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diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo
simulation methods limit the efficiency of parallel implementations. Several approximate
and hybrid methods have appeared that enable more efficient simulation of the RDME.

Keywords: A common feature to most of them is that they rely on splitting the system into its reaction
Reaction-diffusion master equation and diffusion parts and updating them sequentially over a discrete timestep. This use of
Operator splitting operator splitting enables more efficient simulation but it comes at the price of a temporal
Local error discretization error that depends on the size of the timestep. So far, existing methods have
Adaptivity not attempted to estimate or control this error in a systematic manner. This makes the
Hybrid methods solvers hard to use for practitioners since they must guess an appropriate timestep. It also

makes the solvers potentially less efficient than if the timesteps were adapted to control
the error. Here, we derive estimates of the local error and propose a strategy to adaptively
select the timestep when the RDME is simulated via a first order operator splitting.
While the strategy is general and applicable to a wide range of approximate and hybrid
methods, we exemplify it here by extending a previously published approximate method,
the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

To understand biological systems on the cellular level, it is often essential to account for the impact of noise due to small
molecule count. For example, it has been demonstrated that stochasticity can have a profound effect on gene regulatory
systems [23,8]. Spatial distribution of molecules in a cell can result in locally small populations of key chemical species,
such that noise drives essential behavior, as in the case of symmetry breaking across many eukaryotic cell types [30].
Spatial stochastic modeling has already begun to yield new insights in systems such as spatiotemporal oscillators [10,27,
26], MAPK signaling [28], self-organization of proteins into clusters [7] and polarization of proteins on the cell membrane
in yeast [1]. Several modeling frameworks are used to model spatial stochastic system, the two most commonly used in
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systems biology being continuous space Brownian Dynamics (BD) methods exemplified by GFRD [31] and the mesoscopic
reaction-diffusion master equation (RDME), the latter being the focus of this paper.

In the traditional RDME, space is subdivided into subvolumes that can individually be treated as well-mixed. Reactions
within a subvolume are expressed in the form of the chemical master equation (CME) [13] and realizations of the process
can be generated using Gillespie’s stochastic simulation algorithm (SSA) [12]. Molecules can move freely between neighbor-
ing voxels via diffusive jumps, which are modeled as linear jump events in a Markov process. Optimized exact simulation
methods such as the next subvolume method (NSM) [7] can be used to generate statistically correct realizations of the
RDME. As with all exact methods applied to RDME models, the NSM suffers from a potentially high computational cost
due to having to explicitly simulate each diffusion event. The number of diffusive transfers between voxels grows rapidly
as the mesh resolution is made finer, and as a result the majority of computation time tends to be spent on sampling
diffusion events. Additionally, these methods are also inherently serial, which has thwarted attempts to increase efficiency
via parallelization.

To speed up simulation of the RDME many methods rely on operator splitting. By splitting the operators, most often with
a Lie-Trotter scheme [29], the reaction and diffusion steps can be solved independently. While diffusion carries the bulk of
the computational burden in exact solvers, it is often possible to take advantage of the structure and linear nature of the
discretized diffusion equation to speed up this step in an operator-split solver. Examples of approximate methods that have
been proposed to speed up the simulation of the RDME by reducing the cost of the diffusive step include methods based
on tau-leaping [25,21], the multinomial simulation algorithm [19], spatially adaptive hybrid methods [11] and the diffusive
finite state projection method (DFSP) [6]. While splitting in itself does not resolve the issue of the inherent stiffness of
the diffusion operator, the continued introduction of methods for simulating the RDME via operator splitting highlights the
potential of this approach. Another recent use of operator splitting in the RDME context is the use of Lie-Trotter splitting
to simulate fractional diffusion [2]. Yet another advantage of splitting is that it converts a largely serial problem, which is
known to be difficult to parallelize in an efficient manner, into a naturally parallelizable one. For the existing approximate
and hybrid methods for the RDME, splitting the physics (reaction and diffusion) is necessary. For parallel implementations,
another possibility is to split the computational grid into blocks, as proposed by Arampatzis et al. [14], where the error
introduced by operator splitting at block boundaries was analyzed. Our analysis here is different since it applies to the case
of splitting the reaction and diffusion operators.

