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The tau-leaping method is often effective for speeding up discrete stochastic simulation of
chemically reacting systems. However, when fast reactions are involved, the speed-up for
this method can be quite limited. One way to address this is to apply a stochastic quasi-
steady state assumption. However we must be careful when using this assumption. If
the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state
assumption will propagate error into the simulation. To avoid these errors, we propose
to use the time dependent solution rather than the quasi-steady-state. Generally speaking,
the time dependent solution is not easy to derive for an arbitrary network. However, for
some common motifs we do have time dependent solutions. We derive the time dependent
solutions for these motifs, and then show how they can be used with tau-leaping to achieve
substantial speed-ups, including for a realistic model of blood coagulation. Although the
method is complicated, we have automated it.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Ordinary differential equation (ODE) models are widely used in the simulation of chemical systems where all chemical
species are present with large population. For the simulation of biochemical systems inside a living cell, however, the pop-
ulation of some chemical species may be so small that stochastic fluctuations become important [1–3]. For these systems, a
discrete stochastic model is more appropriate. The stochastic simulation algorithm (SSA) [4,5] is commonly used to simulate
such a system. The SSA is exact, in the sense that each simulation is a realization of the Chemical Master Equation [5]. As the
number of stochastic realizations goes to infinity, their statistics approach the probability density vectors (PDVs) which are
the solutions to the Chemical Master Equation.

Typically, a great many (hundreds of thousands to millions) of simulations are required to get a good approximation to
the PDVs. At the same time, each realization can be quite expensive because SSA, as an exact algorithm, requires the simu-
lation of every reaction event in the system, which may include some very fast reactions. Tau-leaping [6] was developed to
speed up the simulations. Tau-leaping is an approximate algorithm that can for many systems take time steps that are con-
siderably larger than the time to the next reaction (i.e. the SSA timestep). It accomplishes this by allowing multiple reaction
events to fire during a timestep as long as these reactions do not change the system dramatically, i.e. the change of each spe-
cies during a step is small compared with its population. The stepsize for tau-leaping can become constrained, however, for
systems with fast reactions that involve at least one species that is present in very small population [7].

One way to accelerate both SSA and tau-leaping for such stiff systems is to make use of a quasi-steady-state assumption.
The quasi-steady-state assumption is a widely used strategy to handle systems that have different time scales, for both ODE
[8] and SSA models [9–11]. The essence of this strategy is to divide the system into fast and slow subsystems. If the fast
. All rights reserved.
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subsystem can reach a quasi-steady-state in a very short time, then we can use the quasi-steady-state as an approximation
of the fast variables during a step of the slow subsystem. One can also apply the quasi-steady-state assumption in tau-leap-
ing [7]. However, we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution
rapidly enough, the quasi-steady-state assumption will propagate error into the simulation.

To avoid these errors, we can use the time dependent solution rather than the quasi-steady-state. The idea of using the time
dependent solution to speed up a discrete stochastic simulation has been applied via a splitting method in [12]. That method
first partitions the reactions into subgroups such that some of them have analytical solutions, which can be used to directly
sample the state of the subsystem at any given time if reactions outside the subsystem keep silent. Then the method ad-
vances the system by advancing each subsystem separately in a given order with some stepsize. Since it can directly sample
the state without sampling individual reaction events for those subsystems that have analytical solutions, it is more efficient
than SSA if these subsystems contain many reaction events. However, it does not handle non-catalytic bimolecular reactions
with the time dependent solution, or provide a stepsize selection strategy. The adaptive tau-leaping method addresses these
two issues. It approximates the number of firings for bimolecular reactions for each step [6] and it also has an adaptive step-
size selection algorithm [13]. Here we will apply the time dependent solution in a tau-leaping framework. Thus the analyt-
ical solution can be used to approximate bimolecular reactions such as S1 þ S2 ! something within a tolerance. It will inherit
the adaptive stepsize selection method naturally as well.

Generally speaking, the time dependent solution is not easy to derive for an arbitrary network motif. However, for some
common motifs we do have time dependent solutions. These solutions can be used to improve the performance of tau-leap-
ing for some widely used models like the enzyme-substrate model.

