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Abstract
Background

A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge
of its kinetic parameters. Despite recent experimental advances, the estimation of unknown
parameter values from observed data is still a bottleneck for obtaining accurate simulation
results. Many methods exist for parameter estimation in deterministic biochemical systems;
methods for discrete stochastic systems are less well developed. Given the probabilistic
nature of stochastic biochemical models, a natural approach is to choose parameter values
that maximize the probability of the observed data with respect to the unknown parameters,
a.k.a. the maximum likelihood parameter estimates (MLEs). MLE computation for all but
the simplest models requires the simulation of many system trajectories that are consistent
with experimental data. For models with unknown parameters, this presents a computational
challenge, as the generation of consistent trajectories can be an extremely rare occurrence.



Results

We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy
Method (MCEM?): an accelerated method for calculating MLEs that combines advances in
rare event simulation with a computationally efficient version of the Monte Carlo expectation-
maximization (MCEM) algorithm. Our method requires no prior knowledge regarding pa-
rameter values, and it automatically provides a multivariate parameter uncertainty estimate.
We applied the method to five stochastic systems of increasing complexity, progressing from
an analytically tractable pure-birth model to a computationally demanding model of yeast-
polarization. Our results demonstrate that MCEM? substantially accelerates MLE compu-
tation on all tested models when compared to a stand-alone version of MCEM. Additionally,
we show how our method identifies parameter values for certain classes of models more
accurately than two recently proposed computationally efficient methods.

Conclusions

This work provides a novel, accelerated version of a likelihood-based parameter estimation
method that can be readily applied to stochastic biochemical systems. In addition, our
results suggest opportunities for added efficiency improvements that will further enhance
our ability to mechanistically simulate biological processes.

Background

Conducting accurate mechanistic simulations of biochemical systems is a central task in
computational systems biology. For systems where a detailed model is available, simula-
tion results can be applied to a wide variety of tasks including sensitivity analysis, in silico
experimentation, and efficient design of synthetic systems [1]. Unfortunately, mechanistic
models for many biochemical systems are not known; consequently, a prerequisite for the
simulation of these systems is the determination of model structure and kinetic parameters
from experimental data.

Despite recent advances in experimental methodology, the estimation of unknown kinetic pa-
rameters from data is a bottleneck for performing accurate simulations [2]. For deterministic
models of biochemical systems, where dynamics are typically described by ordinary differ-
ential equations, reliable methods for parameter estimation are relatively abundant [3]. In
contrast, parameter estimation for stochastic biochemical systems are less well developed [4].
In recent years it has become increasingly clear that stochasticity plays a crucial role in many
biological processes, ranging from bistable genetic switches [5-7] to robust oscillators [8,9].
Unlike in the deterministic regime, the dynamics of a stochastic system are described by
a probability distribution which cannot usually be obtained analytically (although approxi-
mate methods such as finite state projection have been used with some success [10]). Instead,



sampling methods like the stochastic simulation algorithm (SSA) [11] are used to generate
ensembles of trajectories from the unknown distribution.

Given the probabilistic nature of stochastic biochemical models, a natural approach for pa-
rameter estimation is to choose values that maximize the probability of the observed data
with respect to the unknown parameters (maximum likelihood estimates or MLEs). In the
case of fully observed data, where the number of molecules of each system species is known
at all time points, MLEs can be calculated analytically. However, since realistic biochemical
systems are discretely and partially observed, computational MLE methods are necessary.
One of the earliest examples presented, simulated maximum likelihood (SML), combines a
non-parametric density function estimator with Monte Carlo simulation to approximate the
likelihood function [12]. To maximize the likelihood, SML uses a genetic algorithm requiring
absolute bounds on each of the unknown parameters. Horvath and Manini developed an
expectation-maximization (EM) approach (see Methods) which artificially modifies a sub-
set of reactions in simulated trajectories to approximate and maximize the likelihood [13].
However, this method can become increasingly inaccurate as species counts approach zero,
and it is not clear how to properly choose the number of reactions to modify at each step.
More recently, a histogram-based Monte Carlo simulation procedure was developed to esti-
mate data likelihood [2]. Like the SML method, this approach uses a genetic algorithm to
maximize the likelihood, requiring prior parameter bounds. Finally, Wang et al. proposed a
method combining stochastic gradient descent (SGD) with a reversible jump Markov chain
Monte Carlo sampler to maximize parameter likelihood [4]. The SGD method efficiently
and heuristically generates trajectories consistent with observed data, iteratively modifying
them via a Metropolis-Hastings step until they closely approximate trajectories from the
unknown probability distribution.

Although not strictly an MLE method, Boys et al. developed a Bayesian approach for in-
ferring parameters that employs a Poisson process approximation to efficiently generate
trajectories consistent with observed data [14]. Like SGD, this method also incorporates a
Metropolis-Hastings sampling step to correct for the approximate nature of the generated
trajectories.

All of the above MLE approaches essentially iterate between two steps: (A) approximating
a parameter likelihood using Monte Carlo sampling and (B) maximizing that approximation
with respect to the unknown parameters using an optimization algorithm. We note that
the Bayesian method of Boys et al. also requires extensive Monte Carlo sampling in the
manner of step (A). Execution of (A) requires the generation of many system trajectories
that are consistent with experimental data. When simulating trajectories of a model with
unknown parameters, the generation of even a single trajectory consistent with data can
be an extremely rare occurrence. The SML and histogram-based methods [2,12] mitigate
this computational challenge by requiring accurate bounds for each unknown parameter. In
contrast, the EM-based, SGD, and Poisson approximation methods [4,13,14] reduce simula-



tion cost by generating system trajectories in a heuristic manner. Although these strategies
have been successful, parameter bounds are not always available, and it is not clear whether
heuristically generated trajectories can be used to accurately and efficiently parameterize
all systems. In addition, unlike Bayesian methods, existing MLE approaches only return
parameter point estimates without quantifying estimation uncertainty.

In this work, we develop Monte Carlo Expectation-Maximization with Modified Cross-
Entropy Method (MCEM?), a novel, accelerated approach for computing MLEs along with
uncertainty estimates. MCEM? combines advances in rare event simulation [15-18] with
an efficient version of the Monte Carlo EM (MCEM) algorithm [19], and it does not re-
quire prior bounds on parameters. Unlike the EM-based, SGD, and Poisson approximation
methods above, MCEM? generates probabilistically coherent system trajectories using the
SSA. The remainder of the paper is structured as follows: We first provide derivation and
implementation details of MCEM? (Methods). Next, we apply our method to five stochastic
biochemical models of increasing complexity and realism: a pure-birth process, a birth-death
process, a decay-dimerization, a prokaryotic auto-regulatory gene network, and a model of
yeast-polarization (Results). Through these examples, we demonstrate the superior per-
formance of MCEM? to an existing implementation of MCEM and the SGD and Poisson
approximation methods. Finally, we discuss the distinguishing features of our method and
motivate several promising future areas of research (Discussion).

