
THE JOURNAL OF CHEMICAL PHYSICS 137, 034106 (2012)

Automatic identification of model reductions for discrete
stochastic simulation

Sheng Wu,1,a) Jin Fu,1,b) Hong Li,2,c) and Linda Petzold1,d)

1Department of Computer Science, University of California Santa Barbara, Santa Barbara,
California 93106, USA
2Teradata Inc., El Segundo, California 90245, USA

(Received 27 February 2012; accepted 21 June 2012; published online 17 July 2012)

Multiple time scales in cellular chemical reaction systems present a challenge for the efficiency
of stochastic simulation. Numerous model reductions have been proposed to accelerate the simu-
lation of chemically reacting systems by exploiting time scale separation. However, these are of-
ten identified and deployed manually, requiring expert knowledge. This is time-consuming, prone
to error, and opportunities for model reduction may be missed, particularly for large models. We
propose an automatic model analysis algorithm using an adaptively weighted Petri net to dynam-
ically identify opportunities for model reductions for both the stochastic simulation algorithm and
tau-leaping simulation, with no requirement of expert knowledge input. Results are presented to
demonstrate the utility and effectiveness of this approach. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4733563]

I. INTRODUCTION

Cellular chemical systems often exhibit dynamic behav-
iors that are both stochastic and discrete, due to low popu-
lations of key reactant species.1–3 The stochastic simulation
algorithm (SSA) (Ref. 4) is a useful numerical simulation
tool that can capture these characteristics. However, because it
must simulate every reaction event, the SSA, as well as many
accelerated variants, is inefficient for most realistic models.
One of the most important reasons is the presence of vastly
different time scales and/or species population scales.

The explicit tau-leaping method5, 6 is a general ap-
proximate method to address the efficiency challenge due
to different species population scales. It uses a Poisson
approximation to leap over many reactions in one step,
given that the reaction propensities remain relatively con-
stant. However, as an explicit method, it is also ineffi-
cient for stiff systems, where vastly different time scales
are involved.7 Numerous model reductions which exploit
time scale separation have been proposed for either the SSA
or the explicit tau-leaping method, including the slow-scale
SSA (ssSSA),8 the stochastic quasi-steady state approxima-
tion (sQSSA),9–11 the stochastic Michaelis-Menten model
reduction (M-M),9, 10, 12, 13 and the time-dependent solution
method.14

Among these methods, the ssSSA (Ref. 8) exploits the
stochastic partial equilibrium of so-called virtual fast pro-
cesses to treat multiple scales of the frequencies of reactions.
A virtual fast process is a subsystem consisting of only fast
reactions, which reaches a stochastic partial equilibrium very
quickly between consecutive slow reactions. The propensi-
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ties of the slow reactions can then be approximated based on
the partial equilibrium distribution of the virtual fast process.
The slow-scale tau-leaping method15 is a natural combination
of the ssSSA and the tau-leaping method to further accel-
erate simulation of such systems. Alternatively, the sQSSA
(Refs. 9–11) aims at the multiple time scales of the changes
of species’ populations. It approximates the fast-changing
species with a near stationary distribution over a relatively
long time period by their quasi-steady state. The stochastic
M-M approximation is designed for enzyme-substrate sys-
tems and can be derived from the sQSSA approach9, 10 or
the ssSSA approach12, 13 under different conditions. Addition-
ally, the time-dependent solution method14 is an extension of
the sQSSA. It gives more accurate results for fast changing
species, regardless of whether they are in quasi-steady state
or not.

With all of these different model reduction techniques,
one of the major unsolved problems in practice is to efficiently
identify situations where a model reduction can be safely ap-
plied and lead to a gain in performance. Usually, model re-
duction opportunities are identified manually and globally.
By globally we mean that there is a global threshold of fast
scales for the entire model and that all of the reactions or
species of fast scales are grouped together throughout the
simulation time span. There are several shortcomings to this
approach. First, it is a manual process and requires expert
knowledge of the dynamic behavior of the model, or trial-
and-error which is expensive. It can be prone to error if the
model does not behave as expected.13, 16 Second, it is difficult
to determine a global threshold, as there may be different lev-
els of fast scales. Third, there can be multiple disconnected
fast subsystems (we will define connectivity more precisely
in Sec. III). To group these disconnected subsystems together
is not efficient. Finally, as the system evolves dynamically
the fast subsystem may change over time. It is not easy to
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apply these model reductions, particularly to large models.
Note that automatic model reductions have been proposed
for deterministic models yet for different purposes, namely,
skeletal model reduction which permanently removes unim-
portant species or reactions whose contribution to species of
interest is negligible.17–22 Also note that Ref. 11 suggests an
algorithm to automatically identify sQSSA opportunities for
tau-leaping. But the algorithm cannot be generalized to de-
tect model reduction opportunities other than the application
of sQSSA to single fast-changing species in tau-leaping (for
example, stochastic M-M). Moreover, Kuwahara et al. have
proposed and implemented automated stochastic model re-
duction software based on several network motifs.23–25 How-
ever, the method and the software are limited to the proposed
static network motifs.

In this paper, we propose an automatic algorithm for the
analysis of stochastic models, to identify situations where spe-
cific model reductions may be deployed safely, efficiently,
and dynamically. Specifically, the algorithm uses adaptively
weighted Petri nets at different time points as “snapshots” of
the dynamic structure of a chemically reacting system. It an-
alyzes these snapshots using graph theory, and decomposes
the system at the “weak” nodes (slow reactions in the SSA
simulation or slowly changing species in the tau-leaping sim-
ulation). The algorithm defines fast and slow as relative local
properties. It locates and separates disconnected fast subsys-
tems dynamically. More importantly, the algorithm does not
need any input other than the model itself.

The outline of the paper is as follows. In Secs. II A
and II B, we briefly review the SSA, the tau-leaping method,
and the model reduction methods under consideration here.
In Sec. II C, we introduce the Petri net,26, 27 a graphical tool
to describe and analyze concurrent chemical processes. In
Sec. III, we describe our model reduction detection tech-
nique in detail, for both the SSA and tau-leaping versions. In
Sec. IV, we apply the algorithm to two realistic models: a heat
shock response (HSR) model for E. Coli (Ref. 28 and 29)
and a blood coagulation model.30 We also demonstrate how
fast subsystems can dynamically change, by analyzing the
blood coagulation model. In Sec. V, we give some thoughts
on the slow-scale tau-leaping method and propose an alterna-
tive method to better accelerate tau-leaping simulation.

II. BACKGROUND

A. SSA and tau-leaping

We begin with a well-stirred chemical reaction system
with n molecular species S1, . . . , Sn and m reaction channels
R1, . . . , Rm. We assume the system is confined to a constant
volume � at a constant temperature. Let xi(t) denote the pop-
ulation of species Si at time t. Then the state of the system at
time t is given by the state vector x(t) = (x1(t), . . . , xn(t))T .
Each reaction Rj is assumed to be characterized by two quanti-
ties: the probability aj (x) dt that one Rj reaction will occur in
the next infinitesimal time interval [t, t + dt), given x(t) = x,
where aj (x) is termed the reaction’s propensity function; and
νj , the change to the system’s state vector induced by one
Rj reaction. νj is called the stoichiometry vector of Rj. For

a unimolecular mass action reaction S1 → P, aj (x) has the
form cjx1, where cj is a constant. For a bimolecular mass
action reaction S1 + S2 → P, aj (x) has the form cjx1x2 (or
cj

1
2x1(x1 − 1) if S1 = S2), where cj is a constant.

The dynamics of the system are given by the chemical
master equation (CME) (Ref. 31)

∂

∂t
P (x, t |x0, t0) =

m∑
j=1

[aj (x − νj )P (x − νj , t | x0, t0)

− aj (x)P (x, t | x0, t0)], (1)

where P (x, t |x0, t0) is the probability that x(t) = x given
x(t0) = x0. Direct solution of the CME is not practical for all
but the simplest systems, although approximate methods have
been proposed.32–36 The SSA (Ref. 4) is an exact method to
numerically solve the chemical master equation by simulating
a large number of possible trajectories of the system. The SSA
is a kinetic Monte Carlo method based on the distribution of
the time τ to the next reaction and the distribution of the in-
dex r of the next reaction. The former is an exponential distri-
bution with mean 1/a0(x) where a0(x) = ∑m

j=1 aj (x), while
the latter is an integer random variable with probability mass
function P (r = j |τ ) = aj (x)/a0(x). At each step, the SSA
generates two random numbers from these two distributions
and advances the system by firing the chosen reaction at the
chosen time. By simulating a large number of trajectories, the
SSA can be used to approximate the distribution of the system
vector at any given time t.

In principle, the SSA is able to simulate all well-stirred
chemically reacting systems. However in practice, ineffi-
ciency of SSA simulation is a problem for most realistic mod-
els. Numerous exact approaches have been proposed to speed
up the SSA, including the optimized direct method,37 the next
reaction method,38 and the composition rejection algorithm.39

However, these are exact methods and must simulate every re-
action event in the system, so their efficiencies are limited by
the number of reaction events. This can be a serious restriction
for many systems. Thus, approximate methods have been pro-
posed, among which the explicit tau-leaping method is widely
used.