The remainder of this paper is organized as follows. In Section 2, we provide a brief introduction to tau-leaping with adap-
tive timestep selection. In Section 3 we derive the time dependent solution for some common network motifs. We begin with
a simple example to demonstrate the tau-leaping algorithm using the time dependent solution. Then we extend the algo-
rithm to more general cases. Numerical experiments are provided in Section 4, including application of the method to a real-
istic model of blood coagulation, and the algorithm is briefly summarized in Section 5. Detailed mathematical derivations are
provided in the supplementary material.

2. Tau-leaping

Consider a system of N species S1; . . . ; SNf g and M reactions R1; . . . ;RMf g. The state vector of the system is X ¼ x1; . . . ; xNf g
which is the population of each of the species. The probability that reaction Ri fires in an infinitesimal interval dt is given by
aiðXÞdt, where aiðXÞ is the propensity function of Ri. Tau-leaping advances the system in small steps; it assumes that the state
vector X changes so little in each step that the propensity functions a1; . . . ; aMf g can be treated as constants. Thus the number
of firings in each reaction channel Ri is a Poisson random number with parameter aiðXÞs, where s is the stepsize. To advance
the system, we need only to sample these Poisson random numbers and update the state vector X.

Yang et al. [13] suggest a strategy to determine the stepsize. The idea is that it should be chosen so that the mean and
standard deviation of the change of each species is small compared to its population. Denoting the population change of spe-
cies Si as Dxi, the stepsize as s, and the number of firings of each reaction during a step as r1 sð Þ; . . . ; rM sð Þ, tau leaping
computes
Dxi ¼
XM

j¼1

mijrj sð Þ;
where mij is the stoichiometry of species Si in reaction Rj. Assuming that the reaction firings are independent during a step,
the mean and variance of Dxi are given by
EDxi ¼
XM

j¼1

mijE rj sð Þ
� �

; Var Dxið Þ ¼
XM

j¼1

m2
ijVar rj sð Þ

� �
:

Keeping EDxi and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarDxi
p

small (relative to the tolerance �) compared with xi requires [13]
EDxi 6 max
�
gi

xi;1
� �

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Dxið Þ

p
6 max

�
gi

xi;1
� �

; ð1Þ
where gi is a constant that depends on the highest order of the reactions which involve Si as a reactant. Solving the above
inequalities yields the upper bound on s, which we will denote by si, for which species Si can be expected to change by less
than the prescribed tolerance. The adaptive tau-leaping algorithm chooses the smallest si as its stepsize.
s ¼ min
16i6N

si: ð2Þ
Over a step of size s, tau-leaping approximates the population of every species as a constant. Thus ri sð Þ is a Poisson random
variable
ri sð Þ � P aisð Þ:
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Solving (1) for si gives
si 6

max �
gi

xi;1
� �

PM
j¼1mijaj

; si 6

max �2

g2
i

x2
i ;1

� �
PM

j¼1m2
ijaj

) si ¼min
max �

gi
xi;1

� �
PM

j¼1mijaj

;

max �2

g2
i

x2
i ;1

� �
PM

j¼1m2
ijaj

0
BB@

1
CCA ð3Þ
and substituting this into (2) yields the tau-leaping stepsize.
It is easy to see that tau-leaping can be substantially more efficient than SSA. However, this is only the case when it can

use a stepsize over which many reaction firings would have taken place. However, if some species Si is changing rapidly, then
the change in that species may be constraining the stepsize. On each timestep, the species that is constraining the stepsize is
the one for which si is smallest. Thus we propose to use the time dependent solution described in the next section to solve
for that species in place of standard tau-leaping (provided that it occurs in one of the common network motifs for which we
have a time dependent solution).

Using the time dependent solution is a natural way to remove the stepsize constraint from the limiting species. This idea
can also be extended to cases where several species require a very small stepsize. Though a general solution for arbitrary
motifs may not be easy to find, we do have the solution for some common motifs. The results will be shown in the next
section.
3. Tau-leaping using the time dependent solution

The time dependent solution makes use of the exact analytical solution of common reaction motifs to increase the speed
of tau-leaping. The splitting method [12] also uses the analytical solution of monomolecular, catalytic bimolecular, and auto-
catalytic reactions. It separates these reactions from the system to form subsystems that can be simulated using their ana-
lytical solutions. The time dependent solution improves on the splitting method in the following two ways.