Splitting the operators introduces an error that depends on the size of the splitting time step, however previous al-
gorithms that rely on operator splitting have not attempted an a priori error estimator. Without such an estimator these
methods have no way to automatically control the splitting error. This limits their usefulness for practitioners. From an
efficiency point of view, not knowing and controlling the error might lead to the use of unnecessary small timesteps at
the price of slower simulations. In this work we seek to address theses issues by presenting estimators of the local error
in probability, mean and variance for a first order Lie-Trotter splitting of the RDME. The estimators allow control of the
splitting error for spatial stochastic simulation and enables any method based on operator splitting to be implemented
adaptively.

This paper is organized as follows: in Section 2 we introduce the RDME. In Section 3 we outline how to simulate the
RDME using operator splitting. We derive our estimator for the local error in the PDF, mean and variance, and demonstrate
the accuracy of the estimator for an example problem. Finally, in Section 4 we present how the local error estimates can be
used to extend an approximate method for the RDME to incorporate temporal adaptivity.

2. Spatial stochastic simulation using the RDME

Given a system with Ng chemical species X reacting in a physical domain 2, discretize §2 into N, non-overlapping
voxels V;, with volume |Vj|, and let the state of the system be described by the (N, x Ns) state matrix X, where the
element x;s is the copy number of species X in voxel V;. Let x;. denote the i-th row of x and x. s the s-th column. The
reaction network consists of N, chemical reactions r =1...N;. The (1 x N) stoichiometry vector n;- describes the change
in the state, X; . =X; . + n;-, when reaction r occurs in voxel i and the propensity function for that reaction is a;-(X;.).

Diffusion of species X along the edge (2D) or face (3D) connecting voxels V; and V; is modeled as a linear jump event,
or diffusive transfer,

dijs
Xis — XjSv (1)
with propensity function w(X) = djjsx;s. The change in state due to the diffusive transfer is described by the (N, x 1)
stoichiometry vector vjjs, such that the new state is X. s = X. s + Vjjs. All entries of v;j are zero except vjjs(i) = —1 and
Vijs(j) = 1. In the case of reactions only, the probability density function p(x, t) = p(X, t|Xg, 0) obeys the master equation

Ny N Ny N

d v r v r

GPEOD=MPEO =D air(Ki —Mi)PXi o Xi = Mip, o XN D) = DY @ir(Xi)PX, ). (2)
i=1r=1 i=1r=1

For the case of one subvolume, N, =1, (2) reduces to the CME for a well stirred system. For a system with only diffusion,
the master equation takes the form
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Fig. 1. The molecules are assumed to be well mixed in the dual elements (depicted in pink) of the primal mesh (solid thick lines). On a Cartesian grid (a),
the duals are simply the volumes of the staggered grid. The dual of the triangular mesh in (b) is obtained by connecting the midpoints of the edges and
the centroids of the triangles. In the conventional RDME, molecules are allowed to jump between immediate neighboring voxels. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Ns Ny N Ns Ny N

d N v v S v v

GPEO=DPE =)D D K = Vi)PK, o X = Vijs, XN, = )Y Y K )PED. (3)
s=1 i=1 j=1 s=1 i=1 k=1

For a system with both diffusion and reactions, the full RDME is then given by

d
aP(X, t)=M+D)px,t). (4)

The values of the diffusion rate constants d;j; depend on the diffusion constant y; of species X5 and the shapes and sizes
of voxels V; and V;. Let us(¢,t) = E[Xs/|$2]], i.e. the expected value of the concentration process corresponding to (3). In
the thermodynamic limit Xs/|$2| — oo, us is governed by the diffusion equation

ad
&us(gvt):AuS(Cat)‘ (5)

