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Abstract

Hes1 is a member of the family of basic helix-loop-helix transcription factors and the
Hes1 gene regulatory network (GRN) may be described as the canonical example of
transcriptional control in eukaryotic cells, since it involves only the Hes1 protein and
its own mRNA. Recently the Hes1 protein has been established as an excellent target
for anti-cancer drug treatment, with the design of a small molecule Hes1 dimerisation
inhibitor representing a promising if challenging approach to therapy.

In this paper we extend a previous spatial stochastic model of the Hes1 GRN to
include nuclear transport and dimerisation of Hes1 monomers. Initially we assume
that dimerisation occurs only in the cytoplasm, with only dimers being imported into
the nucleus. Stochastic simulations of this novel model using the URDME software
show that oscillatory dynamics in agreement with experimental studies are retained.
Furthermore we find that our model is robust to changes in the nuclear transport and
dimerisation parameters. However, since the precise dynamics of the nuclear import
of Hes1 and the localisation of the dimerisation reaction are not known, we consider a
second modelling scenario in which we allow for both Hes1 monomers and dimers to
be imported into the nucleus and we allow dimerisation of Hes1 to occur everywhere
in the cell. Once again, computational solutions of this second model produce oscil-
latory dynamics in agreement with experimental studies. We also explore sensitivity
of the numerical solutions to nuclear transport and dimerisation parameters. Finally,
we compare and contrast the two different modelling scenarios using numerical exper-
iments that simulate dimer disruption, and suggest a biological experiment that could
distinguish which model more faithfully captures the Hes1 GRN.

Keywords: Hes1, spatial stochastic modelling, dimerisation, nuclear transport,
URDME.
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1. Introduction

Gene regulatory networks (GRNs) lie at the core of intracellular signal transduc-
tion. GRNs can exhibit an oscillatory response in space and time to a range of external
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stimuli (Hirata et al. 2002; Geva-Zatorsky et al. 2006; Nelson et al. 2004; Shankaran
et al. 2009). A negative feedback loop is often responsible for this behaviour which
controls the levels of mRNA and proteins. The proteins involved are transcription fac-
tors, which usually must form dimers or tetramers in order to function. The main func-
tion of transcription factors is to enhance or hinder transcription of mRNA, and to do
this they must first pass through the nuclear membrane (via nuclear pores) and enter the
nucleus. Once inside the nucleus, transcription factors bind to specific DNA sequences
(promoter regions). A simple example of a regulatory network containing a negative
feedback loop is the Hes1 GRN. The wealth of quantitative time course expression data
available for this network makes it particularly amenable to mathematical modelling.
The Hes1 GRN plays a central role in the timing of somitogenesis (Hirata et al. 2002).
Hes1 can also protect quiescent fibroblasts from differentiation or senescence (Sang
et al. 2008, 2010) and this has raised the notion of cancer therapies that specifically
target Hes1. In particular, it was suggested in Sang et al. (2010) that disruption of Hes1
dimerisation could be an effective cancer treatment.

Dimerisation (and indeed polymerisation in general) is an important and common
aspect of many intracellular reactions. Several key proteins vital for maintaining cel-
lular homeostasis form dimers in order to function correctly. Examples include Hes1,
p53, ERK and NF-κB (Kagemyama et al. 2007; Nicholls et al. 2002; Lidke et al. 2010;
Oeckinghaus and Ghosh 2009). It is known that homodimerisation of Hes1 monomers
results in greater stability of dimers in comparison to monomers (Bulcher et al. 2005),
while some proteins cannot enter the nucleus unless they form a dimer (Jerke et al.
2009). Furthermore, Hes1 can form heterodimers with other bHLH proteins such as
Hey1 and Hey2 that function even more efficiently than homodimers (Iso et al. 2001).
In spite of the important roles dimerisation plays, many unknown factors remain such
as where in the cell dimerisation occurs, and the rates of formation and disassociation
of the dimers.

It is clear from experimental evidence that the proper function of GRNs depends
critically on passage through the nuclear membrane by proteins and mRNAs. For
example, transport of tumour suppressors and oncogene products across the nuclear
membrane has been reported to be disrupted in cancer cells (Kim et al. 2000). It has
also been suggested that modifying nuclear-cytoplasmic transport activity may block
tumorigenesis (Kau et al. 2004). Therefore, it is important to model the structure of the
nuclear membrane in detail, such as number of nuclear pores and spatial distribution of
nuclear pores.

Intrinsic noise is commonly found in many intracellular signalling pathways (Barik
et al. 2008, 2010; Shahrezaei and Swain 2008). The noise can arise due to low abun-
dance of molecular species, randomness in certain key processes (e.g. binding and
unbinding of transcription factors to promoter sites), stochasticity in production pro-
cesses (transcription, translation) and degradation events (Wilkinson 2009). In addition
to being inherently stochastic, intracellular signal transduction is inherently spatial.
The eukaryotic cell hosts a variety of spatial compartments (e.g., cytoplasm, nucleus,
nucleolus). Each compartment permits different metabolic activity and is often sepa-
rated from the rest of the cell by a thin lipid membrane. Signalling molecules reach
the appropriate spatial compartments through molecular movement such as diffusion
and active transport. The key process of transcription occurs at highly localised sites
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– genes – in the nucleus. Within the cytoplasm, another key process – translation –
occurs in the ribosomes. Clearly, mathematical models of GRNs will be more realistic
the more they seek to account for stochastic and spatial features of these networks.

The application of spatial stochastic models to intracellular pathways is still a rel-
atively new field of research. Some of the first spatial stochastic models were of the
Min System in an Escherichia coli cell. Howard & Rutenberg (Howard and Rutenberg
2003) used a stochastic analogue of a 1D system of reaction-diffusion equations and
found that, for some parameter values, the protein concentrations were low enough
that fluctuations were essential for the generation of patterns. In the model of Fange &
Elf (Fange and Elf 2006) trajectories were generated using the next subvolume method
(NSM), and numerical simulations were able to reproduce all documented Min phe-
notypes, where deterministic or non-spatial models failed. A spatial stochastic model
of the MAPK pathway was developed in Takahashi et al. (2010). This model was im-
plemented numerically using the Green’s function reaction dynamics approach, which
allows for individual particle level simulation of molecular species. Using this tech-
nique, MAPK responses that could not be observed using a mean-field approach were
produced. Another recent spatial stochastic model was developed to study in detail
a generic transcription factor binding and unbinding to DNA (van Zon et al. 2006).
Here, the spatial stochastic model was able to support the use of well-stirred, zero-
dimensional models for describing noise in gene expression. It is clear from these few
examples that spatial stochastic modelling can provide insight into intracellular sig-
nalling pathways that other approaches can not. For a comprehensive review of spatial
stochastic modelling of intracellular processes, see Burrage et al. (2011).