� Applicability to non-catalytic bimolecular reactions.
In order to use the analytical solution for a bimolecular reaction, the splitting method requires that one of its reactants has
zero stoichiometry (i.e. catalytic bimolecular reaction). The time dependent solution removes this requirement by observ-
ing that if one of the reactants of a non-catalytic bimolecular reaction has a slow relative rate of change, we should be able
to allow it to use the analytical solution to within some tolerance.
This change brings new requirements to the system partition strategy. In the splitting method the subsystems are deter-
mined by the stoichiometry. Thus it can partition the system at the very beginning and use it throughout the simulation.
However, if we allow the subsystems to include non-catalytic bimolecular reactions, the stoichiometry matrix will not be
sufficient to determine the partitioning of the system. We also need the information of the dynamically changing reaction
rates. Thus the time dependent solution includes a scheme for dynamic partitioning.
� Adaptive stepsize selection.

An operator bounding analysis for the splitting method was given in [12]. For simulation purposes, it would be ideal if the
analysis can generate an algorithm to adaptively select the stepsize. Here, since our partition will be more complex and
our implementation of the time dependent solution is in the tau-leaping framework, making use of the adaptive stepsize
selection strategy from tau-leaping [13] is a more natural and easy option for our method.

In this section we will demonstrate the use of the time dependent solution using the tau-leaping method. We begin with a
simple example.
3.1. Using the time dependent solution of one species

Let us take a look at one species in particular, say S1. There are reactions which either generate or consume S1, as shown in
Fig. 1. We will refer to the motif illustrated in Fig. 1 as motif I in the following sections.

If for any reaction in the system, its reactants involve at most one S1 molecule and its products also involve at most one S1

molecule, then we can find the analytical solution for the population of S1, under the assumption that the populations of
Fig. 1. Motif I, I denotes the set of reactions that generate S1, and O denotes the set of reactions that consume S1.
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other species can be considered as constants. This assumption is reasonable as long as we use a stepsize that can be accepted
by those other species.

Let I be the set of reactions that generate S1, and O be the set of reactions that consume S1. Denote the total propensity
that an S1 will be generated as
aI¼
M
X
Ri2I

ai
and the total rate that S1 will be consumed as
cO¼M
X
Ri2O

~ci;
where ~ci ¼ ai=x1.
The time dependent population of S1 can be written as (see Appendix A in the supplementary material)
x1ðtÞ � B x1ð0Þ; e�cOt
� �

þ P
aI

cO
1� e�cOt
� �� �

ð4Þ

� B x1ð0Þ; e�cOt
� �

þ B rI;
1

cOt
1� e�cOt
� �� �

; ð5Þ
where x1ð0Þ is the initial value of x1 at the beginning of the step, and rI is the input to S1, i.e. the total number of firings for
reactions in I. Bðn; pÞ is a binomial random number with parameters n; p. P kð Þ is a Poisson random number with parameter k.
The two random variables in (4) and (5) are independent.

The corresponding output from S1, i.e. the total number of firings in O, is given by
rOðtÞ¼M
X
Ri2O

riðtÞ ¼ x1ð0Þ þ rI � x1ðtÞ

� B x1ð0Þ;1� e�cOt
� �

þ B rI;1�
1

cOt
1� e�cOt
� �� �

: ð6Þ
To simulate the number of firings in each reaction channel Ri 2 O, we distribute rO using the multinomial distribution
according to the rate ~ci of each reaction Ri
ri : Ri 2 Of g �M rO;
~ci

cO
: Ri 2 O

� �
; ð7Þ
or equivalently (see Appendix C in the supplementary material),
riðtÞ � B x1ð0Þ;
~ci

cO
1� e�cOt
� �� �

þ P
~ci

cO
aIt �

aI

cO
1� e�cOt
� �� �� �

: ð8Þ
Here M n; p1; . . . ; pnð Þ is a multinomial random variable with parameters n and p1; . . . ; pn.
Now we apply this time dependent solution to accelerate tau-leaping for the simple example.
S0 �
c1

c2
S1!

c3 S2:
When the population of S0 is much greater than the population of S1; S1 will be the species that limits the tau-leaping step-
size. Using the time dependent solution of S1 we arrive at the following algorithm.