Here, ¢ is a spatial coordinate in a Cartesian coordinate system. Similarly, the Fokker-Planck equation that describes the
time evolution of the probability density of a single particle undergoing Brownian motion is given by

3
3 P& D=A4pE.0). (6)

Hence, by choosing d;js according to a consistent spatial discretization of the Laplace operator A, we obtain mesoscopic
jump coefficients that are motivated both from a microscale and macroscale perspective. To comply with the description of
the RDME, the discretization used needs to couple only nearest neighbors in the mesh. For a uniform, Cartesian mesh such
as shown in Fig. 1(a), the most natural choice is a centered finite difference discretization, giving d;js = ys/h% where h is the
side length of the voxels and y; is the diffusion constant of species s. For unstructured, tetrahedral meshes which will be
used later in this paper, d;js can be obtained from a finite element (FE) discretization using linear Lagrange elements. For a
detailed description of that methodology, see [9]. Fig. 1(b) shows a triangular, unstructured mesh. The local volume where
the molecules are assumed to be well mixed are given by the dual mesh.

3. Operator splitting method for the RDME

In this section we describe how an operator splitting method can be applied to generate realizations from the RDME
with a controlled temporal discretization error.

In the remainder of this paper we will tacitly assume that we can impose a bound on the state space. For every species
in the system we assume that P(Xjs > Xmax,t) =0, for all t. The state space is then finite (but very large). Technically, this
will not necessarily hold true for an open system, but from a biophysical perspective it is a reasonable assumption since
a system would require infinite energy to blow up. In the finite case, the operators in the RDME can be represented by
finite matrices. Hereafter we will use the notation M and D to mean representations of the bounded operators resulting
from the above truncation of the state space. The solution of (4) can then simply be written

p(x,t) =e" M p(x, 0). (7)

We point out that even though this representation of the solution is simple, it is not feasible to solve (4) this way since the
state space is too large except for trivial models and discretizations. In the well mixed case, however, deterministic methods
to solve the CME have been developed for small to medium-sized models, see for example [24,3,20,18,22].
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Using a first order splitting method (Lie-Trotter splitting), p(X,t + At) can be approximated by

ps(X, t + At) = eAMeAPp(x 1. (8)

Simulation based on (8) proceeds in two half-steps, with the diffusion operator and the reaction operator acting sequentially

1 pi 2 ) =eAPplx )
2. pItix t 4 Af) = eMMpITI2, 9)

Provided that the time step At is sufficiently small, the local error in the scheme (9) is O(At?) and from standard theory
for numerical solution of differential equations, the global error in the PDF is then proportional to At, i.e.

[px,t) — ps(x, t)|| < CAt. (10)

We note that it is not in general necessary for the operators to be bounded for the splitting method to result in a global error
proportional to At. Jahnke and Altintan show in [16] that the global error for Strang splitting applied to the CME is second
order under certain assumptions on the chemical reactions. Unfortunately, as Jahnke and Altintan point out, while those
conditions can be expected to hold for many systems, they are not easily verified in practice. Error bounds for exponential
operator splitting have also been studied in other contexts in e.g. [17].

In the next subsection we derive estimates of the local error. In a subsequent section we will then illustrate how these
estimates can be used to enable temporal adaptivity in an approximate method for the RDME.

Local error

Following standard theory for the analysis of scheme (9), the local error in the PDF (i.e. in probability) in the n + 1-th
timestep is given by

2
€M1 = (AUMAD) _ pAMAD) pn _ ATI[D’ MIp" + O(a8%), (11)
where [D, M] = (DM — MD) is the commutator of the operators. This follows directly from a series expansion of the left
hand side in At. Computing ™! from (11) is obviously not tractable in general since knowledge of p" requires the solution
of the full RDME. Even if an approximation of p" were available, the state space is still very large and the cost of evaluating
the commutator would be prohibitive. Also, our goal is a strategy to estimate the error during the course of the generation
of individual trajectories, whereas an estimation of p" would require very large ensembles of trajectories. By conditioning
on the currently observed state X" in timestep n of a specific realization, we obtain the following sequence of conditional
errors,