In this paper we extend the model of Sturrock et al. (2013) to include nuclear trans-
port and dimerization of Hes1 monomers. Whereas Sturrock et al. (2013) focussed
on the Hes1 GRN in embryonic stem cells, here we consider a generic study of the
Hes1 GRN without specific application to any particular cell type. Initially we follow
the modelling assumptions of Momiji and Monk (2008) and assume that dimerisation
occurs only in the cytoplasm, with dimers only being imported into the nucleus. Sim-
ulations of this novel model show that oscillatory dynamics in agreement with exper-
imental studies are retained. Furthermore we find that our model is robust to changes
in nuclear transport and dimerisation parameters. Since the precise dynamics of the
nuclear import of Hes1 and the localisation of the dimerisation reaction are not known,
we consider a second modelling scenario in which we allow for both Hes1 monomers
and dimers to be imported into the nucleus, and we allow dimerisation of Hes1 to occur
everywhere in the cell. Once again simulations of this second model produce oscilla-
tory dynamics in agreement with experimental studies. We also explore sensitivity of
the numerical solutions to nuclear transport and dimerisation parameters. Finally, we
compare and contrast the two different models and suggest different biological experi-
ments that could distinguish which model more faithfully captures the Hes1 GRN.
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2. The Hes1 GRN

Hes1 is a member of the family of basic helix-loop-helix (bHLH) transcription
factors and the Hes1 GRN may be described as the canonical example of transcriptional
control in eukaryotic cells, since it only involves Hes1 protein and its mRNA. When
the promoter site is free, hes1 mRNA is transcribed at its maximal rate. The newly
created hes1 mRNA diffuses and is exported to the cytoplasm where it produces Hes1
protein monomers which then bind together to form dimers in the cytoplasm. These
dimers diffuse and are imported into the nucleus where they occupy the promoter and
repress the transcription of hes1 mRNA (see Fig. 1). The occupied promoter site is
still able to produce hes1 mRNA, but at a significantly reduced rate (Takebayashi et al.
1994).

A number of experiments have been conducted to measure expression levels of
hes1 mRNA and Hes1 protein in many different cultured mouse cell lines (Hirata et al.
2002). In response to a single serum treatment, it has been found that levels of hes1
mRNA and Hes1 protein exhibit oscillations with a regular period of approximately
2− 3 hours. It has been found that these Hes1 oscillations are stable (both the period
and amplitude are relatively constant) in presomitic mesoderm cells but unstable (the
period and amplitude are variable) in individual dissociated presomitic mesoderm cells,
suggesting that cell-cell communication is essential for stabilisation of such cellular
oscillators (Masamizu et al. 2006). The results of Yoshiura et al. (2007) have shown
that coupled Stat and Hes1 oscillations are important for efficient cell proliferation and
provide evidence that expression modes of signalling molecules influence downstream
cellular events.

Hes1 oscillations have also been observed in neural progenitor cells, again with a
period of about 2-3 hours (Shimojo et al. 2008). It was found that these oscillations
were responsible for the maintenance of neural progenitors and that sustained over-
expression of Hes1 inhibited proliferation and differentiation of these cells. More re-
cently, Hes1 expression was monitored in embryonic stem (ES) cells (Kobayashi et al.
2009), where it was discovered that Hes1 levels still oscillated in space and time, but
with a period of 3−5 hours, longer than that of other cell lines. This lengthened period
is thought to be a result of the increased stability of hes1 mRNA in ES cells. It has also
been discovered that Hes1 oscillations contributed to heterogeneous differentiation re-
sponses of ES cells. Using fluorescence-activated cell sorting, ES cells with high and
low expression levels of Hes1 were isolated and then immediately transferred to a neu-
ral differentiation medium. The experiment revealed that cells expressing low and high
levels of Hes1 differentiated into neural and mesodermal cells respectively (Kobayashi
and Kageyama 2010, 2011).

Hes1 is also known to play a role in somitogenesis, the developmental process
responsible for segmentation of the vertebrate embryo. During somitogenesis, a “seg-
mentation clock” controls the timing of the assignment of mesodermal cells to discrete
blocks. The segmentation clock depends on the oscillatory expression of a complex
network of signalling pathways, including the Hes1 GRN which contains a negative
feedback loop. This feedback loop is formed through interactions of the dimerised
Hes1 protein with its own gene – Hes1 protein binds to N box sequences on the hes1
promoter and represses the transcription of hes1 mRNA.
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Mathematical models of oscillatory dynamics in the Hes1 GRN have taken a variety
of forms. The first attempt to model this pathway was presented in the experimental pa-
per Hirata et al. (2002), where an ODE model was used. However, in order to reproduce
the observed oscillations, a third unknown species was introduced. At about the same
time, it was discovered that introducing delays to ODE models of gene regulatory net-
works could produce sustained oscillatory dynamics in the numerical solution (Tiana
et al. 2002). Jensen et al. found that invoking an unknown species could be avoided
by introducing delay terms to a model of the Hes1 GRN (representing the processes of
transcription and translation) (Jensen et al. 2003). A delay differential equation (DDE)
model of the Hes1 GRN was also studied in Monk (2003). The effect of low parti-
cle numbers in a similar DDE model of the Hes1 GRN was explored in Barrio et al.
(2006). Here, the stochastic simulation algorithm (SSA) was extended to allow for de-
lays. Zeiser et al. found that there is not much evidence for synergistic binding in the
regulatory region of Hes1, and gave an estimate for the Hill coefficient (Zeiser et al.
2007). The details of the Hes1 pathway were scrutinised in greater depth in Momiji and
Monk (2008), again using a delay differential equation system. In particular, an inves-
tigation into the effects of dimerisation and compartmentalisation was presented. The
role of Gro/TLE1 was considered in Bernard et al. (2006). Other models have exam-
ined the role of the Hes1 GRN in somitogenesis (Agrawal et al. 2009). Spatio-temporal
models of the Hes1 negative feedback loop were presented in Sturrock et al. (2011),
using a partial differential equation model while extensions of this were considered
in Sturrock et al. (2012). A spatial stochastic model of the Hes1 GRN in embryonic
stem cells was studied in Sturrock et al. (2013).

[Fig. 1 about here.]
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3. The reaction diffusion master equation

The mathematical framework we use is a stochastic continuous time discrete space
Markov process description of the dynamics of the biochemical reaction network.
The state of the system is described by the random vector X(t) whose components
{X1(t), . . . ,XN(t)} describe the total copy number of each species j = 1 . . .N. The
stochastic process {Xt}t≥0 is a collection of such random variables indexed by time,
and describes the time evolution of the system. The chemical species take part in M
chemical reactions in the well-stirred reaction volume Ω. The state changes at random
times τr according to chemical reactions. We denote a realisation of the stochastic pro-
cess by x(t) ∈ ZN

+ with components x j. Reaction r then changes the state according to
x′ = x(t +τr) = x(t)+nr where the stoichiometry vector nr defines the change in copy
number of the reactants and products of the reaction. Each reaction is associated with
a propensity function, ωr(x), that describes the rate of the reaction. It is interpreted as
the probability that the reaction occurs in an infinitesimal time interval [t, t +dt]

ωr(x) = lim
dt→0

P(x+nr, t +dt)−P(x, t)
dt

. (1)

Depending on the particular description of the chemical reaction, ωr will take different
functional forms. As an example, consider a small system with species A,B and C and
a reaction pair describing the reversible binding between A and B forming the complex
C.

(i) A+B
k1−→C, (ii) C

k2−→ A+B. (2)

Assuming mass action kinetics the propensity function for reaction one is ω1 = k1ab
and that for reaction two is ω2 = k2c where lower case letters denote molecular copy
numbers of the respective chemical species. The stoichiometry vectors are in this case
n1 = [−1,−1,1] and n2 =−n1.

The Markov process has the important memoryless property, i.e., given the state
of the system at time t, the state at any future time depends only on the current state
and not on anything that happened at a time s before t, s < t. As a consequence, the
time to the occurrence of reaction r is an exponentially distributed random variable
τr ∼ exp(1/ωr(x)).

As a direct consequence of the Markov property the probability density function
of the system is governed by the forward Kolmogorov equation, or the chemical mas-
ter equation (CME). For brevity of notation, in the following we will write p(x, t) =
p(x, t|x0, t0) for the probability that the system can be found in state x at time t condi-
tioned on the initial condition x0 at time t0. The CME then takes the form

d
dt

p(x, t) = M p(x, t)≡
M

∑
r=1

ωr(x−nr)p(x−nr, t)−ωr(x)p(x, t). (3)

The above formulation describes a well-stirred system where it is assumed that
mixing due to molecular movement has time to homogenise the spatial distribution
between reactive encounters. Stochastically correct realisations of the processes can be
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generated by the stochastic simulation algorithm (SSA) (Gillespie 1976) or one of the
many optimised versions of this algorithm.