Instead of simulating one reaction at each step, tau-
leaping5 selects a time interval τ , fires multiple reactions dur-
ing this interval, and advances the system by all the reactions
that have fired during this interval. The basic idea is that if
the propensity functions of all the reactions are nearly con-
stant during the time interval [t, t + τ ), the number of firings
of each reaction can be approximated by a Poisson random
number P(aj (x)τ ). Then the state of the system can be ad-
vanced by the formula

x(t + τ ) ≈ x(t) +
m∑

j=1

P(aj (x)τ ) νj . (2)

The requirement for the propensities to be nearly constant
during the time interval is called the leap condition: for some
ε � 1,

|�τaj (x)/aj (x)| ≤ ε, for all j = 1, . . . , m, (3)
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where �τ aj is the change of aj during the time interval
[t, t + τ ). The stepsize τ must be small enough to satisfy
the leap condition. The consistency, stability, and accuracy of
tau-leaping simulation have been studied.40–42 It is easy to see
that the strategy to select τ is critical to the accuracy and speed
of tau-leaping simulation. The most widely used strategy for
mass action reactions is due to Cao et al.6 In that strategy, the
leap condition is written in terms of the changes in species’
populations rather than the changes in propensities, and the
expression for τ is given by

τ = min
i

{
max {εxi/gi, 1}∣∣∑

j νij aj (x)
∣∣ ,

max {εxi/gi, 1}2∣∣∑
j ν2

ij aj (x)
∣∣

}
, (4)

where ε � 1 is the preset accuracy control parameter, ν ij are
the stoichiometric coefficients, and gi is the highest order of
reaction in which species Si appears as a reactant. The objec-
tive is to limit both the means and the variances of the changes
in species’ populations.

B. Model reductions

Neither the SSA or explicit tau-leaping are efficient for
models with vastly different time scales. Numerous model re-
ductions have been proposed to further accelerate simulation
of systems with specific dynamic features. For our purposes,
we will review the ssSSA,8 the sQSSA,9–11 the stochastic M-
M approximation,9, 10, 12, 13 and the time-dependent solution
method.14

The ssSSA aims at systems with fast subsystems that go
to stochastic partial equilibrium.8 The method first catego-
rizes all reactions into fast reactions and slow reactions, as-
suming some knowledge of the system. Then it defines the
virtual fast process to be the subsystem consisting of fast re-
actions, with all the slow reactions turned off. Defined in this
way, the virtual fast process is a Markov process whose evo-
lution is given by a CME. If there is a non-trivial limit (par-
tial equilibrium distribution) of the CME of the virtual fast
process as t → ∞, and the time for the fast subsystem to
reach the partial equilibrium distribution is much faster than
the time to the firing of the next slow reaction, ssSSA uses the
partial equilibrium distribution of the virtual fast process to
approximately calculate the dynamics of the slow reactions.
To calculate the effective propensities of the slow reactions,
the populations of the fast species appearing in the propen-
sity functions can often be well approximated by the expec-
tations of their partial equilibrium distributions in the virtual
fast process.8

The sQSSA, on the other hand, reduces the model by tak-
ing some species to their stochastic quasi-steady state.9–11 A
species Si is said to be in stochastic quasi-steady state if

dP (xi |xs)

dt
≈ 0, (5)

where xs denotes the species that are not in the quasi-steady
state. Assuming that xi |xs with fixed xs is Markovian, then
by applying the quasi-steady state approximation (5), the dis-
tribution of P (xi |xs) with fixed xs can be obtained via the
steady state master equation of P (xi |xs). Consequently, the
quasi-steady state species xi can be eliminated from the CME

by summing over its conditional probability distribution over
fixed xs . The reduced CME can be simulated with either SSA
(Ref. 9) or tau-leaping,11 where xi is approximated by its
quasi-steady state distribution. The sQSSA does not require
a subsystem to reach stochastic partial equilibrium and is an
alternative to the ssSSA for systems with different dynamic
features.10

The stochastic M-M approximation9, 10, 12, 13 replaces the
set of three reactions

E + S
c1
⇀↽
c2

C
c3−→ E + P, (6)

with the single M-M reaction

S
c→ P. (7)

It has been shown that the stochastic M-M approximation
has the same form and validity conditions as the determin-
istic M-M approximation, and can be derived from either
the ssSSA approach or the sQSSA approach under different
conditions.13 It is also interesting to note that the M-M re-
duction speeds up SSA and tau-leaping simulation differently
under different conditions.43

The time-dependent solution method14 is an extension to
the sQSSA. It is inspired by the application of the sQSSA
to tau-leaping simulation. Instead of approximating the con-
ditional probability distribution of P (xi |xs) with fixed xs by
their quasi-steady state limit (5), the method uses the analyti-
cal time-dependent solution of the conditional probability dis-
tribution of those species. The method does not require the
conditional probability distribution of P (xi |xs) with fixed xs

to be in quasi-steady state. It will provide more accurate re-
sults than the sQSSA when both methods apply. In general,
the time-dependent solution is hard to derive, but for some
common motifs simple analytical solutions do exist. Refer-
ence 14 gives the time-dependent solution of fast-changing
species for several common motifs, automates the algorithm,
and demonstrates the power of this method on a complex real-
world model.

C. Petri nets

A Petri net is a graphical tool to model and study systems
with concurrent processes.26 It is named after Carl Adam Petri
who invented the Petri net for the purpose of describing dis-
crete processes.27 Much research has been done on both theo-
retical developments and applications of the Petri net, includ-
ing applying the Petri net to the study of biochemical reaction
systems.44, 45 It is an alternative representation of stochastic
biochemical reaction models and is equivalent to the CME.
The Petri net describes the biochemical system in a graphical
way that can be helpful in understanding the structure of the
system, making use of knowledge from graph theory.

A Petri net consists of states(species), transitions (reac-
tions), and directed edges. Species and reactions are intercon-
nected by directed edges which show the directions of reac-
tion flows. For example, consider a simple system consisting
of 3 species and 3 reactions

S1
c1
⇀↽
c2

S2
c3→ S3. (8)
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FIG. 1. The Petri net of the simple chemical system (8).

The Petri net of the system is shown in Fig. 1. Species S1,
S2, and S3 are denoted by round symbols and reactions R1,
R2, and R3 are denoted by rectangular symbols. For reac-
tion R1 converting S1 to S2, there is a directed edge com-
ing from its reactant S1, as well as a directed edge going
to its product S2. Directed edges are defined for all the re-
actions. Properly weighted, the Petri net can be a powerful
tool to describe and to visualize the dynamics of chemical
systems.

It is important to note that the Petri net, as well as its
close variants, has been used to analyze the dynamics of
chemical systems in the existing literature, yet for purposes
which are different from our objectives.46–51 In this paper,
we propose a new use of Petri nets: to identify situations
where specific model reductions can be safely and efficiently
deployed.

III. METHODS

In this section, we explain how to use Petri nets to au-
tomate the identification of opportunities for model reduc-
tion, in the context of SSA or tau-leaping simulation. First,
we review the general methodology of model reduction, in
the context of both SSA and tau-leaping simulation. Next,
we define relationships among reactions and species which
can help us to understand the dynamic network structure of
a chemically reacting system. Then we describe the algo-
rithms (one for SSA and one for tau-leaping) and explain why
they are able to capture the important dynamic features to
determine when approximations are both justified and ben-
eficial. At the end of this section, we present details of the
algorithms.

A. Model reduction methodology

Many of the model reduction methods for discrete
stochastic simulation exploit the presence of different time
scales. In other words, there are “slow” properties embed-
ded in “fast” elements in various chemically reacting systems.
Often it is the slow properties that determine the dynamics of
the system. By evaluating the slow properties properly instead
of simulating the fast elements directly, model reductions can
substantially increase the efficiency of stochastic simulation,
without losing much accuracy.

For the ssSSA,8 the fast element is the virtual fast pro-
cess, while the slow property is the partial equilibrium dis-
tribution of the virtual fast process. The partial equilibrium
distribution of the virtual fast process can be reached shortly
after one slow reaction fires, and will not change until the
next slow reaction fires. The ssSSA approximates the dynam-

ics of the fast reactions by calculating the partial equilibrium
distribution of the virtual fast process after each slow reac-
tion. In this way, the fast time scale is removed from the
simulation.

In the sQSSA,9–11 the fast elements are the fast-changing
species that are in stochastic quasi-steady state. The slow
properties are the quasi-steady states of these fast changing
species. The quasi-steady states of the fast changing species
are determined by the slowly changing species involved in the
production or consumption reactions.

The stochastic M-M approximation can be derived from
either the sQSSA approach9, 10 or the ssSSA approach12, 13 un-
der different conditions. For the enzyme-substrate system (6),
if ET � S0 + Km, where ET = E(t) + C(t), S0 = S(0), and
Km = (c2 + c3)/c1, the enzyme-substrate complex C is chang-
ing fast but after a short time it is in stochastic quasi-steady
state. Thus, the sQSSA can be applied and the fast chang-
ing species C is removed from the simulation. On the other
hand, if c2 � c3, then reactions R1 and R2 form the virtual
fast process, so the system can be reduced by the ssSSA. The
results of the two methods agree when both of the conditions
are satisfied.13

To exploit multiple time scales, one has to quan-
tify “slow” and “fast” for specific chemically reacting
systems. Generally, this has been pre-defined manually
and globally in both deterministic and stochastic model
reductions.8–10, 12, 13, 52–54 However, slow and fast are actually
relative properties and should be defined locally and dynam-
ically. We should also note that for the purpose of accelerat-
ing simulation, the concepts of fast and slow differ for differ-
ent simulation methods. For example, as mentioned above,
fast and slow usually refer to frequencies of reactions in
SSA, while in tau-leaping it is the relative rates of change
of species’ populations (which restricts the stepsize) that mat-
ters. A Petri net describes the network structure of chemically
reacting systems. Thus, it is very well suited for performing
local property analysis. By assigning weights to reaction or
species nodes of the Petri net, we are able to define fast and
slow locally and dynamically for a given chemically reacting
system, for SSA or tau-leaping.