2

EMl = (" X(t") =x") = ATt[D, MIS(x") + O(Ar?), (12)
where § is the Dirac delta function, hence §(x") corresponds to P(X(t") =x") = 1. Note that £" is a random vector for each
n with unconditional expectation E[E"1] = e t1,

While there are many possible states that can have a non-zero value after one application of the commutator, hereafter
called reachable states, it is possible to obtain simple and computable expressions for £"*1 in (12), due to the sparsity of
S(xM).

The L =142N¢Ns+ NyN; + 2N, N;N.N; reachable states X; in [D, M]8(x") are X", X" + vjjs, X" + 0y and X" + 0y + vjjs,
s=1,...,Ns,r=1,...,N, i,j,k=1,...,N, and N, is the number of connections in the mesh. Below, the term to the
left of the colon is a reachable state and the term to the right is the value of that state after applying the indicated
operator to §(x"). We note that this value is the corresponding term from the matrix-matrix-vector multiplication that
results from applying the reaction and then the diffusion operators (or vice versa) to the previous probability vector, it is
not the propensity of the reachable state.

For example, the application of the diffusion operator D on §(x"), D§(x") results in

X"+ Vijs : d,-jsx?s (13)
Xn: _do(xl’l)’ (14)

where i, j are connected subvolumes and dy(x") = Nj Ny Nv.d,- isXL. Eq. (13) enumerates the new states with non-
s=1 Lui=1 L j#i “US%is
zero value after one application of D to §(x™).
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Fig. 2. lllustration of the reachable states in Eq. (19) for k =i. On the left side, the diffusion operator is applied first, as in Eq. (14), followed by the reaction
operator, resulting in the value derived in Eq. (18). On the right side the order of the operators is reversed, resulting in a change in the final value for
the reachable state X" + n; 4 vjjs (note that the reachable state is, by definition, the same using both orders of the operators, but the value associated
with that state is different). The terms in the box represent the difference between the two orders of applying the operators and show terms that do not
commute. Note that if we had defined the reachable state as k # i, j in Eq. (19) then the reaction would occur in neither the originating subvolume nor
the destination subvolume for the diffusion event and the terms would commute (and the value in the box would be zero).

Applying M to D§(x™") then gives the following reachable states and associated values.

X" 1 ag(x")do(x") (15)

X"+ g 0 —ag (x")do(x"), (16)

X"+ vijs 1 —ao (X" + vijs)dijsXfy, (17)

X"+ Vijs 4+ Mgy ¢ ager (X" + vijs ) dijs X, (18)

where we have defined ap(x") = ,’:’zvl ZN:’l air-(X"). By computing the analogous values for DM§(x") and taking the

difference, we obtain the following expressions for the commutator error £"t! for the reachable states X;

dijsXis(air (X} ) — air (X}’ + Vijs)) + dijsirsair (X)) k=1

At?
X" 4y + vy - dijsxis(@jr (X ) — ajr(X] + vijs)) k=j (19)
k#{i, j}
At2 S N
X' +ny: 5 Z Zdijsnirsair(xﬁ.) (20)
s=1 j#i
n Atz . n n n n
X! i 0 == dijsis (@i (%] + vi) — air (%] ) + (%] +vigs) —aje(x} ) (21)
r=1
x": 0. (22)

As seen in the expression for the cross-terms in (19), large parts of the operators commute. Only terms pertaining to
degrees of freedom that are sharing an edge in the mesh will be non-zero. Furthermore, (19) will be non-zero only if the
reaction described by ny, depends on species s, i.e. ngs is non-zero. A graphical representation of the reachable states is
given in Fig. 2.