In this paper we are interested in a scenario where the reaction volume cannot be
assumed to be well-mixed, in fact, the spatial distribution of Hes1 protein and hes1
mRNA throughout the cell and their transport between different parts of the cell plays
a crucial role in establishing the oscillatory dynamics of the network. To explicitly
account for spatial effects, the Markov model can be extended to account for diffusion
and active transport. To introduce molecular movement due to diffusion we discretise
space and divide the domain Ω into K non-overlapping voxels, or subvolumes, Vi. For
an example of such a discretisation, see Fig. 3. A system with N chemical species
can now be described by the K×N matrix of random variables X(t). Again, denote a
realisation of the system by x ∈ ZKN

+ . The entries of the row xi· in the matrix are the
copy numbers of species j = 1, . . . ,N in voxel i. Chemical reactions occur within the
voxels by treating them as in the spatially homogenous case. In other words, we assume
that inside any voxel in the mesh, the assumption of a well-stirred system holds so that
molecules are effectively uniformly distributed in the individual voxels. For example,
a bimolecular reaction r involving species X j and X j′ in voxel i can in this setting be
written

Xi j +Xi j′
ωir(xi·)−−−−→ Xi j′′ . (4)

The propensity function depends only on the copy number of the species in voxel i so
that reactions are completely local. In general, the propensity can take different forms
in different voxels. This will be the case if the rate constants vary in space, or more
commonly, if a reaction is only active in parts of the domain. If no molecular motion
occurs, the master equation for the full system will be

d
dt

p(x, t) = M p(x, t)≡
K

∑
i=1

M

∑
r=1

ωir(xi·−µir)p(x1·, . . . ,xi·−µir, . . . ,xK·, t)

−
K

∑
i=1

M

∑
r=1

ωir(xi·)p(x, t), (5)

where µir is the 1×N stoichiometry vector for reaction r in voxel i. For the case of one
subvolume, K = 1, (5) reduces to the CME (3).

The diffusive motion of molecules from one voxel to an adjacent one is modelled
by linear jump events

Xi j
di jk−−→ Xk j (6)

with propensity function a(xi·) = di jkxi j. It takes a species j in voxel i to one of the
immediate neighbours Vk. The transition can be written x′· j = x· j + ν i jk. The K × 1
stoichiometry vector ν i jk acts on the column x· j and has all components zero except
for ν i jk(i) =−1 and ν i jk(k) = 1.
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For the case of molecular transport only, the master equation takes the form

d
dt

p(x, t) = D p(x, t)≡
N

∑
j=1

K

∑
i=1

K

∑
k=1

a(x· j −ν i jk)p(x·1, . . . ,x· j −ν i jk, . . . ,x·N , t)

−
N

∑
j=1

K

∑
i=1

K

∑
k=1

a(x· j)p(x, t), (7)

For a system with both reactions and diffusion, the full reaction-diffusion master equa-
tion (RDME) is simply given by

d
dt

p(x, t) = M p(x, t)+D p(x, t). (8)

Stochastic realisations of the RDME can be generated by versions of SSA opti-
mized for reaction-diffusion systems, such as the next subvolume method (NSM) (Elf
and Ehrenberg 2004). In the NSM, reaction and diffusion events are grouped in each
of the voxels, and to sample the next event that occurs in the system, the next voxel,
or subvolume, in which an event occurs is first sampled. Knowing the voxel, one next
samples if the event is a reaction or diffusion event and then finally, one samples which
particular reaction or diffusion direction that fires. The NSM adapts ideas from the
next reaction method (Gibson and Bruck 2000) to make the complexity of the step in
which the next voxel is sampled logarithmic in the number of voxels in the mesh.

3.1. Unstructured meshes

To generate realisations from the RDME we have used URDME (Drawert et al.
2012). URDME is a flexible software framework for stochastic simulation of reaction-
diffusion processes, specialising in the use of unstructured, triangular and tetrahedral
meshes to resolve realistic geometries. For a uniform cartesian mesh, where the voxels
are cubes with equal side length h, the rate constants di jk are given by D/h2. For
unstructured meshes, the corresponding jump rate constants will vary depending on the
size and shape of the voxels, for a detailed description of the theory for how to obtain
correct rates, see Engblom et al. (2009). In short, the value of the propensity function
for an event in the Markov model corresponds to the inverse of the expected time for
that event to occur. In other words, the value 1/(di jkxi j) is the expected time for the first
species of type X j to leave voxel Vi and become well-mixed in voxel Vk. A reasonable
requirement on the rate constants di jk, irrespective of the mesh, is that they are chosen
in such a way that the concentration process converges to the diffusion equation in the
thermodynamic limit. This can be ensured by taking di jk corresponding to a numerical
discretisation of the Laplace operator. The version of URDME we use in this study
uses a finite element discretisation for this purpose. For a detailed discussion on the
theory underlying the simulations in URDME, see Drawert et al. (2012); Engblom et al.
(2009).
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4. A spatial stochastic model of the Hes1 GRN with cytoplasmic dimerisation
(model A)

We assume that the molecular reactions in the Hes1 GRN follow previous mod-
elling efforts of Momiji and Monk (2008). Fig. 1 shows a schematic description of the
network. Reaction arrows are coloured such that different colours correspond to reac-
tions occurring in different cellular compartments. Red arrows correspond to reactions
occurring at the promoter site of the cell, while green reaction arrows correspond to
reactions occurring in the cytoplasm, and black arrows correspond to those occurring
everywhere in the cell. We model all reactions by elementary mass action kinetics.
As in Sturrock et al. (2013) we do not employ a phenomenological Hill function ap-
proximation for Hes1 binding to the promoter. Since our model is explicitly spatial,
such an approach is neither appropriate nor necessary. We model nuclear transport as
depicted schematically in Fig. 2. Nuclear pore complexes (NPCs) determine where
species move in and out of the nucleus and how quickly they do so. The inclusion of
nuclear transport has been attempted before in a spatial deterministic model (Cangiani
and Natalini 2010) but here, we can go a step further. Exploiting the discrete spatial
nature of our model, we explicitly model the NPCs on the nuclear membrane. In our
model, an mRNA molecule travels through the nuclear membrane by first binding to
a NPC (at a rate kpore). Once bound to a pore, the mRNA molecule shuttles through
the pore and exits the nucleus (at a rate krel). Protein molecules shuttle into the nu-
cleus in a similar manner. As a first approximation we simplify nuclear transport by
omitting the ran-cycle, which has been the study of numerous deterministic modelling
efforts, see Cangiani and Natalini (2010) and references therein. We assume that both
hes1 mRNA and Hes1 protein can diffuse as described above, with diffusion coefficient
D = 1×10−11 m2min−1 (which is in line with available experimental data (Klonis et al.
2002)). We do not allow promoter species to diffuse, rather we assume the promoter
species remain in the gene subdomain. A complete list of reactions, their localisation,
a description and initial parameter values used (with references where available) are
found in Table 1. We denote hes1 mRNA by mRNA, Hes1 monomer by monomer,
Hes1 dimer by dimer, a free promoter by Pf and an occupied promoter by Po.

[Table 1 about here.]

[Fig. 2 about here.]