B. Relationships among reactions and species

To make use of the Petri net, we must first define rela-
tionships between reactions and species. Recall that both SSA
and tau-leaping are based on the assumption that the dynam-
ics of a chemically reacting system is governed by propen-
sity functions, and that the propensity function of a reaction
is solely determined by the populations of its reactants and
kinetic constants. Hence, reactions are linked via changes of
species’ populations, and vice versa. Accordingly, we catego-
rize the relationships between reactions and species into un-
linked, weakly linked, and strongly linked.

Definition 1: Reaction R and species S are linked if there
is at least one edge connecting them in the Petri net.

In other words, reaction R and species S are linked
if species S serves as a reactant or product or enzyme in
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reaction R. There are two different types of links between re-
actions and species.

Definition 2: A link between reaction R and species S is
a strong link if each time a reaction R fires, the population of
species S is changed.

Definition 3: A link between reaction R and species S is
a weak link if each time a reaction R fires, the population of
species S is unchanged.

We can easily see that a link between reaction R and
species S is weak if species S serves as an enzyme of the re-
action (its stoichiometric coefficient is 0). Otherwise the link
is strong.

Based on the links between reactions and species, we can
define connections among reactions and connections among
species, as well as the reaction connection graph and the
species connection graph as follows.

Definition 4: Reaction R1 and reaction R2 are connected
if all of the following conditions are met:

1. There is a species S that they are both linked to;
2. At least one of the links is a strong link;
3. Species S serves as a reactant or enzyme in at least one

of the reactions.

The reaction connection graph GR of a chemically react-
ing system is an undirected graph whose nodes correspond to
all the reactions in the system, and whose edges correspond
to all the connections among reactions.

Note that the reaction connection graph is very similar to
the dependency graph commonly used to optimize the imple-
mentations of the SSA and its variants.37–39

Definition 5: Species S1 and species S2 are connected
if there is a reaction R that they are both linked to, and at
least one of the species serves as a reactant or enzyme in
reaction R.

The species connection graph GS of a chemically react-
ing system is an undirected graph whose nodes correspond to
all the species in the system, and whose edges correspond to
all the connections among species.

We also need to define the induced reaction connection
subgraph, the induced species connection subgraph, and the
induced sub-Petri net:

Definition 6: A reaction connection subgraph HR is a
subgraph of the reaction connection graph GR of a system.
The subgraph HR is induced by reactions {R1, . . . , Rk} if the
nodes of HR correspond to reactions {R1, . . . , Rk} and HR has
exactly the same edges that appear in GR over {R1, . . . , Rk}.

Definition 7: A species connection subgraph HS is a sub-
graph of the species connection graph GS of a system. The
subgraph HS is induced by species {S1, . . . , Sl} if the nodes
of HS correspond to species {S1, . . . , Sl} and HS has exactly
the same edges that appear in GS over {S1, . . . , Sl}.

Definition 8: Let GP be the Petri net of a system. Then a
Petri net HP is called a sub-Petri net of the system if HP is a
subgraph of GP.

� The sub-Petri net HP is induced by reactions {R1, . . . ,
Rk} if it is the Petri net corresponding to the subsystem
consisting of reactions {R1, . . . , Rk} and their linked
species in GP.

� The sub-Petri net HP is induced by species {S1, . . . ,
Sl} if it is the Petri net corresponding to the subsys-
tem consisting of species {S1, . . . , Sl} and their linked
reactions in GP.

Note that the propensity of a reaction changes only if
one of its linked reactions fires. Thus, the reaction connec-
tion graph can be very helpful while analyzing fast and slow
reactions for SSA: if two fast reactions are not connected in
the reaction connection subgraph induced by the fast reac-
tions, they will belong to two different virtual fast processes.
We will elaborate on this in Sec. III C.

Also note that the propensity of a reaction will change
relatively rapidly if and only if the populations of some of
its reactants or enzymes change relatively fast. Recall that
tau-leaping uses the relative rates of change of species’ pop-
ulations to determine the stepsize. To accelerate tau-leaping
simulation, we analyze the motifs of the species connection
subgraphs induced by the fast-changing species, where by
motifs we mean the graph structure of the connected compo-
nents of the species connection subgraph. If two fast-changing
species are not connected in the species connection subgraph
induced by the fast-changing species, they will belong to two
different fast-changing species groups and can be analyzed
separately. We will refine the analysis process in Sec. III D.

For the enzyme-substrate system (6), we show the Petri
net, the reaction connection graph, and the species connection
graph of the system in Fig. 2. Model analysis using the graphs
is illustrated in Secs. III C–III E.

C. Model analyzer for SSA

The SSA simulates every reaction event. It is the fast
reactions that restrict the stepsize and simulation efficiency

FIG. 2. The Petri net and connection graphs of the enzyme-substrate system:
(upper) the Petri net, (lower left) the reaction connection graph, and (lower
right) the species connection graph.
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of SSA. We note that, for any reaction R, until R or one
of its connected reactions fires, the propensity of R will re-
main unchanged. This feature was exploited in the next re-
action method.38 Consequently, if several fast reactions are
connected together and all the other reactions connected to
them are slow reactions, these fast reactions will form a vir-
tual fast process (recall that a virtual fast process is defined to
be the fast subsystem with slow reactions turned off). If this
process can reach stochastic partial equilibrium quickly, then
the ssSSA can be applied. Note that in this way, there can exist
multiple disconnected virtual fast processes simultaneously.

To analyze models to accelerate SSA simulation, one has
to locate all of the virtual fast processes. We already have the
stationary network structure (reaction connection graph) de-
rived from the Petri net. Now we need to quantify the dynamic
“fastness” across reactions:

Definition 9: Given a chemically reacting system consist-
ing of reactions {R1, . . . , Rm}, the functions {fj(t), j = 1, . . . ,
m} are called the fastness functions of reactions {R1, . . . ,
Rm} if

fj (t) dt =C E[# of f irings of Rj in [t, t + dt)], j =1, . . . , m,

where C is an arbitrary constant, and E denotes the
expectation.

With the fastness functions, we can compare the fastness
of connected reactions:

Definition 10: Let {fj(t), j = 1, . . . , m} be the fastness
functions of reactions {R1, . . . , Rm} in a chemically reacting
system. Then for any connected reaction pair Rl and Rk, as-
suming fk(t′) 	= 0, we say that at time t = t′,

1. Rl is faster than Rk if fl(t′)/fk(t′) ≥ λ;
2. Rl is of similar speed (similarly fast) as Rk if λ−1

< fl(t′)/fk(t′) < λ;
3. Rl is slower than Rk if fl(t′)/fk(t′) ≤ λ−1,

where λ is the distinguishing factor greater than 1, and varies
depending on the accuracy requirements and the speed gain
that one hopes to achieve by the model reduction(s).

It is natural to choose the propensity functions {aj(t),
j = 1, . . . , m} as the fastness functions of reactions. However,
this can be a bad choice in practice if the propensity functions
are very “noisy” due to fluctuations of species’ populations,
in which case the fast and slow comparison among connected
reactions may change much more frequently than we want.
Thus, it is more practical to use smoother functions as fast-
ness functions, such as the running average of propensities or
reaction counts in the time period of interest.

We can clearly see from Definition 10 that fast and slow
are local properties in the reaction connection graph. Reaction
R1 can be faster compared to reaction R2 but slower compared
to reaction R3.

Based on the fastness comparison between connected
reaction pairs, the model analyzer for SSA partitions all the
reactions into similarly fast reaction groups (SFRG) and iden-
tifies all of the virtual fast processes. The details of the par-

titioning algorithm will be given in Sec. III E. Once we have
identified all of the virtual fast processes, we can determine
whether model reductions will be applicable to them. For ex-
ample, for ssSSA, for a specific virtual fast process we need
to determine whether it will reach a stochastic partial equilib-
rium. Necessary and sufficient conditions for this are given in
Ref. 50 and Ref. 46 and 55, respectively:

Necessary condition. For a virtual fast process to be able
to reach stochastic partial equilibrium, the sub-Petri net in-
duced by the virtual fast process must be consistent. A sub-
Petri net is said to be consistent if there exists a column vec-
tor v = [v1, . . . , vm′ ]T such that �v = 0 and vi > 0 for all
i, where � = [ν1, . . . , νm′ ] is the stoichiometric matrix of the
sub-Petri net.50

Sufficient condition. A virtual fast process is able to reach
stochastic partial equilibrium if the chemical reaction net-
work (CRN) of the virtual fast process is weakly reversible
and of deficiency zero.46, 55

For the detailed definition of CRN, as well as weak re-
versibility and deficiency of a CRN, please refer to Ref. 46 or
Ref. 55. In this paper, we use only a weaker sufficient condi-
tion: a virtual fast process consisting of only reversible reac-
tion pairs is able to reach stochastic partial equilibrium. With
these two conditions, we can categorize virtual fast processes
into three classes: ssSSA reducible, ssSSA irreducible, and
possibly ssSSA reducible.

To illustrate these ideas, consider again the enzyme-
substrate system (6). Suppose c1 = 1, c2 = 100, c3 = 1, and
the initial conditions are S(0) = 1 × 105, E(0) = 1 × 103, C(0)
= P(0) = 0. After a transient period, the populations of E and
C will be ∼1 and ∼1 × 103, respectively. The propensity for
each reaction will be a1 ∼ 1 × 105, a2 ∼ 1 × 105, and a3 ∼ 1
× 103.