Local error in mean and variance Eqs. (19)-(22) give expressions for the local error in the PDF in one timestep (at t"*1),
given that we observe state X" at time t". The obvious advantage of computing these expressions directly is that they can
be used to derive many estimates of the error such as [y, I in PDF, Kolmogorov distance for marginal distributions, or
moments. However, they are rather expensive to compute directly, even with appropriate optimizations. In many cases it
is sufficient to control a weak error such as the errors in mean and variance. This is particularly true if the error in the
individual methods for propagating the reaction operator and the diffusion operator is controlled only in a weak sense. For
example, this would be the case if the diffusion operator were updated with t-leaping such as in [11].
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Based on (19)-(22) we can calculate the local error in the expected value of an arbitrary bounded function g(Xjs)

K

AE[g(Xis)] = E[g(Xis)] — E7[g(Xis)] = > e(¥)& (23)

k=1

where the subscript f denotes expectation under the approximate PDF obtained from solving with the operator split
method (9) and K is the length of the error vector. For brevity, we have here dropped the superscript n+ 1 on x and £.

We introduce the notation Aa;, = a;r(X;,. + Vijs) — a;r (X;,.) and Aaﬁs =ajr (X;,. + Vjis) — air(X,.) and Ag(y) = gxf, +y) —
g(x?s). By summing up outflow and inflow of differences in probability to state X;; and using the fact that AE[g(Xis)] =
AE[g(Xis) — g(x,)], we obtain

Ny Ny
(ZAtiz)AE[g(Xis)] Ag(— 1)Zdl]sxlsZAa + Ag(+l)2djlsznjrsa]r(x] )
J#i r=1 J#i r=1
Ny Ny
+ Ag(+1) Zdjisxjs Z Aar Z Ag(nis) Zdus”lrsalr(xz
J#i r=1 J#i
Ny Ng Ny Ng
- Z Ag(nirs) Z Z dijs Xig Al — Z Ag(nirs) Z Z d]ls’xjs’Aa,rS/
J#Ls'#s J#Ls'#s

Ny Ny
+ Z Ag(irs — 1) Z(dijsnirsair(xi,~) — dijsxisAaz,)

r=1 J#
Ny Ny
- Z Ag(is + 1) ZdjisxjsAa?r_s- (24)
r=1 J#i
To obtain the error in the mean, set g(x) = x. After simplification, we obtain
N Ns Ny Ny Ns Ny
AE™[Xis | X"] = 0.5A%(DR(X")), = 0.5A > > “nipsdijs Xig Ay — 0582 Y "N > “niredjig Xjs Ad,
r=1s'=1 j#i r=1s'=1 j#i
Ny Ns Ny
=0.5A2(DR(X));; — 0.5A2 > > "y (Aam,x,s/ Zdus/ +Ag, > d J,s/x]s/>
r=1s=1 JF#i J#i

= 0.5At2( DR(X)),, inm Z Oirs' ) (25)

where the values of the vector resulting from the operator R acting on x are defined by

RX)is =Y Mirsttir(Xi.), i=1,...,Ny, s=1,...,Ns, (26)
r=1
and
Ny Ny
Ojrs = Aa;s,xisr Zdijs/ + Aa;;S, Zdjis’xjs’- (27)
J#i J#

The (NyNs x Ny Ns) matrix D is defined to have diagonal elements —ZH&I dijs and off-diagonal elements djj;.

Eq. (25) is an exact (up to O(At?)) formula for the estimate of the local error in mean for any functional form of the
propensity functions a,(x). For zeroth-order mass action reactions we have oj.¢ = 0. For a first order reaction with a linear
propensity (such as creation or monomolecular conversion) of the form a;;(x;.) = k1x;s we have

Ny Ny

oirs =kq (_Xis Zdijs + Zdjisxjs> =k1(DX);s = air((Dx)i,-)
J# J#

NirsOirs' =0,

and (25) simplifies to
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AE"™ X1 =0.5At*((DR(x")),, — R(DX"),,). (28)

in agreement with the analogous expression for the commutator error for the reaction-diffusion PDE.
To find the error in the second moment, set g(x) = x2 in (24), to obtain