4.1. Domain, initial and boundary conditions

The computational domain approximating a eukaryotic cell is shown in Fig. 3. The
cell is represented by two ellipsoids with centre (0,0). The ellipsoid representing the
cytoplasm has a major axis of 18.20µm and minor axes equal to 6.00µm and 3.00µm.
The nucleus is represented by another ellipsoid with major axis of 6µm and minor axes
of 4µm and 2µm. These values are chosen to be consistent with experimental mea-
surements of eukaryotic cells, specifically fibroblast cells (Demirel et al. 2006). The
promoter site, or gene subdomain, is taken to be a single voxel at a radial distance r
from the nuclear membrane. Unless otherwise stated we choose the promoter site to
be at r = 3µm, i.e., the voxel closest to the centre of the cell (0,0). We arbitrarily
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choose initial conditions such that 60 Hes1 proteins are uniformly distributed in the
cytoplasmic subdomain, 10 mRNA molecules in the nuclear subdomain, and a single
free promoter is found in the gene subdomain. We uniformly distribute 2000 nuclear
pores around the nuclear membrane (Banerjee et al. 2010). Zero-flux boundary condi-
tions are applied at the cell membrane. The nuclear membrane is treated as is shown in
Fig. 3.

[Fig. 3 about here.]

4.2. Computational simulation results

We performed simulations of model A using the baseline kinetic rate parameters as
given in Table 1 and the numerical method described in section 3. A sample trajectory
is displayed in Fig. 4 (upper figure), along with the corresponding instantaneous period
(lower figure). While biologists have only investigated the evolution of hes1 mRNA
and Hes1 protein levels in cells for 2160 minutes after serum stimulation (Masamizu
et al. 2006), we have monitored levels for longer (up to 4000 minutes). We find the
numerical solution exhibits a range of distinct transient periodic behaviours, with in-
stantaneous periods ranging from roughly 80 minutes to 250 minutes. Overall, the
mean period is approximately 164 minutes for this particular trajectory (as stated in the
title of the lower plot). This is consistent with Hes1 oscillations observed in certain
cell types, in particular presomitic mesoderm cells (Masamizu et al. 2006) and neural
progenitors (Shimojo et al. 2008). We find the oscillatory dynamics to be highly vari-
able in both period and amplitude. We also include the coefficient of variation (CV)
for the protein levels in the title of the upper figure. We do this in an effort to quantify
the variability in protein level expression. The CV is a widely used measure of protein
variability (Chalancon et al. 2012).

The instantaneous period presented in the lower figure of Fig. 4 is estimated using a
Morlet continuous time wavelet transform (CWT) as implemented in WAVOS (see Ha-
rang et al. (2012) for details). Given the highly oscillatory and noisy nature of our
trajectories, the use of standard Fourier techniques can lead to inaccurate estimates of
the period, as Fourier analysis assumes stationarity of the signal and its basis functions
are unbounded in time (Mallat 1999). Wavelets, in contrast, are localised in both time
and frequency. This localises the analysis, allowing the changes in signal properties
to be tracked over time (Torrence and Compo 1998). Furthermore, we make use of
gaussian edge elimination to minimise artefacts in the approximation of the period.

[Fig. 4 about here.]

As noted previously in Section 2, Hes1 oscillations are observed in a range of cell
types with periods of oscillation ranging from 120− 300 minutes. Due to the highly
variable and transient period, simply computing the mean period of an individual time
series such as that in Fig. 5(a) yields an incomplete picture of the oscillatory dynamic.
We generated ensembles of 1000 independent realisations of the model starting with
the same parameters. Biologically, this can be interpreted as considering a population
of 1000 different, non-interacting cells. Based on this ensemble, we computed the
distribution of the mean periods as well as the distribution of the instantaneous periods
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(see Fig. 5(a)) as measured by WAVOS. Inspecting Fig. 5(a), we can see that almost
all of our calculated periods lie within the biologically feasible 120− 300 minutes
range. However, in Fig. 5(b) we can observe some instantaneous periods of up to 500
minutes. In Fig. 6 we plot the computed CV for hes1 mRNA and Hes1 protein for 1000
independent realisations of our model. These results show that the CV for mRNA is
comparatively higher than the CV for the proteins, in line with the results of Singh et al.
(2012). This is unsurprising given the relatively low abundance of mRNA compared to
protein.

[Fig. 5 about here.]

[Fig. 6 about here.]

4.3. Parameter sensitivity analysis: nuclear transport and dimerisation

In the baseline simulations presented in Section 4.2, we chose kinetic rate parame-
ters more or less arbitrarily to lie in the range of biophysically plausible values. Since
these parameters are not determined experimentally for the Hes1 GRN, we explored
the response of our model to variations in the key nuclear import and dimerisation
rate parameters. For each parameter value we generate 1000 independent realisations.
We note that using certain parameter sets causes our model to yield periods that are
unrealistically long (> 400 minutes) or simply fail to oscillate with non-negligible am-
plitude. We label these trajectories as cells exhibiting ‘persistent expression’ (PE) of
Hes1. Plots containing our parameter sensitivity results for model A can be found
in the appendix. The left plots in Figs. 13-17 show the fraction of time the system
spends oscillating with a period in the ranges 0−120 minutes, 120−300 minutes and
300− PE. These fractions are computed in a similar manner to Fig. 5(b), but were
divided into bins chosen to reflect period ranges shorter than, in agreement with and
larger than the mean periods observed experimentally in various cell types. The mid-
dle plots show the average period over the whole ensemble and the right plots show
the coefficients of variation of Hes1 protein and hes1 mRNA. The data required for
each figure takes approximately 3− 5 hours to generate on a cluster using 200 cores,
depending on parameter values.

We find that, for all other parameters as in Table 1, the model is robust to changes
in the pore binding rate (kpore), the number of NPCs and the NPC import rate (krel),
i.e., the nuclear transport parameters. However, the mean period is sensitive to changes
in the dimerisation parameters β1 and β2.
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5. A spatial stochastic model of the Hes1 GRN with dimerisation throughout the
cell (model B)

In this section we present an alternative Hes1 GRN model (which we refer to as
‘model B’). The motivation for this second model comes from the lack of knowl-
edge regarding the localisation of the Hes1 dimerisation reaction. In general, there
are cases where proteins are dimerised in the nucleus (Aranda and Pascual 2001) and
cytoplasm (Herbst et al. 2012). In order to investigate whether or not the localisation
of the dimerisation is important for the overall system behaviour, we now allow for the
bimolecular dimerisation reaction to occur in both the nucleus and cytoplasm. In addi-
tion, we allow for both monomers and dimers to be imported to the nucleus. Finally,
we enable dimers to break apart into monomers in the nucleus as well as the cytoplasm.
All other modelling assumptions are the same as in section 4 (model A), including the
time simulations are performed for, the domain, initial conditions and boundary condi-
tions. In addition, where possible, the same parameter values are used. In essence, we
are only varying the model structure. A complete list of reactions, their localisation,
a description and initial parameter values used (with references where available) are
found in Table 2.

[Table 2 about here.]

5.1. Computational simulation results
We performed simulations of our alternative Hes1 GRN model using the baseline

kinetic rate parameters as given in Table 2 and the numerical method described in
Section 3. A sample trajectory is displayed in Fig. 7 (upper figure), along with the
corresponding instantaneous period (lower figure). As in Section 4.2, we compute tra-
jectories for a time period of 4000 minutes. In agreement with numerical simulations
of model A, we find different transient periodic behaviour emerging in numerical solu-
tions of model B, with instantaneous periods ranging from roughly 80 minutes to 240
minutes. The two models are in qualitative agreement but there are some quantitative
differences between their numerical solutions. The mean period of our sample trajec-
tory of model B is shorter than that produced by model A (147 minutes as opposed
to 164 minutes) and the coefficient of variation is slightly higher (0.39 as opposed to
0.31).