Methods
Discrete-state stochastic chemical kinetic system

We focus on stochastic biochemical models that assume a well-stirred chemical system with
N species {S1, ..., Sy}, whose discrete-valued molecular population numbers evolve through
the firing of M reactions {Ry, ..., Ry}. We represent the state of the system at time ¢ by
the N-dimensional random process X(t) = (Xi(¢),..., Xn(t)), where X;(t) corresponds to
the number of molecules of S; at time ¢. Associated with each reaction is its propensity func-
tion a;(x) (j = 1,..., M), whose product with an infinitesimal time increment d¢ gives the
probability that reaction R; fires in the interval [¢, ¢+ d¢t) given X(¢) = x. The sum of all M
propensity functions for a given system state x is denoted ag(x). We restrict our attention to
reactions that obey mass action kinetics—i.e. where a;(x) = 0;h;(x) with 6; a positive real
kinetic constant and h;(x) a function that quantifies the number of possible ways reaction
R, can occur given system state x. Examples of h;(x) include: 1, z, %xl(xl —1), and z129
for zeroth-order, unimolecular, homo-bimolecular, and hetero-bimolecular reactions, respec-
tively. Further details on mass action propensity functions can be found in [20].

The “direct method” implementation of Gillespie’s stochastic simulation algorithm (SSA)
provides a simple numerical procedure for generating exact system trajectories from their
underlying (intractable) probability distribution [11]. The method works by sequentially



simulating the time to the next reaction (7) as an exponential random variable with mean
1/ap(x) and the index of the next reaction (j') as a categorical random variable with proba-
bilities a;(x)/ao(x) (j = 1,..., M). Given a final time 7" and initial system state X(0) = xo,
application of the direct method yields a reaction trajectory z = (71, j1,..., 7 J.), where
r is the total number of reactions that happen to fire by time 7. Although z is only of
length 2r, combining it with x, allows us to identify the complete system state at any time
in the interval [0, T] regardless of how large N and M are. Using the above notation, we can
express the likelihood of the complete system trajectory (xg,z) as the following function of

the kinetic parameters @ = (0y,...,0y) (see [21] for a detailed derivation):
r r+1 M
fo(x0,2) = <H Hjéhjg(xi_1)> X exp <— Z [Ti ZHjhj(Xi_l)]) , (1)
i=1 =1 Jj=1

where 7,1 is the time interval between the firing of the final reaction and 7', and x;_; is the
easily computable system state at the time immediately after the (i — 1)** firing event (i.e.
when t = Y1) 7 for i > 1).

Maximum likelihood parameter estimation

If the true values of the kinetic parameters 8" are unknown and we are given a complete
system trajectory (xo,z), a natural approach for generating parameter estimates 0 is to
choose values of 8 that maximize the likelihood with respect to the trajectory (Eq. (1)).
These maximum likelihood parameter estimates (MLEs) can be analytically computed for
each reaction as follows (see [21] for a derivation):

>

"

R ‘ ,
’ Z:;l hj(Xz'—l)Ti (2)

where r; is the total number of times reaction R; fires in z. Although simple, Eq. (2) is
only useful in the presence of a complete system trajectory. Experimentally observed data
are typically much less informative, consisting of the initial system state plus numbers of
molecules for a subset of the system species at d discrete time points. We represent these
“observed data” with y = (x¢,x],...,x}), where x; contains the numbers of molecules of a
subset of the N species at some time point ¢;. Knowledge of any y of finite size is insufficient
for reconstructing the complete system trajectory (Xg,z) and the corresponding likelihood
(Eq. (1)); thus, Eq. (2) is not a feasible approach for computing MLEs. Instead, we require
a method that can accommodate “unobserved data”—i.e., the states of all system species at
all times not included in the observed data.

In this work we use the expectation-maximization (EM) algorithm [22] to identify MLEs in
the presence of unobserved data. This algorithm suggests the following iterative computation



given some 9" (see [23] for details):

oty = argmax Q(0|é(n))
0

argznax <]E [10g fo(x0,2)]y, é(")] )

= argmasx | Y [olely.0") xlog fo(x0.2)] | 3)

z€2(y)

where E [~|y, é(n)} is the expectation operator taken with respect to the conditional distribu-

tion of z given y and é(n)7 Z(y) is the set of all valid reaction trajectories that are consistent

with y (i.e. trajectories that pass through all observed data points exactly), and g(z|y, é(n))
represents the unknown conditional density of z. The theory behind the EM algorithm
guarantees that Eq. (3) will converge to estimates that locally maximize the observed data
likelihood, given n sufficiently large (Section 3 of [22]). Unfortunately, we cannot work with
Eq. (3) directly, as an explicit evaluation of the summation is intractable. Instead, we use

a Monte Carlo extension of EM (MCEM) [24] that samples reaction trajectories using the
direct method of the SSA to approximate é(n+1):

0" argmax (i [I (z,&n) € Z(y)) x log fe <X0, z,gn)>]> (4a)

6 k=1
K/

= argmax (Z log fe (Xo, zg))) , (4b)
6 k=1

where z,(gn) is the k™" SSA trajectory simulated using the parameter vector 9(n), I (z,g") ez (y))

is an indicator function taking a value of 1 if z,i") is consistent with y (and 0 otherwise),
and K is the total number of simulated trajectories. Equation (4b) presents a simplified
expression in which £’ indexes only the K’ simulated trajectories that are consistent with
the observed data. In practice, we set K to the value that leads to the desired number of
consistent trajectories K’. We note that Eqgs. (4a) and (4b) describe a rejection sampling
approach to generating reaction trajectories conditional to the observed data, in which only
those simulated trajectories consistent with data are retained and all others are rejected.
In practice, we simulate trajectories incrementally between two data points at a time, fur-
ther propagating only those trajectories that pass through the second data point exactly.
Although this incremental approach is much more efficient than performing rejection sam-
pling across full length trajectories, as we describe below it can still be computationally
prohibitive.



By simplifying Eq. (4b) with the same procedure used to derive Eq. (2) [21], we obtain an
iterative, MCEM version of the MLE for each reaction:

K (n)
Gt _ w=1"jk’ (5)
!/ T(7)+1 n n ’
5;1 L hy (Xz(e)l,k/)Ti(k/)

Equation (5) is analogous to Eq. (2), with trajectory features having an added subscript &’
and superscript (n).