1. Use (3) to compute the acceptable stepsizes si for every species (in this case S0 and S1. There is no need to compute S2

because it is a pure product and it never changes any propensity function).
2. Find the smallest si (Here we assume s1 < s0 for demonstration purposes, so I ¼ R1f g; O ¼ R2;R3f g).
3. Recompute the stepsize. In this example we need to recompute s0 for S0. We do this because the original s0 was based on

the assumption that x1 is a constant during the step. Since this is no longer the case, we need to reevaluate s0. To do this,
we still try to bound the mean and variance of Dx0 using (1). The only change is that the number of firings of R2 is no
longer a Poisson random variable. Instead, we have formula (8) for r2, so both E r2ð Þ and Var r2ð Þ can be obtained explicitly
and used to compute the new value for s0. (Here we need to solve a nonlinear algebraic equation since E r2ð Þ and Var r2ð Þ
contain e�cOt terms. Newton iteration is a good option because the explicit formulas of the equations are known).

4. Sample the number of firings in all reaction channels except those belonging to O (Sample r1 sð Þ in the example). These
reactions do not depend on the species for which we use the time dependent solution (S1 in the example), so the original
strategy in tau-leaping still works. Reactions in I are sampled in this step so that we know the value of rI .

5. Sample rO using (6) and distribute it into each channel in O using (7). (Now r2 and r3 have been sampled).
6. Update the system and start the next step, or terminate if the end time of the simulation has been reached.
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In some reacting systems, there can be reactions that use S1 as a catalyst. For example, suppose that we add the following
reaction R4 to the above system
Fig. 2.
Sj; Rij d
R4 : S1!
c4 S1 þ S3:
This reaction cannot be sampled using a Poisson random number P c4x1 0ð Þsð Þ in the previous framework, since S1 may
undergo a big change during the step. This reaction does not belong to O, since it does not consume S1. It needs to be treated
as a different case.

The value of r4 during a step is given by
r4 � P

Z s

0
c4x1 tð Þdt

� �
:

Since we cannot compute the integral exactly, we will need to make an approximation. A natural choice is to use the mean
value E x1ðtÞð Þ instead of the exact random number xi tð Þ, which yields
r4 � P c4

Z s

0
E x1 tð Þð Þdt

� �
: ð9Þ
This value is capable of being sampled, since we can derive the formula for E x1ð Þ from (4). Thus we have a formula for the
integral expression. This approximation can capture the mean value of r4 accurately but its variance is smaller than the exact
value of Var r4ð Þ (see Appendix B in the supplementary material). This is because E x1ðtÞð Þ averages x1ðtÞ, thus it loses the spe-
cific information of the trajectory. To recover the variance, we need to include this information in the approximation. Since in
Step 5 of the algorithm x1ðsÞ is sampled (more precisely, we sample rO, however we can get x1 sð Þ by
x1ðsÞ ¼ x1ð0Þ þ rI � rOðsÞ), it would be advantageous if we could include this information in the approximation. This yields
another approximation formula:
r4 � P c4

Z s

0
E x1 tð Þð Þ þ t

s
x1 sð Þ � E x1 sð Þð Þð Þ

� �
dt

� �
� P c4

Z s

0
E x1 tð Þð Þdt þ s

2
x1 sð Þ � E x1 sð Þð Þð Þ

� �� �
: ð10Þ
The interpolation of the difference between x1 tð Þ and E x1 tð Þð Þ at the end time of the step has been added into the integrand.
Numerical experiments (Section 4) demonstrate that (10) gives a much better approximation of the variance Var r4ð Þ.

Armed with the strategy of using the time dependent solution for one species, we can move onto the more general case
where we use the time dependent solution of several species.

3.2. Using the time dependent solution of several species

In many cases there are several species that are limiting the stepsize. They may be linked with each other via the reactions
in which they participate. Consider, for example, the motif shown in Fig. 2. We will refer to this motif as motif II in the fol-
lowing sections.