[Fig. 7 about here.]

Our alternative model also yields oscillatory periods in line with experimental evi-
dence. This is clear from Figs. 8 and 9 where we plot the mean period distribution and
instantaneous period distribution of 1000 realisations of model B. Examining Fig. 8(a)
we can see that almost all the calculated periods lie within the biologically feasible
120−300 minutes range. Hence, we can say that the mean period distribution of model
B is in approximate close agreement with model A (compare Fig. 8(a) and Fig. 5(a)).
The instantaneous period distribution generated for model B also approximately agrees
with the one generated by model A (compare Fig. 8(b) and Fig. 5(b)). In Fig. 9 we plot
the computed CV for hes1 mRNA and Hes1 protein for 1000 independent realisations
of our model. These results are in good agreement with the CV results for model B,
and we note that the CV for mRNA is once again higher than the CV for proteins.
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[Fig. 8 about here.]

[Fig. 9 about here.]

5.2. Parameter sensitivity analysis: nuclear transport and dimerisation

As we did for model A in in Section 4.3 we now examine the sensitivity of the nu-
clear transport and dimerisation parameters for model B. Once again, for each param-
eter value we generate an ensemble of 1000 independent realisations. Plots containing
our parameter sensitivity results for model B can be found in the Appendix. The left
plots in Figs. 18-22 show the fraction of time that the system spends oscillating with
a period in the ranges 0−120 minutes, 120−300 minutes and 300−PE. These frac-
tions are computed in a similar manner to Fig. 8(b), but were divided into bins chosen
to reflect period ranges shorter than, in agreement with and larger than the mean pe-
riods observed experimentally in various cell types.These fractions are computed in a
similar manner to Fig. 8(b). The middle plots show the average period over the whole
ensemble and the right plots show the coefficients of variation of Hes1 protein and hes1
mRNA. The data required for each figure takes approximately the same amount of time
to generate as it did for model A.

Consistent with findings for model A, we find that, for all other parameters as in
Table 2, model B is very robust to changes in the nuclear transport parameters. In
model B, the mean period is very sensitive to changes in the dimerisation parameters
β1 and β2, even more so than in model A.
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6. Dimerisation only in the cytoplasm or dimerisation throughout the cell?

In this section we discuss the ability of our model to make some tentative predic-
tions as to where in the cell dimerisation occurs and how monomers and dimers are
transported through the nuclear membrane. It should be noted that performing simula-
tions of model A and model B with equal dimerisation parameters do not result in the
same total dimer-to-monomer ratios. In model A, the dimer does not dissociate inside
the nucleus, i.e., as soon as a dimer in model A has found a pore and has translocated
into the nucleus, it will remain a dimer until it degrades. This effect is not countered by
the fact that monomers are less stable than dimers, and model A tends to yield much
higher total dimer-to-monomer ratios. The difference becomes more pronounced for
smaller β1/β2 ratios. As an example, for the baseline parameter set, model A has a
dimer to monomer ratio of about 18 while that of model B is about 15. In contrast, for
the largest value of β2 in our parameter sweeps, the corresponding values are 9 and 3,
respectively. Also, model B tends to produce realisations with higher total protein copy
number.

Based on these simulations alone and on the available experimental observations,
we cannot draw any firm conclusions about whether model A or model B is more bi-
ologically accurate. We do note, however, that in the baseline parameter set, we have
used the experimentally measured hes1 mRNA degradation rate corresponding to fi-
broblast cells. Hes1 expression level in fibroblasts has been observed experimentally
to oscillate predominantly in the 120− 180 minutes range. Despite extensive, but not
exhaustive searches of parameter space (data not shown) we have not been able to
find period distributions that are quantitatively consistent with that period range for pa-
rameters that are biologically realistic using model A. model B however, can display
distributions that are biased towards the 180− 300 minutes bin for large values of β1
as well as distributions falling largely in the 120− 180 minutes range if the system is
biased towards the monomer state. In the case of model A, an experiment where one
specifically looked for the presence of monomers in the nucleus could reveal whether
the model assumptions are valid since dimers are assumed to be stable in the nucleus,
and monomers does not get imported. However, based on our simulations an indirect
way would be to attempt to measure the β1 and/or β2 parameters for Hes1 dimerisation
in fibroblast cells. If they agree with the cases in Fig. 21 and Fig. 22 where the distri-
butions match the experimental behaviour it would constitute compelling evidence for
model B.

We want to highlight that in all of our parameter sweeps (for both model A and
B) we observe periods that are highly variable with instantaneous period distributions
with long tails. In our figures, we chose to divide the instantaneous periods into four
bins, 0−120 minutes, 120−300 minutes and 300−PE to reflect period ranges shorter
than, in agreement with and larger than the mean periods observed experimentally in
various cell types. In most of the cases we have considered, the system will spend an
almost equal amount of time oscillating with instantaneous periods falling in the range
120−300 minutes.

Note that this is a prediction of the spatial stochastic model that cannot be extracted
from more common deterministic models based on ordinary differential equations, de-
lay differential equations or partial differential equations. In the latter cases, the mean
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period and amplitude and possibly the phase lag between mRNA and protein are the
only information that can feasibly be used to discriminate between models. Our sim-
ulations suggest that if only few cells and relatively short time courses are observed
experimentally, predictions based on the mean period can be misleading. If more ex-
tensive experimental information matching the distribution information that we display
here were available, we could potentially discern which of our different model scenar-
ios captures the biology more faithfully.
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7. Targeted drug treatment: Effects of disrupting dimerisation

It has been established in recent years that mechanisms leading to Hes1 induction
could represent promising targets for cancer therapy (Sang et al. 2010). A potential
method for sustaining Hes1 induction is to target the Hes1 dimerisation reaction. By
preventing the formation of dimers, Hes1 would not be able to associate with its pro-
moter and inhibit hes1 mRNA production, hence Hes1 protein levels would appear per-
sistently high. This is an especially attractive option as the first Hes1 dimer inhibitors
isolated from natural products have now emerged (Arai et al. 2009). Therefore, there
is value in studying the effects of disrupting dimerisation in our models.

As we have seen, the two model scenarios behave similarly under a wide range
of biophysically plausible values for the dimerisation and nuclear transport parameters
under normal cellular conditions. The main qualitative differences we were able to
observe were a heightened sensitivity of model B to large dimer dissociation rates and
smaller dimerisation association rates, i.e., scenarios that favour the monomer state.
We have already seen that with all other parameters as in the baseline set in Table 1
and Table 2, greatly reducing the number of available NPCs has a minor effect on the
oscillatory dynamics both in the cases of model A and model B. Next, we consider
situations where we greatly impair the ability of Hes1 to form dimers. To that end, we
will consider two scenarios:

1. We reduce β1 by a factor of 104, i.e. dimerisation can still occur, but at a very
low rate.

2. We leave β1 unaffected and instead disrupt the stability of the dimer by setting
β2 = 1000 min−1. Since the dimers are assumed to be stable in the nucleus in
model A, disruption there only affects cytoplasmic Hes1. For model B, disrup-
tion occurs everywhere in the cell.

In order to quantify the different responses of model A and model B to the two scenar-
ios, we present distributions of the coefficient of variation of Hes1 protein in Fig. 10.
As can be seen from the sample trajectories in Fig. 12, a low coefficient of variation
correlates well with sustained and elevated expression of protein and low amplitude
oscillations. Our experiments suggest that, while dimer disruption has some effect in
model A, it would be much more effective in yielding non-oscillatory trajectories with
sustained protein levels in the case of model B (as shown in Figs. 11 and 12).

[Fig. 10 about here.]