An open question in the use of MCEM involves efficient selection of the numbers of consistent
trajectories K’ and iterations n. We adopt the ascent-based MCEM algorithm [19] for this
task, which suggests increasing K’ at each iteration according to an estimate of the current
Monte Carlo error and terminating the algorithm when the estimated change in conditional

log-likelihood (E [log fo(x0,2)|y, é(n)D passes below a constant threshold. Specifically, we

set the initial value of K’ to 10 and the sample size increment parameters «, 3, and k to
their respective default values of .25, .25, and 3. We terminate the algorithm when an upper
bound of the change in conditional log-likelihood (using v = .25) was less than .005 for three
consecutive iterations (see [19] for more details).

Accelerating MLE computation

Equation (5) requires the generation of K’ trajectories that are consistent with observed
data. For datasets with closely spaced time points and reasonably accurate initial parameter

~ (0
estimates 0( ), this task may be computationally feasible. For the more realistic case of a

sparse dataset and inaccurate values of 0 0), it quickly becomes intractable, as the simulation
of even one consistent trajectory is an extremely rare event. In light of this fact, we adapt
methods from rare event simulation to substantially accelerate the use of MCEM. Below we
describe the incorporation of three techniques: the cross-entropy method, multilevel splitting,
and parameter perturbation. Specifically, we employ these three techniques together as
a standalone algorithm to quickly compute plausible parameter estimates 9CE (see below
for details). We then use these parameter estimates as input to an otherwise unmodified
ascent-based MCEM algorithm, which further refines the estimates until MLEs are obtained.
The advantage of this two-step process is that we retain all of the desirable properties of
MCEM while dramatically accelerating the time to convergence (due to the use of much
more accurate MCEM initial parameter estimates).

The cross-entropy method

The cross-entropy (CE) method was first developed by Rubinstein [15] to accelerate the
simulation of stochastic rare events. Since that time, the method has been used in many
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contexts, including combinatorial optimization [25] and stochastic biochemical modeling [18].
Briefly, the CE method begins by simulating K trajectories using an initial parameter vector

~

0" Next, a subset of [pK| trajectories (with p € [0, 1] and [-] the ceiling function) that are
closest to a given system state (i.e. observed data) is selected and used to compute a better

~(1
parameter estimate 0( ). This process is then repeated until all [pK| subset trajectories

reach the given state, upon which the algorithm computes a final parameter vector 6 and
terminates. Unless otherwise noted in the examples below, we set K = 10* and p = .001,
which were shown empirically to confer good performance (see Discussion).

When applied to the task of stochastic parameter estimation, the CE method proposes an
iterative optimization very similar to Eq. (4a):

K
~(m+1 m m m
ol — argmax < E [I(d(Z;(€ ) y) <6) x log fB(X07Z1(<: ))]> (6)

o =1

where d(z,gm), y) is a user-defined function measuring the distance between a simulated tra-
jectory and the observed data, and 6™ is the (p x 100)" quantile of distances achieved
by the K simulated trajectories. In this work, we choose d(-,-) to be a normalized L; dis-
tance evaluated at each observed time point for each observed species (i.e. we divide each
absolute deviation by the quantity [1 4 the value of the corresponding data point]). Upon
simplification of Eq. (6), we obtain the following expression for each CE reaction parameter:

S (1, y) < 60) ] .
N m (m) 1 m m '
S [I<d<z2 ) y) < 6 x TEH b ™) ) ﬂ

A(m—+1)
03'

Ne;
Once 0™ = 0, Eq. (7) is used a final time to obtain " and the algorithm terminates. If

we then set é(o) = 90E for MCEM, we expect that on average only K'/p total trajectories
must be simulated to provide K’ consistent trajectories. Generally speaking, the algorithm
is guaranteed to terminate provided p and K’ are sufficiently small and sufficiently large,
respectively (see [26] and below for more details). As will be shown below, use of the CE
method coupled with MCEM provides enormous computational savings when compared to
MCEM initiated with arbitrary parameter values.

Multilevel splitting

If the observed data consist of many time points, simulating a trajectory that passes through
all of the data will be extremely unlikely, even when using the true parameter values. Con-
sequently, our CE method will require a very small p (with accompanying very large K) in



order to converge in a reasonable number of iterations. As a means of reducing this compu-
tational expense, we have added a “divide and conquer” approach with respect to the data
inspired by multilevel splitting (MS) methods for rare event simulation [16,17]. MS methods
divide rare trajectories leading to a given system state into less rare sub-trajectories passing
through intermediate states. Sub-trajectories that reach the intermediate states in a given
time are split into multiple copies, while the others are killed with some probability. In this
way, an ensemble of simulated trajectories is gradually enriched for those that reach the
state of interest.

A natural definition of a sub-trajectory in the context of observed data is the portion of a
trajectory from time O to a recorded time point t; < t4. Starting from ¢t = 0 for a given

iteration of our CE method, we simulate K tra%ectories only until the first observed time
point, giving rise to the sub-trajectories (ZYE), zg”; e z(ﬁg), where the first subscript of ZETZ)
denotes a sub-trajectory spanning the time interval [0,¢;]. We then compute the distance
d(zﬂ), y1) of each sub-trajectory with respect to the first observed data point y; = (xq,x}).
Sub-trajectories falling in the (p' x 100)" quantile of distances (where we typically choose
p' = p) are “split” by sampling from them with replacement to generate K new trajectories,
while the remaining trajectories are killed. The new trajectories are simulated forward to
the second observed time point to yield (zgrf), zgg), . ,zgr}g), and the distances d(zé?,?, y2)
are computed (with yo = (x0, X}, %5)). As before, sub-trajectories are split according to their
distances from the observed data, and the process is continued until trajectories reach the
final time point. The resulting K trajectories, enriched for sub-trajectories passing close by
observed data, are used as input to Eq. (7) to update the parameter estimates, after which
the next CE iteration begins. Figure 1 illustrates this overall process of splitting combined
with the CE method. We note that setting p’ = 1 results in a nearly unmodified CE method
as described above, and the amount of trajectory splitting can be easily tuned to the desired

level by changing p’ accordingly.