A popular model that uses this motif is the enzyme substrate system,
Eþ S�
c1

c2
ES!c3 Eþ P;
where S has a huge population while E and ES are present in small populations. Let sE; sS and sES denote the stepsizes for E; S
and ES given by (3). It is obvious that sE; sES � sS. Thus if we want to accelerate the simulation, we need to use the time
dependent solution for both E and ES.

In general, the population of the enzyme is dynamic rather than constant. It can be produced and consumed by other
reactions. For example, consider adding the following set of reactions into the enzyme substrate system:
R4 : /!a4 E; R5 : E!c5 /; R6 : ES!c6 /:
Motif II, Ii denotes the set of reactions that generate Si without consuming Sj; Oi denotes the set of reactions that consume Si without generating
enotes the set of reactions that consume Si and generate Sj at the same time, i; j ¼ 1;2; i – j.



Fig. 3. E and ES are within the scope of motif II, R4 is the input reaction for E, and R5 and R6 are the output reactions for E and ES respectively. R1 converts E to
ES; R2 and R3 convert ES to E.
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This model is still within the scope of motif II (see Fig. 3). The good news is that we have the analytical solution for the time
dependent solution of E and ES for the previous system during a stepsize of sS (which implies that S can be treated as
constant).

Before giving the formula, we define some notation. Let IE ¼ fR4g be the set of reactions that generate E while not con-
suming ES, OE ¼ fR5g be the set of reactions that consume E while not producing ES, OES ¼ fR6g be the set of reactions that
consume ES while not producing E, RE;ES ¼ fR1g be the set of reactions that consume E and generate ES, and RES;E ¼ fR2;R3g be
the set of reactions that consume ES and generate E.

Similar to the previous example, we have
aE
I ¼

X
Ri2IE

ai ¼ a4; rE
I ¼

X
Ri2IE

ri ¼ r4

cE;ES ¼
X

Ri2RE;ES

~ci ¼ c1xS

cES;E ¼
X

Ri2RES;E

~ci ¼ c2 þ c3

cE
O ¼

X
Ri2OE

~ci ¼ c5; cES
O ¼

X
Ri2OES

~ci ¼ c6 ð11Þ
and
rE
O ¼

X
Ri2OE

ri ¼ r5; rES
O ¼

X
Ri2OES

ri ¼ r6: ð12Þ
Here rE
O and rES

O are the total number of firings for reactions in OE and OES.
Using the notation above, the time dependent solution of this system can be written as
xEðtÞ; xESðtÞ; rE
OðtÞ; rES

O ðtÞ
� �

�M xE 0ð Þ;pE
1ðtÞ;pE

2ðtÞ;pE
O1ðtÞ;pE

O2ðtÞ
� �

þM xES 0ð Þ; pES
1 ðtÞ;pES

2 ðtÞ;pES
O1ðtÞ;pES

O2ðtÞ
� �

þM rE
I ;

k1ðtÞ
aE

I t
;
k2ðtÞ
aE

I t
kO1ðtÞ

aE
I t

kO2ðtÞ
aE

I t

� �
; ð13Þ
where the formulas for each parameter are given in Appendix A in the supplementary material (see (A28) in Appendix A).
This result can be extended from two species to n species bS ¼ S1; . . . ; Snf g when the following condition holds:
Condition (�): For any reaction R that can change the population of a species in Ŝ, one firing of R consumes at most one molecule

in bS, and produces at most one molecule in bS.
Fig. 4. General motif.
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A diagram of this general motif is given in Fig. 4.
Now the definitions in (11) and (12) can be extended for any 1 6 i – j 6 n as follows:
ai
I¼
M
X
Rk2Ii

ak; ri
I¼
M
X
Rk2Ii

rk; cij¼
M
X

Rk2Rij

~ck; ci
O¼
M
X

Rk2Oi

~ck; ri
O¼
M
X

Rk2Oi

rk:
The time dependent solution for this general motif is given by
x tð Þ; rO tð Þð Þ �
Xn

i¼1

M xi 0ð Þ;pi tð Þ;pi
O tð Þ

� �
þ
Xn

i¼1

M ri
I;

1
ai

It
ki;

1
ai

It
ki

O

� �
; ð14Þ
where the formulas for each parameter are given in Appendix A in the supplementary material.
Now that we have the time dependent solution for our motifs, it is time to outline the steps of employing the time depen-

dent solution in tau-leaping, using the enzyme substrate (E-S) system as an example.