N, N,
AE[X}]=0.5A6%(IDIR(X"));; + 2xis AE[Xis] — A Y " nirs Y (dijsXis A — djisXjs Adify)
r=1 j#i
—0.5A¢2 an Z Oirg — AL Zdus Z nmalr(x, (29)
s'=1 J#i r=1

Here, |D| is defined as the element-wise absolute value of the matrix D. While this expression is more complicated
than (25), the amount of additional work required to compute it is not that great since the complexity of the extra terms
are all O(N) and most of the expensive propensity function evaluations can be overlapped with the computations involved
in (25). A more commonly used second order statistic is the variance V[X] = E[(X — E[X])?]. While this quantity is not
readily obtained from (24), an approximate formula for V[X] can be found from the observation

AV[X]= AE[X?] - E[IXT* + Ef[X]?
= AE[X?]+ (AE[X])® — 2E[X]AE[X]
= AE[X?] - 2xAE[X]+ O(A), (30)

where E¢[X] is the expected value under the operator split PDF. Hence

AV[Xis] = 0.5At*(ID[R(x")),, — At? Zn,rsz dijsxis A, — djisxjsAdy)
r=1 ];éz
-0. 5At22nm Zam/ — At Zdusana,r(x, J+o(ad). (31)
s'=1 J#l r=1

In the asymptotic regime, O(At3) terms are small by definition and AV[X;] is a good approximation to the true local error
in variance.

We point out that (11), and hence (25) and (29) are only good estimates of the local error if the O(At3) terms are
small. It is well known that an error estimate based on (11) will deteriorate in quality for large timesteps if D or M are
stiff. As the norm of D increases rapidly with finer mesh resolution, this will lead to overly conservative estimates for
large At >> h?/ys (in the non-asymptotic regime). For this reason, error estimates that perform better in the non-asymptotic
regime have been devised in the PDE case [4]. However, it is not clear how those approaches would apply to the RDME.
In the following section we will demonstrate that (11) is simple enough to lead to a strategy that is both computable
in practice during the coarse of a single realization of RDME and local in space so that it has potential to be efficiently
implemented in parallel.

4. Results

To illustrate the accuracy and correctness of the estimate of the local splitting errors (25) and (29), we simulated a model
of Min oscillations in E. Coli [7] in one spatial dimension for a single timestep. To isolate the splitting error, the reaction
and diffusion steps were solved exactly by simulating them with SSA and NSM respectively. Fig. 3 shows the estimated
conditional error in mean (25) and the true conditional error in mean as a function of the spatial coordinate (left) and
for different timesteps (right). Fig. 4 shows the corresponding estimate of error in second moment based on (29). As can
be seen, the estimated error accurately captures the true local error, and the quality of the estimate improves for smaller
timesteps as expected from the O(At3) error in the estimates. When computing the error in mean, the observed error is
a combination of sampling error caused by a finite number of realizations, and the error caused by operator splitting. For
small splitting errors, a large number of realizations are necessary to distinguish the sampling error from the splitting error,
especially if we want to measure the error in e.g. the L1 norm, in which case the variances in the different voxels add up.
We note that to achieve tight confidence intervals on the true error for this simple system (see to the top row of Figs. 3
and 4) required 10! realizations.

4.1. Example: Adaptive diffusive finite state projection method
To illustrate the use of the local error estimate, we extended a previously published approximate method for the RDME,

the diffusive finite state projection (DFSP) method [6] with temporal adaptivity. This results in increased robustness of the
solver.
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Fig. 3. The local error in mean for a single input point xo vs the estimated error. Top: True (square) and estimated error (*) for each species and voxel
for t =0.001 s (voxels are divided by black dotted lines). Blue: species 1, cyan: species 2, green: species 3, red: species 4, orange: species 5. Bottom: The
Li-norm across species and voxels of the value in Eq. (32) for various time-steps. The solid blue is the estimated error from Eq. (25). The dashed red line is
the true local error. The values in the legend are the slope of the curves in the log-log plot. Note that as the time step decreases the estimator converges
toward the true error, which in turn approaches the expected (O(At?) convergence rate. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