Figure 1 Multilevel splitting applied to CE phase of MCEM?Z. Using 8", we first
simulate an ensemble of K trajectories from the initial system state (black circle at ¢ = 0)
until time t; (red traces). The ending states of the [pK'| trajectories closest to the first ob-
served data point (bold red traces) are sampled with replacement to provide starting states
for the next simulation interval. We then simulate a second ensemble of K trajectories
starting at time ¢; until reaching ¢,. Here, we select the [pK| trajectories spanning the
interval [0, %] that are closest to the first and second data points (black circles at times t;
and t9) and use them to initiate the third simulation ensemble. We repeat this process until

~ (1

reaching ¢4, at which time we compute the first set of parameter estimates 0( ) using the
(1

[pK| trajectories closest to all data points (full length bold red traces). Using o' ), we begin

~ (2
the process again at ¢ = 0, producing the green traces. Finally, using 0( ) to generate the

blue traces, we obtain [pK'| trajectories coinciding exactly with all data points, which we
~CE (3
use to compute 8 = 0( :



Parameter perturbation

Both the CE method and its MS modification rely on the system’s intrinsic variability to
refine parameter estimates. If a system exhibits a low level of variability, each selected subset
of [pK trajectories will not lie much closer to the data than the other trajectories. This
will result in a slowly progressing algorithm. To overcome this potential problem, we have
introduced a parameter A € [0, 1] which we use to independently perturb the components of
the current parameter estimate for each simulated trajectory over each of the observed time
intervals. We generate ég?i J=1,...,M;i=1,...,d; k=1,...,K) as follows:

0~ U((1=N8™, (14 2)6™), (8)

where U(a, b) is a uniformly distributed random variable with minimum and maximum values
a and b, respectively. We simulate each of the d observed time intervals for each of the K
trajectories using independently perturbed parameters; thus, Eq. (8) is evaluated M x d x K
times for each iteration m of our modified CE method. Depending on the magnitude of A,
this procedure generates substantially more variability in each ensemble of sub-trajectories,
leading to faster progression of the CE method. Although parameter perturbation is not
generally used in rare event simulation, we note that a similar approach is present in iterated
filtering versions of sequential Monte Carlo algorithms [27] where the perturbations allow the
algorithm to escape from local minima of an objective function. In all examples presented
below, we choose A = .25.

Computing MLE uncertainty estimates

An advantage of using MCEM to identify MLEs is the simplicity with which uncertainty
estimates can be computed. In general, MLEs exhibit asymptotic normality; consequently,
their covariance matrix can also be estimated using Monte Carlo simulation [23,28]. In order
to insure that parameter confidence bounds derived from the MLE covariance matrix are
positive, we introduce the transformed parameters w; = log6; (j = 1,..., M). Due to the
functional invariance property of maximum likelihood estimators, w; = log éj, and by model-
ing 0 asa log-normally distributed random variable (which is only defined for strictly positive
real numbers), @ becomes multivariate normal with mean vector (log 6y, ...,log#)) and co-
variance matrix . We can estimate this covariance matrix using the following expression
(see [23,28] for details):

10



N -1 Koy
- <E> = Z {8_ 0g fw(XO>Zk/)}
+}i/ — (ai 0og fw<X07Zk’)> (8% log fw(X07Zk’))

1 &9 :
(K’Z log fw Xo;%l)) (E 2 a—wlogfw(xo,zk/)> , o (9)

k'=1

where {-} delimits a matrix, aT represents the transpose of vector a, f,,(+) is equivalent to Eq.
(1) with exp(w) substituted for 0, z; is a reaction trajectory simulated using 0 = exp(w),
and k" indexes only the K’ simulated trajectories that are consistent with the observed data.
After some simplification, we arrive at:

Ty

_<g>1 { izexp% lek,)w}’

k'=1 =1
1 K’ Tt Ty T
+F Z (Tjk/ - ZGXP(@j)hy‘(Xz‘—Lk')ﬂ'k') <7“gk' - Z exp(w;)h(xi-1 kf)ﬂk/)
k'=1 =1 ] =1 J
1 K’ Tt ]
_ <ﬁ Z T]k’ Z exp wj XZ 1 k/)Tzk’ )
k=1 1/
1 K T Tl ] T
X <E Z Tjkr — Z exp(W; ) hj(Xi—1 k) Tinr ) (10)
k=1 L i=1 1/

where {-}, is a diagonal matrix with j ranging from 1 to M along the diagonal and (-); is
a column vector with j ranging from 1 at the top-most element to M at the bottom. All
trajectories in Eq. (10) are simulated using parameter values 8 = exp(w).

Upon solving Eq. (10) for i, we can compute the coordinates of confidence intervals and
ellipses (end points and boundaries, respectively) for w using the properties of the multi-
variate normal distribution. We then transform these coordinates by exponentiation to yield
(strictly positive) confidence bounds for 8. We note that all of the components of Eq. (10)
were previously required for computing MLEs using MCEM. In practice, after identifying
9, we simulate one additional ensemble of trajectories to estimate parameter uncertainties.
For all examples described below, we use K’ = 10* in this final computation.

To summarize, our proposed method for accelerating MLE identification in stochastic bio-

~CE
chemical systems works in three steps: first, it identifies an initial parameter estimate @

11



using a modified cross-entropy method with multilevel splitting and parameter perturba-
tion; second, it uses this initial estimate as input to ascent-based MCEM, which is run until
convergence to yield 9; third, it uses this MLE to compute parameter uncertainty estimates
via Eq. (10). We provide pseudo-code for the complete method below (see Algorithms 1-
3), which we refer to as MCEM?: Monte Carlo Expectation-Maximization with Modified
Cross-Entropy Method.

Results

We now illustrate the utility of MCEM? for estimating unknown parameters by applying
it to data from five stochastic biochemical model systems: a pure-birth process, a birth-
death process, a decay-dimerization, an auto-regulatory gene network, and a model of yeast-
polarization. For each model, we first simulate a single system trajectory (with known
parameters) using the SSA for a given final time T". Next, we extract data from this trajectory
for all species at d equally-spaced time points, where d = T'/At for a time step At. Finally,
we run MCEM? on the dataset and a version of the model where all information about model
parameters has been withheld. Unless otherwise noted, we set the initial parameter vector

~ (0
for each system 0( ) equal to a vector of all ones. We display point estimates and confidence
bounds for each simulation.

Pure-birth process

A system for which MLEs can be computed analytically from discretely observed data is the
pure-birth process, also known as a homogeneous Poisson process. The model is given by
the single reaction

(NS

with initial conditions xq = 0. The MLE for a given dataset from this model can be easily
computed by dividing the number of molecules of S present at the final time point by the
corresponding time: = x};/T. By design, both MCEM? and standard ascent-based MCEM
will also return this MLE (albeit at a greater computational expense), as any version of EM
applied to this model ultimately reduces to the exact computation x,/7T".