1. Use (3) to compute the acceptable stepsizes si for every species (in the E-S example we compute the stepsizes for E; S and
ES). For demonstration purposes, we assume s1 6 s2 6 . . . 6 sN (and in the E-S example we have sE; sES < sS).

2. Construct the set of species U for which we will use the time dependent solution. Start from the species with the smallest
stepsize, i.e. S1. If S1 satisfies condition (�), add it into U to obtain U ¼ S1f gf g. Now go onto the species which has the sec-
ond smallest stepsize, i.e. S2. If S1; S2f g does not satisfy condition (�), end step 2 with U ¼ ffS1gg. Otherwise, add S2 into U.
If S2 is linked to S1, i.e. c12 – 0 or c21 – 0, add S2 into U to obtain U ¼ S1; S2f gf g. Otherwise add it into U to obtain
U ¼ S1f g; S2f gf g. Continue adding species into U in a similar way until you cannot add any more species that satisfy
the condition (�). Now each element in U is a set of species for which we can use the time dependent solution. (In the
E-S example we end up with U ¼ ffE; ESgg. We cannot add S into U since bS ¼ fE; ES; Sg does not satisfy condition (�),
as R1 consumes two molecules in bS).

3. Recompute the stepsize. For species not in U, we need to recompute their stepsizes with the new value of each ri which
may no longer be the original Poisson random variable (see Appendix C in the supplementary material for a more detailed
computation. In the E-S example, we need to recompute the stepsize sS).

4. Sample the number of firings for all reactions that do not involve the species in U as reactants. For these reactions tau-
leaping is appropriate, so sample Poisson random numbers for them (in the E-S example, r4 is sampled).

5. Sample each element in U using its time dependent solution (14). (In the E-S example, xEðtÞ; xESðtÞ; rE
OðtÞ; rES

O ðtÞ are
sampled)

6. For each species Si in U, sample reactions in Oi using the multinomial distribution
rj : Rj 2 Oi
	 


�M ri
O;

~cj

ci
O

: Rj 2 Oi

� �
:

(In the E-S example, r5 and r6 are sampled, and the multinomial distribution yields r5 ¼ rE
O; r6 ¼ rES

O ).

7. Sample the reactions in Rij. This is not trivial since we have to maintain the flow conservation of the network, so what we
actually sample is an instance of a feasible flow. An algorithm to sample the flow is presented in Appendix D in the sup-
plementary material. For the E-S example, this step is very simple. First sample r1 using formula (10). Here E xEðtÞð Þ in the
formula has the form (see Appendix A in the supplementary material for detailed derivation)
E xEðtÞð Þ ¼ xEð0ÞpE
1ðtÞ þ xESð0ÞpES

1 ðtÞ þ k1ðtÞ;
where pE
1ðtÞ; pES

1 ðtÞ and k1ðtÞ are the parameters that appeared in (13).
The conservation equation
r4 þ xEð0Þ þ ðr2 þ r3Þ ¼ xEðtÞ þ r1 þ r5;
gives
ðr2 þ r3Þ ¼ xEðtÞ þ r1 þ r5 � r4 � xEð0Þ:
Then sample r2 and r3 from their sum using the binomial distribution� �

r2 ¼ B xEðtÞ þ r1 þ r5 � r4 � xEð0Þ;

c2

c2 þ c3
;

r3 ¼ xEðtÞ þ r1 þ r5 � r4 � xEð0Þ � r2:
8. If there are reactions involving species in U that are acting as a catalyst, for example
Si ! Si þ Sj;
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where Sj is not in U (this is guaranteed by the algorithm, because species in U satisfies condition (�)), use formula (10) to
approximate the number of their firings. In the E-S example there is no such reaction.

9. Update the system and begin the next step or terminate if the end time of the simulation has been reached.

This algorithm is adaptive in the sense that it always applies the time dependent solution to the motifs which limit the
tau-leaping stepsize, even though the limiting motifs change during the simulation. We achieve this goal by constructing the
limiting motifs U on the fly in step 2, rather than partitioning the system at the beginning of the simulation.