The reaction connection graph of the system is shown in
Fig. 2. By setting the fastness functions of the reactions to be
the expected propensity of each reaction, we can easily see
that R1 and R2 will be partitioned into one SFRG Y1, while
R3 will be partitioned into another SFRG Y2 (details of the
partitioning algorithm will be given in Sec. III E). Since Y1 is
the fastest SFRG, it will be identified as a virtual fast process.
The subsystem induced by R1 and R2 consists of reactions R1,
R2 and species S, E, and C. The subsystem induced by R1 and
R2 consists of only reversible reaction pairs, and thus satisfies
the sufficient condition to apply ssSSA. The ssSSA can be
applied to R1 and R2, and speeds up the SSA simulation sig-
nificantly. This result agrees with the partitioning which was
used in Ref. 13 but has been determined here in an automated
manner.

D. Model analyzer for tau-leaping

Model analysis for tau-leaping is similar to that for
SSA, except that the analysis is performed on the species
connection graph. The reason is that, as described in
Sec. II A, tau-leaping leaps through multiple reactions dur-
ing one step, and the stepsize is controlled by the relative
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change of each species. Thus, for tau-leaping, the efficiency
of the simulation is restricted by species that change rel-
atively fast. Most model reductions for tau-leaping work
by removing the species that change the fastest from the
stepsize calculation: the sQSSA (Refs. 9, 10, and 11) re-
moves species in stochastic quasi-steady state (the species’
population changes fast but the distribution of the species’
population remains relatively constant) from the stepsize cal-
culation; and the time-dependent solution method14 gives ex-
plicitly the time-dependent solution of the distributions of the
populations of the fast-changing species, for common net-
work subgraph motifs. Due to the nature of stepsize selec-
tion in tau-leaping, when treating fast-changing species it is
safe to approximate the connected slowly changing species
as constant during one “slow” step, where a “slow” stepsize
is the stepsize dictated by the rates of changes of only the
slowly changing species. Thus, we need to treat fast-changing
species as a group only when they are connected. To approx-
imate these fast-changing species groups, we use a species
connection graph weighted by the fastness of species to ana-
lyze the model, locate all such fast-changing species groups,
and compare them with known motifs to identify model re-
ductions that can be applied. To do so, we first define the fast-
ness function of species:

Definition 11: Given a chemically reacting system con-
sisting of species {S1, . . . , Sn}, the functions fi(t), i = 1, . . . , n
are called the fastness functions of species {S1, . . . , Sn} if

fi(t) dt = C E
[
τ−1
i in [t, t + dt)

]
, i = 1, . . . , n,

where C is an arbitrary constant, E denotes the expectation,
and

τi = min

{
max {εxi/gi, 1}∣∣∑

j νij aj (x)
∣∣ ,

max {εxi/gi, 1}2∣∣∑
j ν2

ij aj (x)
∣∣

}

is the stepsize restriction due to species Si in the leap
condition (4).

We can easily see from the definition that the fastness
function fi(t) of species Si is proportional to the average
number of steps that tau-leaping needs to take in a given
time period due to the restriction of species Si in the leap
condition (4). The larger fi(t) is, the faster the population of
Si changes.

With the fastness function of species, we can compare
fastness of connected species in the same way as we did for
reactions via Definition 10, on the species connection graph of
the system. Then the model analyzer partitions all the species
into similarly fast species groups (SFSG) and identifies all
the fast-changing species groups, as will be described in
Sec. III E. For each fast-changing species group, we do not
try to determine if it can reach stochastic partial equilibrium.
Rather, we compare the induced sub-Petri net with known
motifs to identify model reductions that can be applied. For
example, to determine whether the sQSSA is applicable to a
single fast-changing species Si, we calculate the ratio of τmean

(the first term in the leap condition (4)) to τvariance (the sec-
ond term in the leap condition (4)) of Si, in other words, the
ratio of the stepsize restriction due to the expected mean of

the change of Si to the stepsize restriction due to the expected
variance of the change of Si

ρi = τmean

τvariance
= max {εxi/gi, 1}/∣∣∑j νij aj (x)

∣∣
max {εxi/gi, 1}2/

∣∣∑
j ν2

ij aj (x)
∣∣ . (9)

If ρ i � max j{|ν ij|} (note that max j{|ν ij|} is usually 1 or 2),
then the population of Si is fluctuating a lot but the mean of
the population of Si is not changing much, and the sQSSA
will be applicable to Si. There are three reasons to define
such ρ’s as the indicators for sQSSA opportunities. First, in
Appendix A we show that ρ i � max j{|ν ij|} indeed indi-
cates that Si is in quasi-steady state. Second, τmean and τvariance

are already calculated in each step in tau-leaping simulation.
There is essentially no overhead to calculate the ρ’s. Third, as
sQSSA removes the stepsize restriction due to τvariance but not
the stepsize restriction due to τmean, if ρi 	� 1, the tau-leaping
simulation will not gain much speedup by applying sQSSA
even if Si is in quasi-steady state. (One such example would
be the case where the population of Si is much larger than the
“fluctuation” of the population of Si, so that the τvariance of Si is
not really restricting the tau-leaping stepsize.) With the same
argument, for multiple fast-changing species in a subnetwork,
we can test their ρ’s to determine whether the sQSSA can be
applied to them simultaneously.

The most well-known motif of two fast-changing species
connected together is a M-M type enzyme-substrate subsys-
tem. In Ref. 13, the authors showed that for the stochastic
M-M model reduction to be valid in a larger network, in addi-
tion to satisfying the validity condition ET � S0 + Km, there
must be sufficient time scale separation between the (faster)
enzyme-substrate reaction and the other (slower) reactions in
which the substrate S is involved. In tau-leaping simulation,
this means that the substrate S must be changing much more
slowly than the enzyme-substrate complex C. Thus, the step-
size restriction due to S must be much more relaxed than the
stepsize restriction due to C: τ S � τC. In Appendix B, we
show that when min {ρE, ρC} � 1, E and C are in quasi-
steady state. Note that in this system, the stochastic M-M is
valid if C is involved only in these three reactions and there is
sufficient time scale separation between the stepsize restric-
tion due to S and that due to C: τ S � τC. We use these con-
ditions as the criteria to identify opportunities for the stochas-
tic M-M model reduction: min {ρE, ρC} � 1, τ S � τC, and
C is involved only in these three reactions. The comparison
between τ S and τC is already done in the partitioning pro-
cess, thus it adds no overhead to the identification of sQSSA
opportunities.

An example analysis can be performed on enzyme-
substrate system (6) with the same parameters as in
Sec. III C. For tau-leaping, E will be the species associated
with the greatest stepsize restriction, before most of the sub-
strate S is consumed. The reactions linked with E are R1, R2,
and R3. R1 consumes E, while R2 and R3 produce E. By ap-
proximating the population of all other species as constant
during a “slow” step, R1, R2, and R3 become either zeroth or
first order. The ρ of E (as defined in (9)) will be very large
since a1 ∼ a2 + a3. We can easily see that the sQSSA or the
time-dependent solution method can be applied to E. On the
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other hand, since min {ρE, ρC} � 1 and τ S � τC (S partic-
ipates in fewer reactions than does C yet the population of S
is much larger than the population of C, thus τ S � τC), the
stochastic M-M can be applied to remove both E and C from
the tau-leaping stepsize restriction.

E. Partitioning algorithm

Now that we have both the stationary network structure
and the dynamic fastness comparison, we can construct the
model analyzer for SSA (tau-leaping). The objective of the
algorithm is to identify all of the SFRGs (SFSGs), from the
fastest to the slowest, while we perform a breadth-first search
of similarly fast reactions (species) to find each SFRG (SFSG)
and to connect slower SFRGs (SFSGs) to faster SFRGs (SF-
SGs). This is all done on the reaction connection graph
(species connection graph) of the system, whose nodes are
weighted by a set of fastness functions of reactions (species).
The analysis requires one realization of SSA (tau-leaping)
simulation of the system. The analysis process can be re-
peated each time that the fastness comparison between any
connected reaction (species) pair is changed, to capture all
the dynamical structure change of the system. Alternatively,
it can be repeated at different sampling time points for faster
but coarser analysis. The analysis algorithm at time t is out-
lined as below:

1. Sort all of the reactions (species) based on the fastness
functions of reactions (species) fi(t), so that f1(t) ≥ f2(t)
≥ · · · ≥ fm(t).

2. Let A = φ denote the reactions (species) already ana-
lyzed, B = φ denote the reactions (species) to be an-
alyzed, and C = {1, 2, . . . , m} denote the reactions
(species) not yet analyzed.

3. Choose the reaction Ri(species Si) in C with the largest
fastness function. Let B = B∪{i}, C = C\{i}. Form a
new SFRG (SFSG) Yl + 1 = {i}, if there are already l
SFRGs (SFSGs). Let Zl + 1 = φ denote the faster SFRGs
(SFSGs) that are connected to this SFRG (SFSG).

4. Choose the reaction Rj(species Sj) in B with the largest
fastness function. Let A = A∪{j}, B = B\{j}. Then for
each reaction Rk(species Sk) connected to Rj(Sj),

(a) add connected similarly fast reactions (species)
to SFRG (SFSG) Yl + 1: if Rk(Sk) is similarly fast
as Rj(Sj) and not yet analyzed, let B = B∪{k}, C
= C\{k}, and Yl + 1 = Yl + 1∪{k}.

(b) record another SFRG (SFSG) Yp that is connected
to SFRG (SFSG) Yl + 1: if Rk(Sk) is faster than
Rj(Sj) and already analyzed, assuming that k ∈ Yp,
then let Zl + 1 = Zl + 1∪{Yp}.