Thus, the only potential difference between MCEM? and MCEM for this system is the re-
quired computing time. To quantify this difference, we generated data for 100 pure-birth

models, with 6*, the true value, ranging from .01 to 10. For each model, we used T" = 1000
and d = 30, giving At = 33%. We then applied ascent-based MCEM and MCEM?, both with
60 = 1, to each dataset and ran until convergence. Figure 2 displays the computing time
for both methods as a function of #*. We see that the time required for MCEM increases
dramatically as values of 8* depart from 6©. The rapidly accelerating computational cost
for MCEM is due to the rapidly decreasing likelihood of simulating a consistent trajectory

12



as the discrepancy between 0 and #* increases. As shown in Figure 2, MCEM is only
feasible to use when 6 is within a factor of two from 6*. In contrast, the computing time
for MCEM? stays approximately constant for values of #* less than 1 and increases relatively
slowly for values greater than 1. This cost increase is due to the simulation cost of firing
more birth reactions required for larger §*. MCEM? does not appear to suffer from a cost
associated with the discrepancy between 6© and 6-.

Figure 2 Computing time of MCEM versus MCEM? for pure-birth process. Red
circles and curve fit depict computing time required for MCEM? to return MLEs for the pure-
birth model with #© = 1 and varying 6* values. Blue circles and curve fit depict identical
quantities for ascent-based MCEM. Performance of MCEM? is robust to the discrepancy
between initial and true parameter values, while ascent-based MCEM quickly becomes com-
putationally intractable as the discrepancy increases

We next investigated the accuracy of MCEM? uncertainty estimates. Figure 3 shows the
normalized MCEM? MLEs with 95% confidence intervals (CIs) for all models. Out of 100
CIs, only eight (denoted by blue circles) do not overlap the true values. This figure matches
well with the expected number of missed overlaps (100 x (1 —.95) = 5) and suggests that our
asymptotic normality assumption for deriving MLE confidence bounds is valid. We note that
the relative magnitudes of the Cls decrease with increasing 6*; this is due to the diminishing
effect of noise on the system as the average number of reaction firings per unit time increases.

Figure 3 Pure-birth process MCEM? MLEs and confidence intervals. Colored
circles depict MCEM? MLEs normalized by true parameter values for the pure-birth model
with 0 = 1 and varying 6*. Error bars denote 95% confidence intervals (CIs) for each
model. Out of 100 models tested, only eight (centered at blue circles) do not overlap the
true parameter values (green line) whereas the remaining 92 (centered at red circles) enclose
the truth. This agrees well with the expected 95/100

Birth-death process

The second model doubles the number of reactions of the pure-birth process by adding a
degradation reaction. The birth-death process takes the form:

N

0
S =

The presence of a single first order reaction (degradation) renders the analytical calculation
of MLEs infeasible. Furthermore, computational parameter identification for the birth-death
process is significantly more challenging than for the pure-birth process. This challenge stems
from the degeneracy present in a discretely observed dataset: the net increase of a single
molecule of S can result from any combination of 7 + 1 R; and r Rs reaction firings (where
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r is a non-negative integer). To evaluate MCEM? on this system, we first generated single
trajectory data for a model with 8* = (1, .06) and x, = 17, where the system starts in
stochastic equilibrium. We used T" = 200 and d = 40, giving At = 5. Figure 4 displays the
progression of 0, and 6, as a function of MCEM? iteration. The modified cross-entropy phase

of the algorithm required only three iterations (labeled -2,-1,0), transforming 9(0) = (1,1)

to é(g) = (4.24, .28). From this point onward, the subset of trajectories given by p = .001
were consistent with the data, and the MCEM phase of the algorithm further modified the
parameters to their final values 0 = (1.446, .093), which were reached upon satisfying the
convergence criterion (marked by black vertical line). Figure 4 also includes the results
from an additional 100 iterations of MCEM to illustrate the diminishing returns from run-
ning the algorithm beyond the convergence criterion. Throughout the MCEM phase, we
note that the ratio één) /é%”) ~ .065, indicating that multiple parameter values satisfying
this ratio are sufficient to generate consistent trajectories. Nevertheless, Figure 4 demon-
strates that substantial parameter refinement is achieved by running MCEM to convergence.

Figure 4 Birth-death process MCEM? parameter estimate progression. Green
and blue bold lines denote MCEM? parameter estimates 6; and ég, respectively, as a func-
tion of iteration number. True parameter values are marked by green and blue horizontal
dotted lines. The cross-entropy phase completes in three iterations (gray shaded region),
followed by 234 iterations of MCEM until convergence (black vertical line). An additional
100 iterations of MCEM are included to illustrate the diminishing returns from running the
algorithm beyond convergence. Although the parameter estimates from the first MCEM
iteration are far from the true values, their ratio is nearly correct and this ratio is preserved
as the estimates are refined toward the true values

Next, we investigated the effect of appending data at additional time points to the original
data set. Figure 5 illustrates results from the original and three expanded datasets, all with
At = 5. We display the MCEM? MLEs along with 68%, 95%, and 99% confidence ellipses
(warped due to exponentiation—see Methods) that represent parameter uncertainty as a
function of both parameters. We see that as d increases, 0 approaches 6 until at d = 100
they are approximately equal. This trend demonstrates the increasing accuracy of MLEs
with increasing d. Furthermore, although the true parameter values are always contained
within the 95% confidence ellipses, all of the ellipses shrink in size as d increases. This
behavior indicates the reduction in estimate uncertainty resulting from the addition of data
points. Finally, all of the ellipses are clearly skewed, with major axes nearly overlapping the
line passing through the origin whose slope is the ratio of the true parameter values (.06/1).
This geometry shows that most of the uncertainty involves the magnitude of the parameters,
whereas their ratio can be determined confidently from relatively few data points. We note
that the computational run time of MCEM? (1 x Intel 3 GHz processor) on each of the four
datasets was approximately the same: one hour.
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Figure 5 Effects of birth-death dataset size on parameter estimates and MCEM?
uncertainty. Each panel displays MCEM? and SGD birth-death MLEs (red and blue cir-
cles, respectively) as well as Poisson method point estimates (orange circles) versus the true
parameter values (green circles), along with MCEM? 68%, 95%, and 99% confidence ellipses
(black curves ranging in size from smallest to largest, respectively). A, B, C, and D display
results for datasets of 40, 60, 80, and 100 data points, respectively. The three methods tested
identified parameters with comparable accuracy across all datasets. As the numbers of data
points increase, the MCEM? MLEs get closer to the truth and the confidence ellipses shrink
in size. The green sloped line plots the ratio ¢5/07, highlighting that the uncertainties of
the parameter ratio are lower than the uncertainties of the parameter magnitudes. For all
datasets, the 95% confidence ellipse encloses the true parameter values