[Fig. 11 about here.]

[Fig. 12 about here.]

The heightened sensitivity of model B compared to model A to dimer disruption
can be understood from the difference in the model structures. For model A, disrupting
dimer formation affects only the rate of which Hes1 can enter the nucleus. In the very
unlikely event that a dimer does form and finds a pore and translocates, the dimer is
stable and can repress transcription. In model B, however, the dimer disruption greatly
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impairs Hes1 protein’s ability to find and bind to the promoter, since it needs to be in its
dimer form to act as a repressor. Hence, we can now add to our discussion in section 6.
We have found that the difference between the responses to dimer disruption between
the two models is large enough to have the potential to form the basis for an experiment
that indirectly discriminates between the two modelling scenarios. As there currently
exist Hes1 dimerisation disruption drugs (Arai et al. 2009), an experiment disrupting
Hes1 dimerisation in individual cells could be enlightening and validate either model
A or model B.
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8. Discussion

Hes1 lies at the crossroads of multiple signalling pathways, and is known to play a
major role in tumour development. In recent years it has been established as a promis-
ing target for drug treatment (Sang et al. 2010). While some tumours are likely to
upregulate Hes1 through the Notch pathway, the Hedgehog pathway and others, the di-
rect targeting of Hes1 could result in a higher response rate than by targeting pathways
in general. In addition, targeting Hes1 itself might result in fewer side effects be-
cause the many other genes also regulated by the Notch or Hedgehog pathways would
be unaffected. It also offers greater specificity than treatment with HDACIs (histone
deacetylase inhibitors), which have widespread effects on acetyl groups, on histones
and other non-histone proteins.

As the possible benefits are substantial, it is especially exciting that the first Hes1
dimer inhibitor isolated from natural products was reported recently. Using an assay
for Hes1 dimerisation, a natural products library was screened and two compounds that
inhibit Hes1-mediated downregulation of gene expression intracellularly were identi-
fied (Arai et al. 2009). Of course, the sensitivity and efficacy of these molecules and
related small molecules in vivo remains to be determined. Further, reducing Hes1 activ-
ity systemically would be expected to affect the physiology of normal cells, especially
stem cells, which could result in stem cell depletion, immune dysfunction and even
ageing phenotypes. Thus, the design of a small molecule Hes1 inhibitor represents a
promising but challenging approach to therapy.

Given the importance of understanding the dynamics of Hes1 (in particular Hes1
dimerisation) for cancer therapies, in this paper we have examined the Hes1 GRN in
some detail using two spatial stochastic models. In the first model we presented, we
followed previous modelling efforts and allowed only for Hes1 dimerisation in the cy-
toplasm, as well as only allowing Hes1 dimers to be imported into the nucleus. In the
absence of definitive experimental evidence regarding dimerisation, we then formu-
lated a second model in which the Hes1 dimerisation reaction occurred throughout the
cell, with both Hes1 monomers and Hes1 dimers being imported to the nucleus. Both
models incorporated a novel treatment of nuclear transport where the structure of the
nuclear membrane is accounted for explicitly by randomly distributing nuclear pores
on the surface of the nuclear-cytoplasmic boundary.

Simulations of our models yielded trajectories that successfully captured the noisy
oscillatory response of Hes1 levels found in numerous experimental studies (Hirata
et al. 2002; Masamizu et al. 2006; Yoshiura et al. 2007; Kobayashi et al. 2009; Kobayashi
and Kageyama 2010, 2011). Both of our models produce variability in period and
amplitude of hes1 mRNA and Hes1 protein (monomer and dimer) oscillations. For
baseline parameter sets, our models yielded results in close agreement, both in terms
of the coefficient of variation and the instantaneous period (calculated using a contin-
uous time wavelet transform). We also performed a parameter sensitivity analysis on
the nuclear transport and dimerisation parameters in both our models. We found that
our models are robust to changes in nuclear transport parameters but more sensitive
to dimerisation parameters, with model B (dimerisation everywhere) appearing to be
more sensitive than model A (cytoplasmic dimerisation).

We suggested both a direct experiment and an indirect measurement that could
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distinguish which of the two models is more faithful to the underlying biology. It
is the hope of the authors that the work presented will encourage experimentalists to
investigate the structure of this important GRN in greater depth.

Finally we considered different methods of disrupting dimerisation in both the
models. Namely through inhibiting the formation of dimers (reducing parameter β1)
and by disrupting the stability of the dimers (increasing parameter β2). Here, we are
able to report non-negligible quantitative differences in how the two models respond.
In particular, the coefficient of variation distributions are markedly different for model
A and model B. This yields yet another possible method for determining which of our
models more accurately captures the Hes1 GRN (see Section 7 for details).

One aspect of intracellular dynamics which we have not included in the current
model, but which is of relevance to our study, is that of molecular crowding, i.e., vol-
ume exclusion events due to other molecules or organelles. Molecular crowding gen-
erates an environment where diffusion is hindered by obstacles and traps, resulting in
a form of molecular movement called “subdiffusion” (Mendez et al. 2010). More pre-
cisely, subdiffusion refers to a form of molecular movement in which the mean-square
displacement of a molecule is not linear in time. Molecular crowding has important
implications for both nuclear transport events and dimerisation events. In terms of
nuclear transport, a recent study demonstrated that first passage times of molecules
moving from the nucleus to the cytoplasm (and vice versa) are strongly modulated by
molecular crowding (Roussel and Tang 2012). Brownian dynamics studies of dimeri-
sation in a crowded environment have shown that crowding alters the dimerisation
parameters and shifts the equilibrium state of the system towards the dimer state rather
than the monomer state (Grima 2010). In terms of our models, accounting for molecu-
lar crowding may result in enhanced dimerisation and hence, the associated oscillatory
dynamics (particularly in model B as it is sensitive to changes in dimerisation param-
eters). Another aspect of the present model that may be influenced by macromolecu-
lar crowding is our study of drug treatment. The ability of a drug to find the dimers
within the cell is strongly dependent on the intracellular environment (crowding would
likely inhibit the drug-dimer interaction). In order to account for molecular crowding in
mathematical models, numerous different approaches have been taken. In determinis-
tic models, fractional partial differential equations have been employed with success in
simplified settings but have proved challenging in more realistic settings (Yadav et al.
2008). Many authors have taken a spatial stochastic approach to account for macro-
molecular crowding, and numerical studies have proven more tractable – for example,
see Marquez-Lago et al. (2012).

Future work will consider extending the current study in various ways as well as
analysing the current model in greater depth. In particular, we will compare and con-
trast numerical solutions of equivalent deterministic models for models A and B under
different parameter sets. This will allow us to better understand the role of intrinsic
noise in our models and we may be able to identify certain regions of the parameter
space in which noise induces oscillatory dynamics (such as was studied in Scott et al.
(2011)). We may also modify our approach to account for macromolecular crowding,
as discussed in the previous paragraph. In terms of modelling, we plan to investigate
nuclear transport in more detail and begin to account for the ran-cycle. Many tran-
scription factors are known to be actively transported towards the nucleus along micro-
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tubules (Lomakin and Nadezhdina 2010), therefore we may account for this in future
work. We will also conduct a global sensitivity analysis of our model using data clus-
tering techniques. We may also consider cell-cell communication to see if this acts to
stabilise and synchronise oscillatory behaviour as was found in Masamizu et al. (2006).
We did not explore the possibility of combination drug therapy, which has been stated
as an attractive avenue in controlling Hes1 activation (Sang et al. 2010). Naturally, our
approach is readily applicable to many other pathways and we plan to investigate the
more complex p53-Mdm2 GRN using a similar approach to the one presented in this
paper.
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9. Appendix

Parameter sensitivity analysis figures for model A

[Fig. 13 about here.]