In the enzyme substrate example, allowing non-catalytic bimolecular reactions to be grouped into the motif plays an
important role. If such an operation is not allowed, reaction R1 : Eþ S! ES will be taken away from the motif and we will
have a partition of the system as I1 ¼ fR1g; I2 ¼ fR2; . . . ;R6g. This partition will significantly decrease the stepsize because I1

takes into account only the reaction that converts E to ES, while I2 includes the reactions in the opposite direction. Thus if we
use a big stepsize, E will be depleted in subsystem I1 in a short time, as will ES in R2. During the remaining time of the step,
the system will do nothing. This is obviously not the correct physics of the model. Our method can avoid this partition be-
cause we allow R1 to be included in the motif as shown in Fig. 3. Thus the motif contains all the reactions in both directions
and it can take a much longer stepsize than the previous partition.

4. Numerical simulation

In this section we present the results for the numerical simulations of the examples in Section 3. We also demonstrate the
time dependent solution for a more complex real world model of blood coagulation.

4.1. Example 1

The first example is the one mentioned in Section 3.1:
S0 �
c1

c2
S1!

c3 S2;

S1!
c4 S1 þ S3:
The parameters are taken to be c1 ¼ 0:1; c2 ¼ 1; c3 ¼ 1; c4 ¼ 1. The initial population of each species is given by
x0 ¼ 1eþ 6; x1 ¼ x2 ¼ x3 ¼ 0. The result of a one second simulation is shown in Table 1.

In this example, the stepsize for S1 is smaller than the stepsize for S0, thus the stepsize of tau-leaping is constrained by the
stepsize for S1. Using the time dependent solution of S1, we can remove the stepsize requirement of S1 (which tries to keep x1

almost constant during the step) and use the stepsize of S0 for the simulation, which yields a huge speedup. If we use the
time dependent solution of both S1 and S0, we have no stepsize requirement at all! The last method in Table 1 simply sam-
ples the population of each species at time t ¼ 1 directly. This explains why it is so fast.

Speed is important, however we do not want to trade speed at the cost of losing too much accuracy. The population dis-
tributions given by SSA and the last method in Table 1 are compared in Fig. 5. The result shows that accuracy is not sacrificed.
The distribution of every species is maintained.

Formula (10) plays an important role for sampling the population of S3. If we use only the mean value of x1 to do the sam-
pling, i.e. using (9), the distribution will have a noticeable error. Fig. 6 shows the distribution of S3 if (9) is used. The distri-
bution has the correct mean but the variance is too small.

4.2. Example 2

The second example is the one we used in Section 3.2:
Eþ S �
c1

c2
ES!c3 Eþ P

/!a4 E; E!c5 /; ES!c6 /:
Table 1
The time used for 100000 realizations of the one second simulation for Example 1, � ¼ 0:003.

Method Time used (s)

SSA 5943.97
Tau leaping 1006.84
Tau leaping/TDSa 8.18854
Tau leaping/TDSb 1.30296

a Tau leaping using time dependent solution of motif I.
b Tau leaping using time dependent solution of motif II.



Fig. 5. Histograms of each species in Example 2. Comparison of result given by SSA and tau-leaping using time dependent solution of motif II. Red is SSA,
blue is tau-leaping using time dependent solution, and purple is the overlap of the two histograms.

Fig. 6. The distribution of S3 if (9) is used. It has the correct mean value but the variance is too small.
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The parameters were taken to be c1 ¼ 0:0001; c2 ¼ 10; c3 ¼ c5 ¼ c6 ¼ 1; a4 ¼ 100. The initial population was taken as
xS ¼ 1eþ 6; xE ¼ 1000; xES ¼ xP ¼ 0. We do a one second simulation. The results are shown in Table 2 and Fig. 7.

In this example it will not help much if we use the time dependent solution of only one species (the third method in
Table 2). This is because both E and ES require a small stepsize, thus relaxing the stepsize requirement for one of them will
not completely solve our problem. The last method in Table 2 uses the time dependent solution of both E and ES, thus the



Table 2
The time used for 100000 realizations of a one second simulation of Example 2 with � ¼ 0:003.