We also compared MCEM? performance to that of two recent methods: an MLE method
utilizing reversible jump Markov chain Monte Carlo coupled with stochastic gradient descent
(“SGD”) [4] and a Bayesian method using a Poisson process approximation (“Poisson”) [14].
For the former, we used the provided MATLAB package to run SGD with the maximum
number of iterations set to 500 and the initial sample size set to 600 (incrementing by 500
every 10 iterations). For the latter, we used the provided C code from the author’s web site
implementing the stochInf program to run the Poisson method with tuning parameter .05
and total number of iterations 107 (with 10° burn-in iterations and 10* thinning interval).
These options were chosen to yield sufficient mixing and convergence properties as evidenced
by the diagnostic plots from the R coda package. We then computed the mean value of each

parameter to arrive at point estimates. As with MCEM?, we set 9(0) = (1,1) for both
methods. Figure 5 displays the SGD and Poisson method results for the four birth-death
process datasets. When compared to MCEM?2, all three methods identified parameters with
comparable accuracy, with SGD and Poisson methods performing better when d = 40 and
d = 60 and MCEM? performing better when d = 80 and d = 100. The confidence ellipses
generated by the Poisson method were very similar in appearance to those of MCEM?, con-
veying the same information regarding the ratios of the two parameters (not shown). As
noted above, the SGD method did not provide parameter uncertainty estimates. Regarding
run time, the Poisson method required between 20 and 60 minutes to identify parameters
for the four datasets, while the SGD method needed between 30 minutes and several days
(the latter time due to a lack of convergence when using the d = 100 dataset).

We next modified the birth-death process such that the equilibrium value of species S gradu-
ally approached zero. Specifically, we created five models with true parameter values 67 = .5
and 03 taking the increasing values (.1, .5, 1, 2.5, 5). To insure that each system started
roughly at stochastic equilibrium, we also set xq to each of the following values (listed in
order): (5,1,1,1,1). We then generated 20 independent datasets for each of the five models,
using 7" = 25 and d = 25. Figure 6 displays boxplots of the mean relative error (calculated
as in [4]: +; Zj\il |0; — 6%]/67) when applying MCEM? and the Poisson method to each of
these datasets. Although both methods perform equally well for the first three models (when
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the equilibrium value of S > .5), MCEM? clearly identifies parameters more accurately than
the Poisson method for the last two datasets (when the equilibrium values of S are .2 and
.1, respectively). This result illustrates the gradual loss of accuracy of the Poisson approx-
imation for systems in which a species tends stochastically to zero. In contrast, MCEM?2,
which generates exact system trajectories using the SSA, experiences no such loss of accu-
racy. Unfortunately, we were unable to evaluate SGD on these modified birth-death process
datasets, as the MATLAB package consistently terminated with an error related to the zero
molecule count of S.

Figure 6 Effects of decreasing birth-death equilibrium on MCEM? and Poisson
method performance. Boxplots (displaying median, first and third quartiles, and most
extreme data point within 1.5 x the interquartile range from the box) summarize mean
relative errors of MCEM? and the Poisson method applied to 20 birth-death datasets for
each of five models (true parameter values listed on x-axis). Models are sorted in decreasing
order of the equilibrium value of S, ranging from 5 to .1. MCEM? performance does not
vary appreciably across the different models, while the Poisson method exhibits increasing
error with decreasing equilibrium value

Decay-dimerization model

The next system contains reactions involving species decay and dimerization. We begin with
the following three reactions, where the dimerization step is reversible:

s, &
S +5, 2 s,
S, 25 45,

with xo = (40,0). We generated ten single-trajectory datasets for a model where 8* =
(.2, .04, .5), using T' = 5 and d = 25. We then modified the model such that the dimerization
step is no longer reversible, leading to the following description:

S &
Si+5 58,
Sy &
with all other properties unchanged. We again generated ten single-trajectory datasets for
this model. Finally, we evaluated MCEM?, the Poisson approximation method, and SGD
on each of the 20 datasets. Figure 7 displays the results for each of the methods in terms

of mean relative error. We see that MCEM? and the Poisson method perform very similarly
in terms of accuracy (as well as run time: between 3 and 10 minutes for both models),
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with a slightly higher error for the irreversible model. In contrast, use of SGD results in
higher errors for both models, with the irreversible model consistently yielding estimates
with infinite error. This latter error is due to the estimate of 6; quickly tending to infinity,
regardless of how small we set the initial gradient descent step size. These results highlight
a significant limitation of the SGD method: in order to generate a diversity of consistent
trajectories, there must exist combinations of reactions that do not alter species counts. The
reversible decay-dimerization model contains such a combination (reactions 2 and 3), while
the irreversible model does not, leading to a divergent gradient descent.

Figure 7 Effects of decay-dimerization model structure on MCEM?, Poisson
method, and SGD performance. Boxplots summarize mean relative errors of the three
methods applied to 10 decay-dimerization datasets for each of two three-reaction models.
The two models differ only in their third reaction (listed on x-axis); the first model contains
a reversible dimerization, while the second model does not. MCEM? and the Poisson method
perform similarly across both models, while SGD consistently incurs an infinite mean rela-
tive error (due to the estimate of 6; quickly tending to infinity) when applied to the second
(irreversible) model

To further explore the ability of MCEM? to estimate parameters for a decay-dimerization,
we introduced a third model which adds a conversion reaction to the reversible model above.
Previously analyzed in [29], the precise system description is as follows:

LY/
Si+5 58,

Sa & S1+ 5

Sy 2 S,
with xo = (1000, 10,10). We generated single trajectory data for a model where 8* =
(.2,.04, .5, 1), using T = .1 and d = 5. Figure 8 shows the data points for each of the
three species. Given that At = .02, hundreds of reactions occur before the first observed
time point. As the system evolves closer to its steady state, the number of reaction firings
decreases, with only dozens of reactions firing between the last two time points. We note
that the initial propensity for reaction Ry is nearly 4000 times larger than the propensity

of its backwards counterpart R3; consequently, we expect observed data to reflect relatively
few Rj firings (and thus contain relatively little information about 6%).