[Fig. 14 about here.]

[Fig. 15 about here.]

[Fig. 16 about here.]

[Fig. 17 about here.]

Parameter sensitivity analysis figures for model B

[Fig. 18 about here.]

[Fig. 19 about here.]

[Fig. 20 about here.]

[Fig. 21 about here.]

[Fig. 22 about here.]
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Fig. 1: The negative feedback loop in the Hes1 GRN. When the promoter site is free, hes1 mRNA is tran-
scribed at its maximal rate. The nascent mRNA then diffuses and is exported to the cytoplasm where it
produces Hes1 protein monomers via the process of translation. Hes1 monomers bind together to form
dimers in the cytoplasm. Hes1 dimers diffuse and are imported into the nucleus. They go on to occupy
the hes1 promoter and repress the transcription of hes1 mRNA. The occupied promoter site is still able to
produce hes1 mRNA, but at a significantly reduced rate (Takebayashi et al. 1994).
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Fig. 2: Simplified model of unidirectional nuclear transport of mRNA (red) and protein (grey) between
nucleus and cytoplasm. An mRNA or protein molecule travels through the nuclear membrane by first binding
to a NPC at a rate kpore. Once bound to a pore, the mRNA or protein molecule shuttles through the pore and
exits the nucleus or cytoplasm at a rate krel .
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Fig. 3: The 3D meshed domain approximation of a eukaryotic cell used in numerical simulations of the Hes1
model. The domain is discretised such that 8,867 voxels make up the domain. The cytoplasm is represented
by a long ellipsoid, centre (0,0), with major axis equal to 18.20µm and minor axes equal to 6.00µm and
3.00µm. The nucleus is shown here as a blue ellipsoid, centre (0,0), major axis 6µm and minor axes equal
to 4µm and 2µm. The cytoplasm (shown in green) is the part of the cell that is outside the nucleus. The
gene subdomain is chosen to be the voxel closest to the centre of the cell (0,0), a distance r from the nuclear
membrane.
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Fig. 4: The upper plot shows the (scaled) total copy number of mRNA and protein (monomer and dimer) for
a single trajectory of the Hes1 model (see Table 1 for parameter values). The mRNA and protein oscillations
have approximately the same scaled amplitude and highly variable period. The lower plot shows the cor-
responding time varying period of Hes1 protein as estimated by the continuous time wavelet transform (as
implemented in WAVOS). As can be seen, the period is highly variable over time and an accurate estimate
of the mean period requires long sampling times.

33



100 150 200 250 300 350
0

50

100

150

period (min)

c
e

ll 
c
o

u
n

t

mean: 194.88 min

(a) mean period distribution

0 100 200 300 400 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

period (min)

fr
a

c
ti
o

n
 o

f 
ti
m

e

fraction in 120−300 min range: 0.79

(b) instantaneous period distribution

Fig. 5: Plots showing, (a), a histogram of the mean period distribution, and, (b), a histogram of the instan-
taneous period distribution for Hes1 protein numbers. These histograms were generated from ensembles of
1000 independent realisations of model A using the same parameters (as stated in Table 1.
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Fig. 6: Plots showing, (a), a histogram of the mRNA CV distribution, and, (b), a histogram of the protein
CV distribution. Both histograms were generated from 1000 independent realisations of model A using the
same parameters (as stated in Table 1.
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Fig. 7: The upper plot shows the (scaled) total copy number of mRNA and protein (monomer and dimer) for
a single trajectory of the Hes1 model (see Table 2 for parameter values). The mRNA and protein oscillations
have approximately the same scaled amplitude and highly variable period. The lower plot shows the time
varying period as estimated by the continuous time wavelet transform (as implemented in WAVOS). As can
be seen, the period is highly variable over time and an accurate estimate of the mean period requires long
sampling times.
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Fig. 8: Plots showing, (a), a histogram of the mean period distribution, and, (b), a histogram of the instan-
taneous period distribution for Hes1 protein numbers. These histograms were generated from ensembles of
1000 independent realisations of model B using the same parameters (as stated in Table 2.
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Fig. 9: Plots showing, (a), a histogram of the mRNA CV distribution, and, (b), a histogram of the protein
CV distribution. Both histograms were generated from 1000 independent realisations of model B using the
same parameters (as stated in Table 2.

38



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

20

40

60

80

100

120

140

160

180

coefficient of variation

c
e

ll
 c

o
u

n
t

 

 

baseline

β
1
 = 10

5
 M

−1
min

−1

β
2
=1000 min

−1

(a) model A

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

coefficient of variation

ce
ll 

co
un

t

 

 
baseline
β

1
 = 105 M−1 min−1

β
2
=1000 min−1

(b) model B

Fig. 10: Coefficient of variation distributions for the different dimer disruption model scenarios (as indicated
in the legends). While there is an effect on model A, the effect is much greater in model B. Low values
of the coefficient of variation correlate with non-oscillatory solutions with sustained high protein levels or
oscillations with a very low amplitude.
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Fig. 11: Sample trajectories for the disruption experiments for model A. Impairing dimer formation or dimer
stability has little effect on model A.
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(a) β1 = 105 min−1, model B
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Fig. 12: Sample trajectories for the disruption experiments for model B. Impairing dimer formation or dimer
stability has a large effect on model B.

41



0−120
120−300

300−PE 0.1
1.2

2.3
3.4

4.5
5.6

6.7
7.8

8.9
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k
pore

 (M−1min−1)

period (min)

fr
ac

tio
n 

of
 ti

m
e

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 10
193.5

194

194.5

195

195.5

196

196.5

197

k
pore

 (M−1min−1)
m

ea
n 

pe
rio

d 
(m

in
)

0.1 1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
pore

 (M−1min−1)

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

 