(c) record SFRG (SFSG) Yl + 1 as a faster SFRG
(SFSG) connected to a slower SFRG (SFSG) Yq: if
Rk(Sk) is slower than Rj(Sj) and already analyzed,
assuming that k ∈ Yq, then let Zq = Zq∪{Yl + 1}.

(d) otherwise do nothing.

5. Repeat 4 while B 	= φ.
6. Repeat 3 while C 	= φ.

The algorithm categorizes all the reactions (species) into
different SFRGs (SFSGs) {Yl}. It also records Zl for each Yl

denoting faster SFRGs (SFSGs) connected to Yl. Then we
process the SFRGs (SFSGs) from the fastest to the slowest, to
identify virtual fast processes (fast-changing species groups)
to which the ssSSA (sQSSA or stochastic M-M) is applica-
ble and beneficial: for each SFRG (SFSG) Yl, we recursively
include connected faster SFRGs (SFSGs) into the virtual fast
process (fast-changing species groups) induced by Yl. The va-
lidity conditions for these model reductions are given in Sub-
sections III C and III D, while the beneficial conditions exam-
ine whether the model reductions speed up the simulation. For
SSA, it is beneficial to apply the ssSSA to a virtual fast pro-
cess Yl only if Yl is responsible for more reaction events than
all the slow reactions combined. For tau-leaping, it is bene-
ficial to apply the sQSSA or stochastic M-M to species in a
fast-changing species group Yl only if the stepsize τ increases
significantly (for example, by 10 times) after removing the
species in Yl from the stepsize calculation.

For example, for the enzyme-substrate system (6) with
the same parameters as in Sec. III C, the model analyzer
for SSA partitions the reactions into Y1 = {R1, R2} and
Y2 = {R3}, while the connected faster SFRGs are Z1 = φ

and Z2 = {Y1}, respectively. We have shown in Sec. III C that
the ssSSA can be applied to Y1. On the other hand, the model
analyzer for tau-leaping partitions the species into Y1 = {E},
Y2 = {C}, Y3 = {S}, and Y4 = {P} (since P does not par-
ticipate in the stepsize calculation of tau-leaping, τP = ∞),
while the connected faster SFSGs are Z1 = φ, Z2 = {Y1},
Z3 = {Y1, Y2}, and Z4 = {Y1, Y2}, respectively. By comparing
the induced sub-Petri net to known motifs, we can see that the
sQSSA can remove Y1 from the system (and hence the step-
size restriction). Alternatively, the stochastic M-M approxi-
mation can remove Y1 and Y2 simultaneously from the system
(and hence the stepsize restriction), if {Y2}∪Z2 is also identi-
fied as a fast-changing species group.

IV. NUMERICAL EXAMPLES

Here, we present several examples that demonstrate the
applicability and power of our approach. The model analyz-
ers were developed in the framework of StochKit2.0.56 The
Graphviz drawing library57 was used for visualization of Petri
nets. The simulations were performed on an Intel i7-2600
Linux workstation with 8GB RAM.

A. Analyzing heat-shock response model for SSA

We first applied the model analyzer for SSA to the HSR
model of E. Coli.28, 29 The HSR model describes the mecha-
nism of how E. Coli responds to stress. In E. Coli, RNA poly-
merase (RNAP) binds to sigma factor σ 70 to transcribe genes
necessary for growth at normal temperature. When E. Coli
is exposed to high temperatures or other stresses that cause
protein to unfold, sigma factor σ 32 is rapidly induced and
binds to RNAP. The resultant complex σ 32:RNAP initiates
the transcription of genes that encode a variety of chaperone
enzymes. These chaperones treat the unfolded proteins, either
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FIG. 3. The four virtual fast processes of the HSR system, with reaction
nodes’ weights in parentheses in the reactions boxes at t = 100. The reaction
nodes’ weights are the actual reaction counts of each reaction from t = 98.4
to t = 104.2 in one SSA simulation.

by refolding them or by degrading them so that they will not
aggregate. On the other hand, one of the chaperone enzymes,
DNAK, is more likely to sequester a σ 32 when there is not
enough unfolded protein to bind. This precludes σ 32’s bind-
ing to RNAP and down-regulates the heat shock response. The
details of the deterministic model for the HSR system can be
found in Ref. 28, and a stochastic version was discussed in
Ref. 29. We use the same stochastic model as in Ref. 37, with
28 species participating in 61 chemical reactions.

Our proof of principal implementation of the model re-
duction works as follows. Based on the results of one SSA
simulation, with model analysis applied after every 61 000
reaction firings (so that on average each reaction fires 1000
times), we were able to identify four virtual fast processes for
the ssSSA (as shown in Fig. 3), which we applied for the en-
tire simulation time (from t = 0 to t = 500), as the model
analysis results suggested. Note that these are exactly the 12
fastest reactions hand-picked in Ref. 54, except that here they
have been automatically selected, verified, and divided into
four virtual fast processes. The ssSSA requires means of solv-
ing for the partial equilibrium states of the virtual fast pro-
cesses. We did this by solving a closed form solution for each
virtual fast process. We simulated a total of 10 000 samples of
the HSR model using the ssSSA. Then we simulated a total of

FIG. 4. Comparison of histograms (10 000 samples) of two slow species
mRNA (DNAK) and mRNA (σ 32) at t = 500 solved by the original SSA
and the ssSSA. The Euclidian distance and Manhattan distance in the figures
are respectively L2 norm and L1 norm of the histogram distance.

10 000 samples of the HSR model using the SSA. The average
SSA simulation took 30 s and the average ssSSA simulation
took only 0.40 s. Figure 4 shows the accuracy of the ssSSA
approximation. We note that, up to this time, using the ssSSA
in StochKit2.0 has required quite a bit of work in the form of
providing a code to solve for the partial equilibrium. This is
about to change, and will be handled automatically in a new,
innovative implementation due to Sanft et al.58

B. Analyzing the coagulation model for tau-leaping

We applied the model analyzer for tau-leaping to a blood
coagulation model.30 The coagulation model describes the
extrinsic blood coagulation system including pro- and anti-
coagulants. In this model, one of the most important coagu-
lation factors, thrombin (factor IIa), is formed through a cas-
cade of reactions which are initiated when tissue factor (TF)
is exposed to blood due to vessel injury: TF activates factor
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VII; then the complex TF_VIIa activates factor X and factor
IX; activated factor Xa in turn activates factor V, factor VIII,
and factor IX; the complex factor Xa_Va, as well as activated
Xa, activates prothrombin II to thrombin IIa. In the mean-
time, there are always anti-coagulants in the blood down-
regulating activated pro-coagulants, maintaining the fluidity
of the blood. Anti-coagulants antithrombin-III (ATIII) and tis-
sue factor pathway inhibitor (TFPI) are included in the model.
This model, with proper initial conditions, can be used to de-
scribe the initiation and propagation of the extrinsic blood co-
agulation pathway.30 The detailed model can be found in Ref.
30, and involves 34 species and 43 reactions.

We used the same initial conditions as in Ref. 30, and set
the initial concentration of TF to 2.5 × 10−11 mol/L (one of
the initial concentration choices of TF in Ref. 30). We sim-
ulated the system until t = 700, sampled the system every
10 000 tau-leaping steps, and chose the species node weights
fi(S) (fastness functions of species) to be the average of τ−1

i

for species Si, during the time since the previous sampling
point. We set the distinguishing factor λ = 5 to define slow
and fast between connected species. Note that max i, j{|ν ij|}
= 1 in this model. Thus, the ρ’s as defined in Eq. (9) were
compared to 1 to identify sQSSA and stochastic M-M oppor-
tunities. We were able to dynamically identify multiple motifs
in the system to which model reductions can be applied (the
identification of time-dependent solution approach opportuni-
ties is introduced in Ref. 14):

1. From t = 0 until t ≈ 30 (the first 10 000 tau-leaping
steps), species TF_VIIa is the fastest changing species
and restricts the simulation efficiency. By examining the
average ρ of TF_VIIa during this period, we found that
ρ ≈ 67. Thus, the sQSSA can be applied to species
TF_VIIa during this time period. This is because in the
very beginning the population of TF_VIIa is still small,
but it participates in 12 reactions, mostly serving as the
enzyme of enzyme-substrate systems. It is indeed in
quasi-steady state.

2. From t ≈ 30 to t ≈ 180, species Xa_Va and Xa_Va_II
form the fastest changing species group. The sub-Petri
net induced by these two species is shown in the dashed
box in Fig. 5. We can clearly see that part of the sub-
system is a M-M type enzyme-substrate system. By
examining the ρ’s of Xa_Va and Xa_Va_II, we found
that the sQSSA can be applied to them. Since R29, R30,
and R31 matches the motif of a M-M type subsystem,
the stochastic M-M can be applied to them first. Al-
ternatively, the time-dependent solution approach can
be applied to these two species. Since the next fastest
changing species has a stepsize restriction of about 20
times greater than the stepsize restriction of Xa_Va and
Xa_Va_II, either approximation can speed up the simu-
lation by a large amount.