Figure 8 Decay-dimerization dataset. Red, green, and blue circles depict initial system
states and five data points for species S7, S5, and S3, respectively. This dataset is sparsely
observed, as species 57 changes substantially between ¢ = 0 and the first observed time point
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To investigate the impact of parameter perturbation on the performance of MCEM?, we
estimated parameters from this decay-dimerization dataset using both A = .25 (default)
and A = 0 (no perturbation). Figure 9 shows the progression of each parameter during
the cross-entropy phase of the algorithm for both default perturbation (solid line) and no
perturbation (dotted line). With A = .25, the CE phase required only 23 iterations before
beginning MCEM, whereas setting A = 0 increased the number of CE iterations to 152. More
importantly, the CE phase computing times for perturbation and no perturbation were 59 s
and 32 min, respectively, resulting in a ~33-fold speedup when perturbing parameters. The
reason for this large reduction in computational time is due to the larger parameter values
explored by the CE phase without perturbation (see 6, and ég), which equates to simulating
trajectories with many more reaction firings. By using perturbation, MCEM? appears to
navigate the parameter space more efficiently and hence require much less computational
time. We note that three of the four parameters reach approximately the same values at the
end of the CE phase in the perturbed and non-perturbed cases, with 65 providing a slight
exception. However, as we show below, the large uncertainty associated with 05 prevents us
from determining whether this parameter is substantially different between the two cases. We
thus conclude that perturbation does not systematically alter the final parameter estimates
returned by the CE phase.

Figure 9 Effects of parameter perturbation on decay-dimerization cross-entropy
phase. Red, blue, green, and orange lines represent MCEM? parameter estimates 91, éQ,
65, and é4, respectively, as a function of cross-entropy (CE) phase iteration number. Solid
lines display parameter values observed using perturbation (A = .25), while dotted lines
depict parameter values obtained without perturbation (A = 0). Perturbation substantially
accelerated completion of the CE phase, both in number of iterations (23 versus 152) and,
more strikingly, in simulation time (59 s versus 32 min). Final CE phase parameter estimates
were approximately the same whether or not perturbation was used

Figure 10 displays the MLEs and pairwise confidence ellipses computed by MCEM? when
applied to this decay-dimerization dataset. Specifically, MCEM? returned 6= (.220, .039,
.110, 1.006), which represents a 22.8% mean relative error when compared to the truth. For
all combinations of parameters, the corresponding 68% confidence ellipses enclose the true
parameter values, and apart from 65 these ellipses are relatively compact. As noted above,
the uncertainty associated with reaction Rs is much larger than for the other reactions,
confirming our hypothesis that the dataset contains substantially less information about the
backwards rate of the dimerization.

Figure 10 Parameter estimation results for decay-dimerization model. Each panel
displays MCEM? MLEs (red circles) versus the true parameter values 8* = (.2, .04, .5, 1)
(green circles), along with 68%), 95%, and 99% confidence ellipses. All six pairwise parameter
comparisons are shown. The mean relative error for MCEM? was 22.8%. All MCEM?
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confidence ellipses enclose the true parameter values, and uncertainty is relatively low for all
estimates except 05

Auto-regulatory gene network

To further compare MCEM? to the Poisson method and SGD, we tested all methods on a
system for which SGD was previously shown to perform well: a prokaryotic auto-regulatory
gene network [4]. This system contains the following eight reactions, organized as four
reversible pairs:

DNA+ P, — DNA-P,
DNA-P, = DNA+ P,
- DNA+ mRNA
mRNA = ()
P+P—= PR
P, = P+P
mRNA - mRNA+ P

L/

where DN A, P, P,, and mRN A represent DNA promoters, protein gene products, protein
dimers, and messenger RNA molecules, respectively. We set xg = (DNA, DNA-P,, mRN A,
P, P) = (7,3,10,10, 10) and generated single trajectory data using * = (.1, .7, .35, .3, .1, .9,
.2, .1) with T'= 50 and d = 100. Using the same options as before, we applied MCEM? and

SGD to this dataset using 9(0) =(1,1,1,1,1,1,1,1). We also applied the Poisson method
using total number of iterations 108, with 10 burn-in iterations and 10° thinning interval
(these values were increased from before to preserve adequate mixing and convergence). As
in previous examples, we initially used p = .001 in the CE phase of MCEM?2. However, this
proportion was not small enough to enable the generation of [pK'| consistent trajectories
for this system (and thus to progress to MCEM). To compensate, we re-ran MCEM? using
p = .0001 and K = 10°. This time, the CE phase completed easily in five iterations.

Figure 11 displays MLEs for all three methods, as well as the MCEM? pairwise confidence
ellipses for the four reversible reaction pairs. We see that all methods estimate most pa-
rameters with approximately equal accuracy, although MCEM? and SGD more accurately
determine 07 and 63, while the Poisson method and SGD more accurately determine 07 and
65. The mean relative errors for MCEM?, SGD, and the Poisson method were 52%, 20%, and
30%, respectively. The MCEM? 95% confidence ellipses enclose all true parameters except
0; and 0f, and as in the birth-death system, all ellipses attribute most of the uncertainty
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to knowledge of the magnitudes of parameter pairs rather than their ratios. The ellipses
generated by the Poisson method were skewed in the same manner, conveying similar infor-
mation regarding parameter ratios (not shown). Regarding run times, the Poisson method
was by far the fastest, requiring only 1.5 hours to estimate parameters. In contrast, SGD
and MCEM? required 2.3 and 8.7 days on a single processor, respectively, to complete.

Figure 11 Parameter estimation results for auto-regulatory gene network. Each
panel displays MCEM? and SGD MLEs and Poisson method point estimates computed us-
ing 9(0) = (1,1,1,1,1,1,1,1) (red, blue, and orange circles, respectively), true parameter
values (green circles), and MCEM? 68%, 95%, and 99% confidence ellipses. A, B, C, and
D compare the four reversible pairs of reactions in the system. Mean relative errors for
MCEM?, SGD, and the Poisson method were 52%, 20%, and 30%, respectively. MCEM?
95% confidence ellipses enclosed all true parameter values except 6 and 6f; like the birth-
death system, their skew indicates that the uncertainties of the parameter ratios are lower
than the uncertainties of the parameter magnitudes

In [4], the SGD method was also used to identify parameters from datasets where only a sub-
set of species were observed. We modified our original dataset by removing observed molecule
counts for species DNA and DN A-P, at all time points except t = 0 and re-ran MCEM?2.
Upon convergence, we obtained 0 = (0.043, 0.538, 0.302, 0.377, 0.301, 3.103, 0.494,

0.243) for a 107% mean relative error. This roughly translates to a 2-fold increase in relative
error due to a 40% decrease in observed data points. Unfortunately, we were not able to
compare to the performances of SGD or the Poisson method, as neither implementation was
executable on datasets with missing species.

