K = L / h right cylindrical voxels, each
of length h and cross sectional area A, by means of planes
through the points xk ≡ k · h (k = 1, . . . , K). Number the
voxels so that voxel k is the one occupying the x-axis inter-
val [xk − 1, xk) ≡ [xk − h, xk), where x0 = 0. Assume that
the molecule, in any voxel, will jump to a particular adjacent
voxel in the next infinitesimal time interval [t, t + dt) with
probability (D / h2)dt.

Let q(k, t) be the probability that the solute molecule is in
voxel k at time t. Then it follows from our assumption and the
addition and multiplication laws of probability that, for any
interior voxel k ∈ [2, K − 1],

q(k, t + dt) = q(k + 1, t) ·
(

D

h2

)
dt

+ q(k − 1, t) ·
(

D

h2

)
dt

+ q(k, t) ·
[

1 − 2

(
D

h2

)
dt

]
+ o(dt). (A1)

Here, the first term on the right is the probability that the so-
lute molecule is in voxel k + 1 at time t and then jumps to
voxel k in the next dt; the second term is the probability that
the molecule is in voxel k − 1 at time t and then jumps to
voxel k in the next dt; the third term is the probability that the
molecule is in voxel k at time t and does not jump across ei-
ther boundary of that voxel in the next dt; and the last term,
which satisfies o(dt) / dt → 0 as dt → 0, recognizes that the
probabilities for all routes to voxel k at time t + dt via other
voxels at time t are of higher order than 1 in dt. If we subtract
q(k, t) from both sides of Eq. (A1), divide through by dt, and
then take the limit dt → 0, we obtain the following exact time
evolution equation for q(k, t) for any interior voxel k:

∂q(k, t)

∂t
=

(
D

h2

)
[q(k − 1, t) − 2q(k, t) + q(k + 1, t)].

(A2)

The standard (Einstein) diffusion equation for the proba-
bility density function p(x, t) for the x-coordinate of a solute
molecule with diffusion coefficient D is

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
. (A3)

Since by definition p(x, t) · Adx gives the probability that the
x-coordinate of the solute molecule will at time t be in the
infinitesimal interval dx at x, it follows by the addition law of
probability that the two functions p and q are related by

q(k, t) =
∫ xk

xk−h

p(x, t)Adx (k = 1, . . . , K). (A4)

For sufficiently small h, Eq. (A4) can be approximated

q(k, t)
.= p(xk, t)Ah (if h is small), (A5)

an approximation that becomes exact in the limit h → 0. Sub-
stituting Eq. (A5) into Eq. (A2), dividing through by Ah, and
then using the fact that xk ± 1 = xk ± h, we convert equation
(A2) for the function q into an equation for the function p:

∂p(xk, t)

∂t

.=
(

D

h2

)
[p(xk − h, t) − 2p(xk, t) + p(xk + h, t)].

(A6)

This equation has been derived from Eqs. (A2) and Eq. (A5),
and since the former is exact while the latter becomes exact
in the limit h → 0, then Eq. (A6) becomes exact in the limit
h → 0. Since further

lim
h→0

p(xk − h, t) − 2p(xk, t) + p(xk + h, t)

h2
= ∂2p(xk, t)

∂x2
k

,

we conclude that the h → 0 limit of Eq. (A6) is exactly the
Einstein diffusion equation (A3). Thus we have proved that
the molecular motion produced by the voxel-hopping proba-
bility rate D / h2 converges, in the limit h → 0, to the motion
predicted by the standard diffusion equation (A3).

1Derivations of the CME and the SSA from the definitions of the propen-
sity functions and the state-change vectors, derivations which are math-
ematically rigorous in that they invoke only the laws of probability, can
be found in the following two publications: Secs. 2 and 3 of D. Gillespie,
“Stochastic chemical kinetics” in Handbook of Materials Modeling, edited
by S. Yip (Springer, 2005), pp. 1735–1752; and Secs. 2.2 and 2.3 of D.
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Gillespie, “Simulation methods in systems biology,” in Formal Methods for
Computational Systems Biology, edited by M. Bernardo, P. Degano, and G.
Zavattaro (Springer, 2008), pp. 125–167.

2This fact arises from a general result in quantum mechanics which is widely
known as “Fermi’s Golden Rule” (although it is actually due to Dirac):
For a wide class of energy-conserving transitions in atomic and molecular
physics which are induced by a weak perturbation, the probability that the
transition will occur in a time interval �t will, to a good approximation,
be linear in �t, provided �t is neither too small nor too large. The lower
bound on �t implied by the proviso is much smaller than what would be
considered infinitesimally small on time scales typical of chemical reaction
events. This seminal result also describes radioactive decay. But the quan-
tum mechanical proof of this result is far from trivial, see, e.g., F. Mandl,
Quantum Mechanics (Wiley, 1992), Chap. 9.

3D. Gillespie, J. Comput. Phys. 22, 403 (1976); J. Phys. Chem. 81, 2340
(1977); Physica A 188, 404 (1992).

4F. Collins and G. Kimball, J. Colloid Sci. 4, 425 (1949).
5D. Gillespie, J. Chem. Phys. 131, 164109 (2009). An equivalent but logi-
cally neater derivation of Eq. (5) is given in D. Gillespie and E. Seitaridou,
Simple Brownian Diffusion: An Introduction to the Standard Theories (Ox-
ford University Press, 2012), Secs. 3.7 and 4.8. A version of Eq. (5) that
appears more frequently in current literature can be obtained by multiply-
ing the numerator and denominator of Eq. (5) by πσ 12 and then defining
k ≡ πσ 2

12v̄12qj :

aj (x1, x2) =
(

4πσ12D12k

4πσ12D12 + k

)
· |�|−1x1x2.

The quantity in parentheses on the right becomes, in the thermodynamic
limit of infinitely large � and molecular populations, the “rate constant”
for reaction Rj in traditional deterministic chemical kinetics. It was origi-
nally obtained in Ref. 4 by imposing on the standard diffusion equation a
“radiation boundary condition” with an ad hoc parameter k. The advantage
of the more recent derivation of Eq. (5) cited above is that it uses physi-
cal reasoning which makes it unnecessary to overtly postulate a radiation
boundary condition, and it provides an explicit value for k. Note that k,
which is sometimes called the “microscopic association rate,” is in fact just
the reaction rate constant associated with the dilute gas propensity function
in Eq. (3). A rigorous derivation of the radiation boundary condition from
the Kramers equation in the Langevin model of Brownian motion has been
given by D. Bicout, A. Berezhkovskii, and A. Szabo, J. Chem. Phys. 114,
2293 (2001). The 2009 derivation of Eq. (5) is based on the same under-
lying physics as the Bicout et al. derivation (i.e., ballistic motion on the
smallest spatiotemporal scales), but it is arguably mathematically simpler
and physically more transparent.

6M. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).
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