DFSP relies on Lie-Trotter splitting to separate the reaction and diffusion updates over a discrete timestep At. The reac-
tions are then updated in each voxel using Gillespie’s direct method [12]. Diffusion is updated by sampling from probability
density functions that are precomputed by solving the diffusion master equation (3) locally up to the given timestep At.
For an unstructured mesh, there is one such PDF for each vertex in the mesh and for each At. The (spatial) locality of the
PDFs are enforced by applying an absorbing boundary condition at a certain distance away from the vertices. The timestep
is assumed to be small enough that the majority of probability is located close to the vertex where the molecule is located
at the beginning of the timestep so that the error due to the truncation of the statespace is small. It is shown in [6] that
this strategy can speed up simulations by effectively aggregating the effects of many fast diffusive transfers over the split-
ting timestep, and in [5] it is discussed under what conditions one can expect DFSP to be more efficient than NSM for the
MinCDE model [15].

DFSP has been implemented previously as an add-on solver in the URDME framework [5]. URDME is a modular frame-
work that uses unstructured meshes for spatial stochastic simulations. URDME includes interfaces for handling of the
geometry, mesh and computation of diffusion jump rates for the unstructured mesh. It has a modular design which fa-
cilitates the implementation of new algorithms as add-on solvers. In the current implementation of DFSP in URDME, At has
to be chosen by trial and error by manually picking a timestep that results in satisfactory error in the computed solutions,
judged by a posteriori checks.

We implemented our error estimation strategy in URDME for arbitrary processes (i.e. it uses the same input files as all
the core solvers) for structured and unstructured meshes, and supplemented the DFSP solver with an adaptive selection of
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Fig. 4. The local error in second moment for a single input point Xy vs the estimated error. Top: True (squares) and estimated error (*) for each species and
voxel for t =0.001 s (voxels are divided by black dotted lines). Blue: species 1, cyan: species 2, green: species 3, red: species 4, orange: species 5. Bottom:
The Li-norm across species and voxels of the value in Eq. (32) for various time-steps. The solid blue is the estimated error from Eq. (29). The dashed red
line is the true error. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the timestep. To compute the next proposed timestep, we control the per species error in mean (25) in the L; norm such
that

St VIAEXis]) _
SN Vil

with € being a user specified relative error tolerance. The L1 norm is a natural choice in the context of DFSP since the error
in the diffusion lookup-tables has a natural bound in the I; norm [6]. Fig. 5 shows an overlay of the pole-to-pole oscillation
pattern of membrane bound MinD in E. coli along with time steps selected by the adaptive step size selection algorithm.
The timesteps are themselves stochastic variables and fluctuate during the course of the simulation. In the figure they have
been smoothed by taking the average of the 10 last timesteps to more clearly visualize how they adapt to the dynamics of
the solution.

We simulated the MinCDE model from [15] in 3D in three different ways: using the adaptive timestep control, using
a fixed manually determined timestep and using the exact NSM solver, and compared the execution times. The geometry
and diffusion constants were taken to be the same as in [10]. The model files for URDME that contains all parameters
of the model is included in the online Supplementary material of this paper. In DFSP, the diffusion step is conducted by
computing new positions for each molecule individually by sampling from a precomputed lookup-table. All the molecules’
new positions can then be sampled in parallel. During the reaction update, all the voxels can be treated independently
and in parallel. Note that the local error estimators used here have the same characteristics when it comes to the spatial
access pattern as the DFSP diffusion operator. Thus the overall adaptive algorithm should parallelize quite well on a shared

€, s=1,...,S (32)
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Fig. 5. The figure shows the time steps selected by the adaptive DFSP method, along with the oscillation pattern of the membrane bound MinD protein for
a representative trajectory. Note that the timestep adapts to the dynamics of the MinD oscillation. Due to the oscillatory nature of this model, picking the
most conservative timesteps based on the maximal errors would lead the solver to take unnecessarily many steps, resulting in suboptimal performance.