3. From t ≈ 180 to t ≈ 280, species Xa_Va, Xa_Va_II, Xa,
IXa_VIIIa, and IXa_VIIIa_X form the fastest changing
species group. The sub-Petri net induced by these five
species is shown in Fig. 5. This is a cascade of two
enzyme-substrate systems linked by a reversible reac-
tion pair. By examining the ρ’s, we found all of the 5

FIG. 5. The sub-Petri net induced by Xa_Va, Xa_Va_II, Xa, IXa_VIIIa, and
IXa_VIIIa_X. Note that species II, mIIa, Va, and X have large populations
(denoted by large circles) and are all slowly changing species. Other associ-
ated slowly changing species are not drawn because they can be safely ap-
proximated as constant during one tau-leaping step. The sub-Petri net circled
by the dashed line is the enzyme-substrate system induced by Xa_Va and
Xa_Va_II; the sub-Petri net circled by the dotted line is the enzyme-substrate
system induced by IXa_VIIIa and IXa_VIIIa_X.

species to be in stochastic quasi-steady state. Also, both
enzyme-substrate subsystems match the stochastic M-M
motif. Thus, either the sQSSA or the stochastic M-M can
be applied.

4. From t ≈ 280 to t ≈ 430, species IXa_VIIIa and
IXa_VIIIa_X form the fastest changing species group,
and species Xa_Va_II forms the second fastest changing
species group. The sub-Petri net induced by these three
species is shown in Fig. 5, where the enzyme-substrate
system induced by IXa_VIIIa and IXa_VIIIa_X is cir-
cled by the dotted box. What happens is that factor
Va and Xa are produced (activated) rapidly and so is
their complex Xa_Va. Thus, the populations of Va, Xa,
and Xa_Va become much larger than the populations
of IXa_VIIIa, IXa_VIIIa_X, and Xa_Va_II. Although
the populations of Va, Xa, and Xa_Va still change as
rapidly as the populations of IXa_VIIIa, IXa_VIIIa_X,
and Xa_Va_II, the changes are relatively slow com-
pared to the large populations of Va, Xa, and Xa_Va.
The stochastic M-M approximation can be applied to
IXa_VIIIa and IXa_VIIIa_X, while the sQSSA can be
applied to Xa_Va_II. For a more accurate result, the
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FIG. 6. The sub-Petri net induced by TF_VIIa, TF_VIIa_X, TF_VIIa_Xa,
and TF_VIIa_IX. Note that X, Xa, IX, and IXa are slowly changing species.

time-dependent solution approach can be applied to both
groups.

5. From t ≈ 430 to t ≈ 700, species IXa_VIIIa and
IXa_VIIIa_X are still changing the fastest, while
the second fastest changing species group becomes
TF_VIIa, TF_VIIa_X, TF_VIIa_Xa, and TF_VIIa_IX.
The sub-Petri net induced by TF_VIIa, TF_VIIa_X,
TF_VIIa_Xa, and TF_VIIa_IX is shown in Fig. 6. We
can see that TF_VIIa, TF_VIIa_X, TF_VIIa_Xa, and
TF_VIIa_IX belong to two enzyme-substrate systems
with the same enzyme. Note that the enzyme-substrate
system activating factor X to Xa does not match the mo-
tif of a M-M type enzyme-substrate system (the reac-
tion network structure is different). Thus, the algorithm
recognizes only the enzyme-substrate system activating
factor IX to IXa as stochastic M-M applicable.

After having identified model reduction opportunities au-
tomatically for a single tau-leaping simulation with model
analysis applied after every 10 000 tau-leaping steps, we ap-
plied these model reductions to the ensemble simulation at
the indicated time periods. For simplicity purposes, we ap-
plied only the stochastic M-M reductions and compared the
results. From the model analysis results, we know there are

a total of four enzyme-substrate systems for which stochastic
M-M can be applied to and beneficial:

II
Xa_Va−−−→ mIIa, (10)

X
IXa_VIIIa−−−−−→ Xa, (11)

IX
TF_VIIa−−−−−→ IXa, (12)

X
TF_VIIa−−−−−→ Xa. (13)

To show that it is important to apply model reductions
dynamically (only when it is valid), first we applied stochas-
tic M-M reductions at indicated time periods and called it the
dynamically reduced model; that is, we applied stochastic M-
M to (10) from t = 30 to t = 430, to (11) from t = 180 to t =
700, to (12) and (13) from t = 430 to t = 700. We simulated
a total of 10 000 samples of the dynamically reduced model.
Then we applied stochastic M-M to all four enzyme-substrate
systems throughout the entire simulation time (from t = 0 to
t = 700) and called it the fully reduced model. We simulated
a total of 10 000 samples of the fully reduced model as well.
Finally, we simulated a total of 10 000 samples of the original
full model and compared simulation results. The average full
model simulation took 17 s, the average fully reduced model
simulation took 0.22 s, and the average dynamically reduced
model simulation took 0.93 s. Figure 7 shows the accuracy of
the fully reduced model and the dynamically reduced model,
compared with the full model. It is easy to see that the dy-
namically reduced model is much more accurate than the fully
reduced model.

C. Model analyzer software

Our model analyzer StochMA (StochKit Model Ana-
lyzer) takes a model file in StochKit2.0 XML (Ref. 56)
format (StochKit2.0 includes a converter from SBML to
this format), simulates a realization of the model using
SSA or tau-leaping, analyzes the model dynamically, and
outputs the model reduction suggestions at different time
points, in a Petri net graph format. The output examples are
shown in Fig. 8–11. The results agree with our analysis in
Subsections IV A and IV B.

The examples above demonstrate that the weighted Petri
net based model analyzer for SSA or tau-leaping is able to
dynamically identify the fastest virtual fast processes (SSA)
or the fastest changing species groups (tau-leaping) to which
model reductions are applicable and beneficial, with no ex-
pert knowledge input. It provides easy access to the dynamic
information of an unfamiliar chemically reacting system.

V. SOME THOUGHTS ON THE SLOW-SCALE
TAU-LEAPING METHOD

The slow-scale tau-leaping method15 approximates a
chemically reacting system in a manner similar to the ssSSA.8
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FIG. 7. Comparison of histograms (10 000 samples) of thrombin (IIa) at different times, simulated by the fully reduced model, the dynamically reduced model,
and the original full model. (a) Fully reduced vs. full model, t = 420. (b) Dynamically reduced vs. full model, t = 420. (c) Fully reduced vs. full model,
t = 700. (d) Dynamically reduced vs. full model, t = 700. The Euclidian distance and Manhattan distance in the figures are respectively L2 norm and L1 norm
of the histogram distance.

FIG. 8. The model reduction suggestions for the HSR model for SSA at t = 0. The sizes of reaction nodes are proportional to the log scale of their firing
frequencies. The virtual fast processes to which ssSSA is applicable and beneficial are enclosed in red rectangles. Different virtual fast processes are depicted
in different colors.
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FIG. 9. The model reduction suggestions for the HSR model for SSA at t = 300. The sizes of reaction nodes are proportional to the log scale of their firing
frequencies. The virtual fast processes to which ssSSA is applicable and beneficial are enclosed in red rectangles. Different virtual fast processes are depicted
in different colors.

The method looks for the virtual fast process that contains
only fast reactions and will reach stochastic partial equilib-
rium rapidly, before the next slow reaction fires. Thus, the cri-
teria to apply both the ssSSA and the slow-scale tau-leaping
are the same. However, while the ssSSA can always speed
up SSA simulation by a considerable amount, in some cases
the slow-scale tau-leaping does not benefit tau-leaping simu-
lation nearly as much. Also there are cases, such as for the
coagulation model, tau-leaping simulation can benefit a lot
from model reductions such as stochastic M-M reductions
but slow-scale tau-leaping does not apply. The discrepancy
of model reduction benefits for the SSA and tau-leaping sim-
ulation has been discussed separately in Refs. 59 and 43.
Here, we suggest a systematic alternative to the slow-scale
tau-leaping method that better fits the dynamic features of tau-
leaping simulation.

Consider an example extracted from the coagulation
model. While applying the SSA model analyzer to the coagu-
lation model, we found that from t ≈ 0 to t ≈ 300, the fastest

reaction group contains the following 4 reactions:

Xa_Va + II
R30
⇀↽
R29

Xa_Va_II
R31−−→ Xa_Va + mIIa,

mIIa + ATIII
R39−−→ mIIa_ATIII.

(14)

The sub-Petri net induced by the 4 reactions is shown in
Fig. 12. It is not hard to see that it contains the same enzyme-
substrate system that also appears in the dashed box in Fig. 5.
Since the sub-Petri net does not satisfy the necessary condi-
tion to apply ssSSA, this 4-reaction group will not be able to
reach stochastic partial equilibrium. This is obvious because
species II and ATIII are constantly consumed while species
mIIa_ATIII are constantly produced. Thus, the slow-scale ap-
proximation will not be applicable to this 4-reaction group.
On the other hand, the sQSSA or the stochastic M-M can be
applied to the enzyme-substrate system and will substantially
speed up tau-leaping simulation, as shown in Sec. IV B. The
reason is that there is no time scale separation in the fastness
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FIG. 10. The model reduction suggestions for the coagulation model for tau-
leaping at t = 50. The sizes of species nodes Si are proportional to log (1/τ i)
(the larger the node, the smaller the stepsize). The fast-changing species
groups to which sQSSA is applicable and beneficial are enclosed in red rect-
angles. The enzyme-substrate systems to which stochastic M-M is applica-
ble and beneficial are enclosed in purple rectangles. Different fast-changing
species groups are depicted in different colors.

FIG. 12. The sub-Petri net induced by the fastest reaction group from t ≈ 0
to t ≈ 300 for the coagulation model.

of reactions, however, there is a significant time scale separa-
tion in the relative rates of change of species’ populations.

Note that for the ssSSA or slow-scale tau-leaping to be
valid, the fast subsystem must be able to reach stochastic par-
tial equilibrium on the time scale of the slow part of the sys-
tem, so that the propensities of the neighboring slow reac-
tions can be accurately approximated by their expectations
over the partial equilibrium distribution of the fast subsystem.
Now suppose that there is a slow reaction that has mIIa_ATIII
as a reactant. Then we can see how this condition will fail:
mIIa_ATIII will not reach partial equilibrium because the
population will always increase.