Method Time used (s)

SSA 519.708
Tau leaping 787.655
Tau leaping/TDSc 475.314
Tau leaping/TDSd 2.57195

c Tau leaping using time dependent solution of motif I.
d Tau leaping using time dependent solution of motif II.

Fig. 7. Histograms of each species in Example 2. Comparison of result given by SSA and tau-leaping using time dependent solution of motif II. Red is SSA,
blue is tau-leaping using time dependent solution, and purple is the overlap of the two histograms.

Table 3
The time used for one realization of a 700 s simulation of the coagulation model, with � ¼ 0:02. The results are averaged
over ten realizations.

Method Time used (s)

SSA 273.498
Tau leaping 39.2127
Tau leaping/TDSe 7.61337

e Tau leaping using time dependent solution of motif I + II.

J. Fu et al. / Journal of Computational Physics 235 (2013) 446–457 455
stepsize of the method is actually the stepsize of S, which is much larger than those of E and ES. In the simulation, the step-
size of S is greater than one second therefore the last method basically samples the population of each species at t ¼ 1
directly.

4.3. Coagulation model

For the final example, we apply our method to a model of blood coagulation [14] with 43 reactions and 33 species. The
coagulation model contains reaction pathways that form several levels of cascades. Different factors are activated at different
time intervals, which finally leads to the activation of thrombin. Meanwhile, the negative regulation factor antithrombin III
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binds to thrombin as well as to some other factors in order to control the coagulation process. In this model the species
which constrain the stepsize vary as time goes on. However, we do not need to worry about this in the simulation. Our algo-
rithm does not require any prior knowledge about the system. It automatically detects the motifs that limit the stepsize and
applies the time dependent solution to them if applicable.

The original model uses concentration for each species rather than population. We convert the concentration to popula-
tion by selecting a 1 mm long cylinder with diameter 0.01 mm as the control volume. The time used for one realization of a
700 s simulation is shown in Table 3.

The last method in Table 3 applies the time dependent solution of motifs I and II. We can see that it already is significantly
faster compared to standard tau-leaping. We can expect that if we fully implement the algorithm and use the time depen-
dent solution of motifs containing more than two species, it will further accelerate the speed of the simulation.

According to Table 3, if we do a 10000-realization simulation, it takes about 31.7 days for SSA, 4.5 days for tau-leaping,
and about 21.1 h for the time dependent solution implemented as described above. We have code that can run the simula-
tion in parallel. Thus the 10000-realization simulation using the third method required only 5.2 h running on a 4 core work-
station. Since it takes too much time to obtain a complete SSA result of 10000 runs, we do not compare the species
distributions for this model. Instead, we compare the evolution of thrombin’s mean value with the result given by the
ODE model. Here we plot the mean values of IIa + 1.2 �mIIa given by 10000 tau-leaping runs using the time dependent solu-
tion (blue) and the ODE model (green) in Fig. 8. The error tolerance of the adaptive tau leaping simulation is 0.02, which is
larger than the previous examples, so the result will not be as accurate. However Fig. 8 shows that this result is already able
to catch the trend of thrombin.
5. Conclusion

Tau-leaping using the time dependent solution provides a means to accelerate the simulation of systems that have rapidly
changing species. The key point of the method is that it uses the time dependent solution for the fast changing species. Thus,
it can use a much larger stepsize than standard tau-leaping, without noticeable loss of accuracy. The auto detection feature
grants the algorithm the ability to handle systems whose fast changing species vary over time. However, the method still has
some limitations.

1. It can handle only networks that satisfy condition (�). If (�) is violated, we may not have the formula for the time depen-
dent solution. Actually, it is still possible to derive PDEs for the generating function, as we do in Appendix A in the sup-
plementary material. However the PDEs will be second order and the analytical solution may not be easy to obtain. Even
if we find the solution for the PDEs, we still need to convert them into proper random variables that are easy to sample,
which is also nontrivial.

2. For systems that do not have fast-changing species, the method will not benefit the simulation.

The time-dependent solution for acceleration of tau-leaping is already applicable to many real-world systems. The for-
mulas and hence the implementation are complicated, but we have automated the method so that this is not a limitation.
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