Table 1

Simulation time (s) for the adaptive version of the DFSP solver and for the exact NSM solver for
the MinCDE problem with varying mesh resolution. The trajectories were simulated to a final time
of 2000 s, and the state was sampled every second.

# Voxels Adaptive DFSP (€5 = 0.05) NSM (serial)
1 core 4 cores
588 124 35 337
1009 228 65 537
2818 757 190 1282

memory multicore architecture. To demonstrate this, we implemented a naive parallel version using openMP. Table 1 shows
simulation speeds for the adaptive DFSP method, with error estimation conducted every tenth timestep, on a machine with
an Intel® Core™ i7-2600 CPU @ 3.40 GHz (Nehalem) processor and 6 GB of RAM using one core and using 4 cores (8
threads). For comparison, we also include simulation times of the (serial) NSM solver in URDME. As can be seen, the DFSP
algorithm shows an almost ideal speedup on 4 cores, and for this error tolerance, the adaptive code is roughly two times
faster than NSM on a single core.

5. Discussion

In this work we have derived local error estimators for first order operator splitting in stochastic reaction-diffusion
simulations based on the RDME. Operator splitting provides a way to decouple reactions and diffusion in spatial stochastic
simulations, and the local error estimates enable this to be accomplished with a controlled error.

Decoupling the operators allows for approximate methods to be applied to the diffusion operator to reduce the cost of
frequent diffusive transfers. The method we considered as an example in this paper, DFSP, falls into this category. Enabling
temporal adaptivity for such approximate and hybrid methods has several benefits. Possibly the most important is the
robustness it adds to the solver. While it is possible to prescribe an error tolerance that is likely to give a reasonable
result across a range of models, the same is not possible by selecting a fixed timestep a priori. Adaptivity has long been
available in state-of-the art software for e.g. numerical solution of ODEs and PDEs, but was previously lacking for this
class of approximate methods for the RDME. Another major benefit is one of efficiency; using a globally conservative fixed
timestep can lead to sub-optimal simulation speeds. We found that the adaptive version of the DFSP method presented here
was roughly 1.5 times faster than the corresponding fixed timestep method using a conservative timestep for the oscillatory
MinCDE model problem we considered. Even though this experiment is somewhat artificial since the conservative fixed
timestep could not be known before running the adaptive code (which again illustrates the utility of adaptivity), it illustrates
the potential efficiency benefits of an adaptive solver.

A detailed discussion and analysis about the possible speedups of a hybrid or approximate method has to consider the
particular method that is used to update the diffusion step in the splitted scheme. In this paper we use the DFSP method
as an example of an approximate method, and the DFSP method is described in greater detail in Ref. [6]. There are certain
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tradeoffs specific to DFSP when it comes to computing and sampling from the lookup tables, and if the timesteps that are
required based on the error estimate become too small, the speed benefit from DFSP will be modest since the number of
effective diffusion events that can be aggregated are small. There is also an overhead from estimating the splitting error.
Again, this overhead will depend on the value chosen for the error tolerance, since this dictates the timestep. While DFSP as
such can yield speedup for stiff systems (when the diffusion events are numerous), we expect the biggest performance gain
compared to NSM to come from a parallel implementation since the splitted scheme enables more parallelism, while kMC
methods like NSM are intrinsically very hard to parallelize efficiently. For the example in this paper we showed speedups
of 7-10x over serial NSM for the approximate scheme on a 4 core machine, using a simplistic OpenMP implementation.
A key property of the error estimator is that it can be efficiently applied in a parallel, shared memory implementation.
Finally, operator splitting allows the flexibility of coupling different types of models (possibly at different scales) and
solvers. Thus this error estimator opens avenues of research in the development of hybrid algorithms with controlled errors.
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