We inspected this system closely, and found that the pop-
ulations of species II, mIIa, ATIII, and mIIa_ATIII were large.
Thus, although all four of the reactions are fast, they do not

FIG. 11. The model reduction suggestions for the coagulation model for tau-leaping at t = 200. The sizes of species nodes Si are proportional to log (1/τ i) (the
larger the node, the smaller the stepsize). The fast-changing species groups to which sQSSA is applicable and beneficial are enclosed in red rectangles. The
enzyme-substrate systems to which stochastic M-M is applicable and beneficial are enclosed in purple rectangles. Different fast-changing species groups are
depicted in different colors.
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result in a rapid change of the relative populations of these
species. Recall that there is another piece of information that
the ssSSA does not make use of: the populations of species
or the values of propensities of reactions. What is relevant for
the ssSSA is the absolute change of the species’ populations,
or the absolute change of the propensities of reactions. This
fits very well with SSA since this is exactly what SSA com-
putes. On the other hand, tau-leaping is concerned more with
the relative change of both. Thus, the slow-scale approxima-
tion is sometimes not quite a good fit for tau-leaping. On the
contrary, the sQSSA focuses more on the relative change of
species’ populations. It is applicable when the expectation of
a species’ population changes much more slowly than the ac-
tual change of that species’ population.

In this particular example, suppose that there is a slow
reaction that has mIIa_ATIII as a reactant. Because the pop-
ulation of mIIa_ATIII is always increasing, we cannot find a
good approximation to the propensity of the slow reaction un-
less we know that the population of mIIa_ATIII is large and
the relative change of the population of mIIa_ATIII between
two slow reactions is very small. In fact, tau-leaping is al-
ready efficient in this situation, which is why mIIa_ATIII or
mIIa were not identified as fast-changing species that are con-
straining the stepsize when we applied the model analyzer for
tau-leaping to the coagulation model. What restricts the effi-
ciency of tau-leaping simulation is species with small popu-
lations that participate in fast reactions, such as Xa_Va and
Xa_Va_II. The sQSSA or the time-dependent solution ap-
proximation can yield substantial speed-ups in this situation.

As a result, we suggest an alternative to the slow-scale
tau-leaping method. Instead of looking for fast reactions first
and defining all the species associated with fast reactions as
fast species, we look for fast-changing species first and de-
fine all the reactions associated with fast-changing species
as fast-changing reactions. Instead of looking for stochastic
partial equilibrium of the fast subsystem, we look for fast-
changing species that are in quasi-steady state. Then we apply
the sQSSA to the actual fast scale restriction in tau-leaping:
fast-changing species.

VI. CONCLUSIONS

We have proposed automatic model analyzers for SSA
and tau-leaping simulation. The automatic model analyzers
can dynamically identify situations where model reductions
can be safely and efficiently applied, with no expert knowl-
edge input. We have demonstrated the effectiveness of the
model analyzers to identify ssSSA opportunities for SSA sim-
ulation, as well as to identify sQSSA and stochastic M-M op-
portunities for tau-leaping simulation.

Besides these applications, the weighted reaction con-
nection graph and species connection graph are powerful
graphical tools that can be extended to identify other model
reduction opportunities or interesting dynamic motifs in sim-
ulation. Automatic model reductions in simulation are also
possible using this graphical tool. One shortcoming of the cur-
rent model analyzer is that, since it bases its analysis on time
snapshots from one SSA or tau-leaping simulation, it may not
capture motifs that do not become active during that realiza-

tion of the simulation. We are currently pursuing the imple-
mentation of a dynamic watcher of system dynamics which,
coupled with dynamic instantiation of the model reduction,
could achieve automatic model reduction for both stochastic
simulation and deterministic simulation of chemically react-
ing systems.
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APPENDIX A: CRITERIA TO IDENTIFY SQSSA
OPPORTUNITIES IN TAU-LEAPING

Define ρ i of species Si as the ratio of τmean to τvariance of
Si in tau-leaping. In other words, ρ i is the ratio of the stepsize
restriction due to the expected mean of the change of Si to the
stepsize restriction due to the expected variance of the change
of Si

ρi = τmean

τvariance
= max {εxi/gi, 1}/∣∣∑j νij aj (x)

∣∣
max {εxi/gi, 1}2/

∣∣∑
j ν2

ij aj (x)
∣∣ . (A1)

Claim: If ρ i � max j|ν ij|, then species Si is in quasi-
steady state.

Proof: Let Ri + = {Rj|ν ij > 0} denote all the reactions that
produce Si, and Ri − = {Rj|ν ij < 0} denote all the reactions
that consume Si. Then∣∣∣∣∣∣

∑
j

νij aj (x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
Rj ∈Ri+

|νij |aj (x) −
∑

Rj ∈Ri−
|νij |aj (x)

∣∣∣∣∣∣ ,
(A2)

∣∣∣∣∣∣
∑

j

ν2
ij aj (x)

∣∣∣∣∣∣ ≤ max
j

|νij |
∣∣∣∣∣∣

∑
Rj ∈Ri+

|νij |aj (x) +
∑

Rj ∈Ri−
|νij |aj (x)

∣∣∣∣∣∣ .
(A3)

Thus,

ρi = 1

max {εxi/gi, 1}

∣∣∣∑j ν2
ij aj (x)

∣∣∣∣∣∣∑j νij aj (x)
∣∣∣

≤ maxj |νij |
max {εxi/gi, 1}

∣∣∣∑Rj ∈Ri+ |νij |aj (x) + ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣∣∣∣∑Rj ∈Ri+ |νij |aj (x) − ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣
≤ max

j
|νij |

∣∣∣∑Rj ∈Ri+ |νij |aj (x) + ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣∣∣∣∑Rj ∈Ri+ |νij |aj (x) − ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣ .
(A4)
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Thus,

ρi � max
j

|νij |

⇒

∣∣∣∑Rj ∈Ri+ |νij |aj (x) + ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣∣∣∣∑Rj ∈Ri+ |νij |aj (x) − ∑
Rj ∈Ri− |νij |aj (x)

∣∣∣ � 1

⇒
∣∣∣∣∣1 −

2
∑

Rj ∈Ri− |νij |aj (x)∑
Rj ∈Ri+ |νij |aj (x) + ∑

Rj ∈Ri− |νij |aj (x)

∣∣∣∣∣ � 1

⇒
2
∑

Rj ∈Ri− |νij |aj (x)∑
Rj ∈Ri+ |νij |aj (x) + ∑

Rj ∈Ri− |νij |aj (x)
≈ 1

⇒
∑

Rj ∈Ri+
|νij |aj (x) ≈

∑
Rj ∈Ri−

|νij |aj (x). (A5)

The production rate and consumption rate of Si are almost
equal. Thus, Si is in quasi-steady state. �

APPENDIX B: CRITERIA TO IDENTIFY STOCHASTIC
M-M OPPORTUNITIES IN TAU-LEAPING

Claim: For the enzyme-substrate system

E + S
c1
⇀↽
c2

C
c3→ E + P, (B1)

independent of whether it is part of a larger network, the
stochastic M-M can be applied if all of the following condi-
tions are met:

1. min {ρE, ρC} � 1;
2. τ S � τC;
3. C is involved only in these three reactions.

Proof: As suggested in Ref. 13, the stochastic M-M can
be applied to the enzyme-substrate system when ET � S0

+ Km. When it is part of a larger network, there is the ad-
ditional condition of sufficient time scale separation between
the (faster) enzyme-substrate system and the other (slower)
reactions that the substrate S is involved in. We have already
shown in Sec. III D that the additional condition is satisfied
when τ S � τC. Here, we need only to show that ET � S0

+ Km also holds.
Let xS, xE, and xC denote the populations of species S, E,

and C, respectively. Then by Appendix A,

ρC � 1

⇒ a1(x) ≈ a2(x) + a3(x)

⇒ c1xSxE ≈ (c2 + c3)xC. (B2)

Note that S0 = xS, Km = (c2 + c3)/c1, and ET = xE + xC. Thus,

Km ≈ xS

ET − xC

xC

, (B3)

S0 + Km ≈ xSET

xC

. (B4)

If xS � xC, then ET � S0 + Km. Thus, we must show
xS � xC.

Note that C is involved in only these three reactions. As
ρC � 1, recall that gC is the highest order of reaction in which

species C appears as a reactant. Thus, we have

τC = max {εxC/gC, 1}2

a1(x) + a2(x) + a3(x)
= max {εxC, 1}2

a1(x) + a2(x) + a3(x)
.

(B5)

Let aother (x) = ∑
ν2

ij aj (x), where the sum is over all the
other reactions that S is involved in. Note a1(x) ≈ a2(x)
+ a3(x). Then,

τS ≤ max {εxS/gS, 1}2

a1(x) + a2(x) + aother (x)

≤ 2 max {εxS/gS, 1}2

a1(x) + a2(x) + a3(x) + aother (x)
. (B6)

Thus,

τS � τC

⇒ 2 max {εxS/gS, 1}2

a1(x) + a2(x) + a3(x) + aother (x)

� max {εxC, 1}2

a1(x) + a2(x) + a3(x)

⇒ max {εxS/gS, 1} � max {εxC, 1}

⇒
{

εxS/gS � 1

εxS/gS � εxC

⇒ xS � gSxC ≥ xC. (B7)

The conclusion follows. �

1H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. U.S.A. 94, 814 (1997).
2A. Arkin, J. Ross, and H. McAdams, Genetics 149, 1633 (1998).
3H. McAdams and A. Arkin, Trends Genet. 15, 65 (1999).
4D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
5D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001).
6Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 124, 044109
(2006).

7Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 126, 224101
(2007).

8Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 122, 014116
(2005).

9C. Rao and A. P. Arkin, J. Chem. Phys. 118, 4999 (2003).
10E. A. Mastny, E. L. Haseltine, and J. B. Rawlings, J. Chem. Phys. 127,

094106 (2007).
11Y. Pu, L. T. Watson, and Y. Cao, J. Chem. Phys. 134, 054105 (2011).
12D. T. Gillespie, Y. Cao, K. R. Sanft, and L. R. Petzold, J. Chem. Phys. 130,

064103 (2009).
13K. R. Sanft, D. T. Gillespie, and L. R. Petzold, IET Syst. Biol. 5, 58

(2011).
14J. Fu, S. Wu, and L. R. Petzold, “Time dependent solution for acceleration

of tau-leaping,” J. Comp. Phys. (submitted).
15Y. Cao and L. R. Petzold, Comput. Methods Appl. Mech. Eng. 197, 3472

(2008).
16D. Barik, M. R. Paul, W. T. Baumann, Y. Cao, and J. J. Tyson, Biophys. J.

95, 3563 (2008).
17W. Zhu and L. Petzold, AIChE J. 45, 869 (1999).
18B. Bhattacharjee, D. A. Schwer, P. I. Barton, and W. H. Green, Jr., Combust.

Flame 135, 191 (2003).
19T. Lu and C. K. Law, Proc. Combust. Inst. 30, 1333 (2005).
20M. Valorani, F. Creta, D. A. Goussis, J. C. Lee, and H. N. Najm, Combust.

Flame 146, 29 (2006).
21P. Pepiot-Desjardins and H. Pitsch, Combust. Flame 154, 67 (2008).
22T. Nagy and T. Turnyi, Combust. Flame 156, 417 (2009).

http://dx.doi.org/10.1073/pnas.94.3.814
http://dx.doi.org/10.1016/S0168-9525(98)01659-X
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.2159468
http://dx.doi.org/10.1063/1.2745299
http://dx.doi.org/10.1063/1.1824902
http://dx.doi.org/10.1063/1.1545446
http://dx.doi.org/10.1063/1.2764480
http://dx.doi.org/10.1063/1.3548838
http://dx.doi.org/10.1063/1.3072704
http://dx.doi.org/10.1049/iet-syb.2009.0057
http://dx.doi.org/10.1016/j.cma.2008.02.024
http://dx.doi.org/10.1529/biophysj.108.129155
http://dx.doi.org/10.1002/aic.690450712
http://dx.doi.org/10.1016/S0010-2180(03)00159-7
http://dx.doi.org/10.1016/S0010-2180(03)00159-7
http://dx.doi.org/10.1016/j.proci.2004.08.145
http://dx.doi.org/10.1016/j.combustflame.2006.03.011
http://dx.doi.org/10.1016/j.combustflame.2006.03.011
http://dx.doi.org/10.1016/j.combustflame.2007.10.020
http://dx.doi.org/10.1016/j.combustflame.2008.11.001


034106-17 Wu et al. J. Chem. Phys. 137, 034106 (2012)

23H. Kuwahara, C. Myers, M. Samoilov, N. Barker, and A. Arkin, “Auto-
mated abstraction methodology for genetic regulatory networks,” in Trans-
actions on Computational Systems Biology VI, edited by C. Priami, and G.
Plotkin (Springer-Verlag, Berlin, 2006), pp. 150–175.

24H. Kuwahara and C. J. Myers, J. Comput. Biol. 15, 779 (2008).
25H. Kuwahara, C. J. Myers, and M. S. Samoilov, PLOS Comput. Biol. 6,

e1000723 (2010).
26J. L. Peterson, Petri Net Theory and the Modeling of Sytems (Prentice-Hall,

Englewood Cliffs, New Jersey, 1981).
27C. A. Petri, “Communication with automata,” Technical Report No.

RADC-TR-65-377 (Applied Data Research, Princeton, NJ, 1966).
28H. Kurata, H. El-Samad, T.-M. Yi, M. Khammash, and J. Doyle, in Pro-

ceedings of the 40th IEEE Conference on Decision and Control (IEEE,
2001), Vol. 1, p. 837.

29H. Kurata, M. Khammash, and J. Doyle, in Proceedings of the Third Inter-
national Conference on Systems Biology, 2002.

30M. F. Hockin, K. C. Jones, S. J. Everse, and K. G. Mann, J. Biol. Chem.
277, 18322 (2002).

31D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007), a review of the
stochastic simulation algorithm, chemical master equation, and related
topics.

32K. Burrage, M. Hegland, S. MacNamara, and R. B. Sidje, in 150th Markov
Anniversary Meeting, edited by A. Langville, and W. Stewardt (Boson
Books, Raleigh, NC, 2006), pp. 21–38.

33B. Munsky and M. Khammash, J. Chem. Phys. 124, 044104 (2006).
34L. Ferm, P. Lötstedt, and P. Sjöberg, BIT 46, 61 (2006).
35M. Mateescu, V. Wolf, F. Didier, and T. Henzinger, IET Syst. Biol. 4, 441

(2010).
36T. Jahnke and T. Udrescu, J. Comput. Phys. 229, 5724 (2010).
37Y. Cao, H. Li, and L. R. Petzold, J. Chem. Phys. 121, 4059

(2004).
38M. A. Gibson and J. Bruck, J. Chem. Phys. 104, 1876 (2000).

39A. Slepoy, A. P. Thompson, and S. J. Plimpton, J. Chem. Phys. 128, 205101
(2008).

40M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, Multiscale Model.
Simul. 4, 867 (2005).

41T. Li, Multiscale Model. Simul. 6, 417436 (2007).
42D. F. Anderson, A. Ganguly, and T. G. Kurtz, Ann. Appl. Probab. 21, 2226–

2262 (2011).
43S. Wu, J. Fu, Y. Cao, and L. R. Petzold, J. Chem. Phys. 134, 134112 (2011).
44C. Chaouiya, Briefings Bioinf. 8, 210 (2007).
45P. J. E. Goss and J. Peccoud, Proc. Natl. Acad. Sci. U.S.A. 95, 6750 (1998).
46M. Feinberg, Chem. Eng. Sci. 42, 2229 (1987).
47V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman, Proc. Int. Conf.

Intell. Syst. Mol. Biol. 1, 328 (1993).
48I. Zevedei-Oancea and S. Schuster, In Silico Biol. 3, 323 (2003).
49G. Craciun and M. Feinberg, SIAM J. Appl. Math. 66, 1321 (2006).
50D. Angeli, P. de Leenheer, and E. Sontag, Math. Biosci. 210, 598 (2007).
51D. Angeli, P. de Leenheer, and E. Sontag, J. Math. Biol. 61, 581 (2010).
52S. H. Lam and D. A. Goussis, Int. J. Chem. Kinet. 26, 461 (1994).
53M. S. Okino and M. L. Mavrovouniotis, Chem. Rev. 98, 391 (1998).
54Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Comput. Phys. 206, 395

(2005).
55D. F. Anderson, G. Craciun, and T. G. Kurtz, Bull. Math. Biol. 72,

19471970 (2010).
56K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim, and L. R. Petzold, Bioinfor-

matics 27, 2457 (2011).
57E. R. Gansner, Drawing Graphs with Graphviz (2011), see

http://www.graphviz.org/pdf/libguide.pdf.
58K. R. Sanft, S. Wu, D. T. Gillespie, and L. R. Petzold, “Automatic slow-

scale stochastic simulation algorithm with dynamic partitioning and effi-
cient partial equilibrium approximation,” J. Comput. Phys. (submitted).

59L. A. Harris, A. M. Piccirilli, E. R. Majusiak, and P. Clancy, Phys. Rev. E
79, 051906 (2009).

http://dx.doi.org/10.1089/cmb.2007.0135
http://dx.doi.org/10.1371/journal.pcbi.1000723
http://dx.doi.org/10.1074/jbc.M201173200
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/10.1063/1.2145882
http://dx.doi.org/10.1007/s10543-006-0082-z
http://dx.doi.org/10.1049/iet-syb.2010.0005
http://dx.doi.org/10.1016/j.jcp.2010.04.015
http://dx.doi.org/10.1063/1.1778376
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1063/1.2919546
http://dx.doi.org/10.1137/040603206
http://dx.doi.org/10.1137/040603206
http://dx.doi.org/10.1137/06066792X
http://dx.doi.org/10.1214/10-AAP756
http://dx.doi.org/10.1063/1.3576123
http://dx.doi.org/10.1093/bib/bbm029
http://dx.doi.org/10.1073/pnas.95.12.6750
http://dx.doi.org/10.1016/0009-2509(87)80099-4
http://dx.doi.org/10.1137/050634177
http://dx.doi.org/10.1016/j.mbs.2007.07.003
http://dx.doi.org/10.1007/s00285-009-0309-0
http://dx.doi.org/10.1002/kin.550260408
http://dx.doi.org/10.1021/cr950223l
http://dx.doi.org/10.1016/j.jcp.2004.12.014
http://dx.doi.org/10.1007/s11538-010-9517-4
http://dx.doi.org/10.1093/bioinformatics/btr401
http://dx.doi.org/10.1093/bioinformatics/btr401
http://www.graphviz.org/pdf/libguide.pdf
http://dx.doi.org/10.1103/PhysRevE.79.051906