 
Hes1 protein
hes1 mRNA

Fig. 13: Plots showing the effect of varying parameter kpore (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120− 300 minutes and 300−PE as kpore is varied. The middle plot shows how the mean period varies as
kpore is varied. The right plot shows how the CV varies for mRNA and protein as kpore is varied. As can be
seen from each plot, varying kpore has little effect on the system.
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Fig. 14: Plots showing the effect of varying parameter krel (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120−300 minutes and 300−PE as krel is varied. The middle plot shows how the mean period varies as kpore
is varied. The right plot shows how the CV varies for mRNA and protein as krel is varied. As can be seen
from each plot, varying krel has little effect on the system.
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Fig. 15: Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The
left plot shows the fraction of time the system spends oscillating with a period in the range 0−120 minutes,
120− 300 minutes and 300−PE as the number of NPCs is varied. The middle plot shows how the mean
period varies as the number of NPCs is varied. The right plot shows how the CV varies for mRNA and
protein as the number of NPCs is varied. As can be seen from each plot, varying the number of NPCs has
little effect on the system.
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Fig. 16: Plots showing the effect of varying parameter β1 (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120− 300 minutes and 300−PE as β1 is varied. The middle plot shows how the mean period varies as β1
is varied. The right plot shows how the CV varies for mRNA and protein as β1 is varied. As can be seen
from the plots, varying β1 has an impact on the mean period. The plots reveal that increasing β1 increases
the mean period.
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Fig. 17: Plots showing the effect of varying parameter β2 (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120− 300 minutes and 300−PE as β2 is varied. The middle plot shows how the mean period varies as β2
is varied. The right plot shows how the CV varies for mRNA and protein as β2 is varied. As can be seen
from the plots, varying β2 has an impact on the mean period. The plots reveal that increasing β2 decreases
the mean period.
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Fig. 18: Plots showing the effect of varying parameter kpore (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120− 300 minutes and 300−PE as kpore is varied. The middle plot shows how the mean period varies as
kpore is varied. The right plot shows how the CV varies for mRNA and protein as kpore is varied. As can be
seen from each plot, varying kpore has little effect on the system.
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Fig. 19: Plots showing the effect of varying parameter krel (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120−300 minutes and 300−PE as krel is varied. The middle plot shows how the mean period varies as krel
is varied. The right plot shows how the CV varies for mRNA and protein as krel is varied. As can be seen
from each plot, varying krel has little effect on the system.
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Fig. 20: Plots showing the effect of varying the number of NPCs (all other parameters as per Table 1). The
left plot shows the fraction of time the system spends oscillating with a period in the range 0−120 minutes,
120− 300 minutes and 300−PE as the number of NPCs is varied. The middle plot shows how the mean
period varies as the number of NPCs is varied. The right plot shows how the CV varies for mRNA and
protein as the number of NPCs is varied. As can be seen from each plot, varying the number of NPCs has
little effect on the system.
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Fig. 21: Plots showing the effect of varying parameter β1 (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120−300 minutes and 300−PE as β1 is varied. The middle plot shows how the mean period varies as β1 is
varied. The right plot shows how the CV varies for mRNA and protein as β1 is varied. As can be seen from
the plots, varying β1 has a large impact on the mean period. The plots show that increasing β1 increases the
mean period.
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Fig. 22: Plots showing the effect of varying parameter β2 (all other parameters as per Table 1). The left
plot shows the fraction of time the system spends oscillating with a period in the range 0− 120 minutes,
120−300 minutes and 300−PE as β2 is varied. The middle plot shows how the mean period varies as β2 is
varied. The right plot shows how the CV varies for mRNA and protein as β2 is varied. As can be seen from
the plots, varying β2 has a large impact on the mean period. The plots show that increasing β2 decreases the
mean period.
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Reaction Localisation Description Parameter values

dimernuc +Pf
k1−−→ Po gene promoter occupation k1 = 1.00×109 M−1min−1 (Tafvizi et al. 2011)

Po
k2−−→ Pf gene promoter liberation k2 = 0.10 min−1 (estimate)

Pf
αm−−−→ mRNAnuc gene mRNA transcription αm = 3.00 min−1 (Barrio et al. 2006)

Po
αm/γ
−−−−−→ mRNAnuc gene mRNA transcription (reduced) αm = 3.00 min−1 ,γ = 100.00 (Barrio et al. 2006; Takebayashi et al. 1994)

mRNAcyt
αp−−→ monomercyt +mRNAcyt cytoplasm protein translation αp = 1.00 min−1 (Barrio et al. 2006)

mRNAcyt
µm−−−→ φ cytoplasm mRNA degradation µm = 0.031 min−1 (Hirata et al. 2002)

mRNAnuc
µm−−−→ φ nucleus mRNA degradation µm = 0.031 min−1 (Hirata et al. 2002)

monomercyt
µp−−→ φ cytoplasm monomer degradation µp = 0.108 min−1 (Momiji and Monk 2008)

dimercyt
µp/ζ
−−−−→ φ cytoplasm dimer degradation µp = 0.108 min−1 ,ζ = 3.00 (Hirata et al. 2002; Momiji and Monk 2008)

dimernuc
µp/ζ
−−−−→ φ nucleus dimer degradation µp = 0.108 min−1 ,ζ = 3.00 (Hirata et al. 2002; Momiji and Monk 2008)

monomercyt +monomercyt
β1−−→ dimercyt cytoplasm monomer dimerisation β1 = 1.00×109 M−1min−1 (estimate)

dimercyt
β2−−→ monomercyt +monomercyt cytoplasm dimer detachment β2 = 0.10 min−1 (estimate)

mRNAnuc + pore
kpore−−−−→ mRNAnmp nuclear membrane mRNA binding to nuclear pore kpore = 1.00×109 M−1min−1 (estimate)

mRNAnmp
krel−−−→ mRNAcyt + pore nuclear membrane release of mRNA to cytoplasm krel = 6.00×103 min−1 (estimate)

dimercyt + pore
kpore−−−−→ dimernmp nuclear membrane dimer binding to nuclear pore kpore = 1.0.0×109 M−1min−1 (estimate)

dimernmp
krel−−−→ dimernuc + pore nuclear membrane release of dimer to nucleus krel = 6.00×103 min−1 (estimate)

Table 1: Reactions in model A of the Hes1 GRN, their localisation, description and baseline parameter values
used.
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Reaction Localisation Description Parameter values

dimernuc +Pf
k1−−→ Po gene promoter occupation k1 = 1.00×109 M−1min−1 (Tafvizi et al. 2011)

Po
k2−−→ Pf gene promoter liberation k2 = 0.10 min−1 (estimate)

Pf
αm−−−→ mRNAnuc gene mRNA transcription αm = 3.00 min−1 (Barrio et al. 2006)

Po
αm/γ
−−−−−→ mRNAnuc gene mRNA transcription (reduced) αm = 3.00 min−1 ,γ = 100.00 (Barrio et al. 2006; Takebayashi et al. 1994)

mRNAcyt
αp−−→ monomercyt +mRNAcyt cytoplasm protein translation αp = 3.00 min−1 (Barrio et al. 2006)

mRNAcyt
µm−−−→ φ cytoplasm mRNA degradation µm = 0.031 min−1 (Hirata et al. 2002)

mRNAnuc
µm−−−→ φ nucleus mRNA degradation µm = 0.031 min−1 (Hirata et al. 2002)

monomercyt
µp−−→ φ cytoplasm monomer degradation µp = 0.108 min−1 (Momiji and Monk 2008)

monomernuc
µp−−→ φ nucleus monomer degradation µp = 0.108 min−1 (Momiji and Monk 2008)

dimercyt
µp/ζ
−−−−→ φ cytoplasm dimer degradation µp = 0.108 min−1 ,ζ = 3.00 (Hirata et al. 2002; Momiji and Monk 2008)

dimernuc
µp/ζ
−−−−→ φ nucleus dimer degradation µp = 0.108 min−1 ,ζ = 3.00 (Hirata et al. 2002; Momiji and Monk 2008)

monomernuc +monomernuc
β1−−→ dimernuc cytoplasm monomer dimerisation β1 = 1.00×109 M−1min−1 (estimate)

monomercyt +monomercyt
β1−−→ dimercyt cytoplasm monomer dimerisation β1 = 1.00×109 M−1min−1 (estimate)

dimercyt
β2−−→ monomercyt +monomercyt cytoplasm dimer detachment β2 = 0.10 min−1 (estimate)

mRNAnuc + pore
kpore−−−−→ mRNAnmp nuclear membrane mRNA binding to nuclear pore kpore = 1.00×109 M−1min−1 (estimate)

mRNAnmp
krel−−−→ mRNAcyt + pore nuclear membrane release of mRNA to cytoplasm krel = 6.00×103 min−1 (estime)

monomercyt + pore
kpore−−−−→ monomernmp nuclear membrane monomer binding to nuclear pore kpore = 1.00×109 M−1min−1 (estimate)

monomernmp
krel−−−→ monomernuc + pore nuclear membrane release of monomer to nucleus krel = 6.00×103 min−1 (estimate)

dimercyt + pore
kpore−−−−→ dimernmp nuclear membrane dimer binding to nuclear pore kpore = 1.00×109 M−1min−1 (estimate)

dimernmp
krel−−−→ dimernuc + pore nuclear membrane release of dimer to nucleus krel = 6.00×103 min−1 (estimate)

Table 2: Reactions in model B of the Hes1 GRN, their localisation, description and baseline parameter values
used.
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