Yeast-polarization model

The final system we used to evaluate MCEM? models the pheromone-induced G-protein cycle
in Saccharomyces cerevisiae [18,30]. This model consists of the following eight reactions:

08 R
R% 0
L+RE RL+L
RLY% R
RL+G% G, + Gy,
LYey
Gi+ Gy 5 G

0% RL
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where R, L, and RL represent pheromone receptors, ligands, and receptor-ligand complexes,
respectively. Species G corresponds to a G-protein with separate subunits G,, G, and Gj.
We used xg = (R, L, RL,G,G,, Gy, G4) = (500,4, 110,300, 2,20,90) and generated single
trajectory data for 8 = (.38, .04, .082, .12, .021, .1, .005, 13.21) using 7" = 5 and d = 15.
Figure 12 displays the data points for all species. As with the final decay-dimerization model,
this dataset is sparsely observed, particularly with respect to species G, G, and Gy, at early
time points.

Figure 12 Yeast-polarization dataset. Colored circles depict initial system states and
15 data points for all seven species. Like the decay-dimerization dataset, these data are
sparsely observed, particularly with respect to species G, G,, and Gy, between ¢t = 0 and
the first observed time point

We first tested MCEM? on this dataset with 9(0) = (1,1,1,1,1,1,1,1) and p = .001. As
with the auto-regulatory gene network, this value of p was not small enough to enable the
generation of [pK'| consistent trajectories. Given the greater computational expense of
simulating the yeast-polarization model, we decided against reducing p and increasing K
further until the CE phase converged. Instead, we prematurely terminated the CE phase
once the distance from the observed data reached a steady minimum value, and proceeded
to MCEM. This occurred at ~70 iterations, when 6™ ~ .033 (see Methods). Although we
expected premature entry into MCEM to increase the time required to simulate consistent
trajectories in the first few iterations, we did not notice an appreciable trend and MCEM
converged (defined here as when the change in conditional log-likelihood was less than .005
for at least one iteration) in 55 iterations. The resulting MLEs and available 68% confidence
intervals (CIs) are displayed in Table 1 (we note that MCEM? CIs for 6; and 6, could not
be reliably determined). MCEM? achieved a 34.7% mean relative error, and all determined
CIs enclosed the corresponding true parameter values.
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Table 1 Yeast-polarization model: parameter estimates and mean relative error
(% Error) for MCEM? MLEs, SGD MLEs (SGD, initialized with values exhibit-
ing 12% mean relative error), and Poisson method point estimates, along with
the MCEM? and Poisson method 68% confidence intervals (CIs) for each param-
eter.

Method Type 01 0o 03 04 05 O 0 Os % Error
True .38 .04 .082 .12 .021 d .005 13.21
Lower mn/a .014 .076 n/a .021 .089 .005 7.386

MCEM? MLE  .0005 .026 .081 .0009 .022 .104 .006 11.479 34.7
Upper n/a .048 .087 n/a .024 .122 .006 17.839

Lower .002 .003 .080 .0001 .018 .069 .004 .0005
Poisson ~ Mean 2.233 .020 .086 .016 .019 .083 .005 1.719 93.3
Upper 4.749 .033 .092 .027 .021 .095 .005 3.972

SGD; MLE  1.000 .798 .334 1425 Inf 591 .039 1.024 Inf

SGD, MLE 439 043 042 3241 Inf .029 .003  2.649 Inf

We next tested the Poisson method on the yeast-polarization dataset, using 9(0) =(1,1,1,1,1,
1,1,1) and the same options as in the auto-regulatory gene network example. Table 1 dis-
plays the resulting parameter estimates, along with the 68% CIs. Compared to MCEM?,
the Poisson method incurred a 2.7-fold higher mean relative error, and only half of the ClIs
enclosed the true parameter values. Although less accurate for this example, the Poisson
method required substantially less run time than MCEM?: three hours versus ~30 days on
a single processor. This difference reflects the significant cost of simulating trajectories with
the SSA rather than using a Poisson approximation.

Finally, we tested SGD on the yeast-polarization dataset using the same options as in previ-
ous examples (“SGD;”). As in the decay-dimerization model, the SGD estimate for one of
the parameters (05) tended to infinity within nine steps of the algorithm (and thus resulted
in an infinite mean relative error), even when using an initial gradient descent step size as
small as 107% (see Table 1). We then retested SGD using initial parameter values much

closer to the truth (12% mean relative error): 9(0) = (.461, .047, .086, .123, .015, .085,
.005, 12.299) and other options unchanged (“SGD,”). This is in contrast to MCEM? and
SGD;, which were run with initial parameter values set to a vector of ones. As before, the

same parameter estimate tended to infinity, although this time 46 steps were required to
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do so. Although the yeast-polarization system contains combinations of reactions that leave
species numbers unchanged, they are evidently not sufficient to allow adequate trajectory
generation for a non-divergent gradient descent. Table 1 displays both sets of SGD parameter
estimates without Cls, as the method does not provide uncertainty estimates.

Discussion

This work presents MCEM?, a novel enhancement of MCEM that accurately estimates un-
known parameters of stochastic biochemical systems from observed data. MCEM? combines
a state of the art, adaptive implementation of MCEM (ascent-based MCEM) with algo-
rithms from rare event simulation (the CE method and multilevel splitting) to substantially
accelerate parameter estimation. Unlike a previous application of the EM algorithm to
stochastic parameter estimation [13], which performs an error-prone estimation of likelihood
via reaction modification, MCEM? concludes by executing an unmodified MCEM iteration.
This places MCEM? on solid theoretical foundations, with the CE phase of the algorithm
serving only to accelerate the eventual MCEM phase. We note that this acceleration is
essential for the method to be useful, as the use of unmodified MCEM is computationally
tractable only when initial parameter estimates are close to the true values (see Figure 2. We
demonstrated that the addition of a third technique, parameter perturbation, accelerated
execution of MCEM? even further, without noticeable effects on the resulting parameter
estimates. This was true even when using values of A (denoting the maximum percent per-
turbation applied to each parameter) other than .25 (results not shown). If we decreased A
toward zero, the CE phase ran progressively slower with the same final results. If instead
we increased A toward one, the CE phase ran faster for some models while requiring larger
sample sizes to converge (and thus running slower) for others. This latter effect is due to
the increased noise conferred by using larger parameter perturbations. Ultimately, we found
that by setting A = .25, we achieved a useful speedup for all models tested without imposing
larger sample size requirements.

MCEM? requires selection of three additional user-defined quantities to achieve good per-
formance: d(z,y), an observed data distance function; K, the total number of simulated
trajectories; and p, the proportion of trajectories selected that are closest to observed data.
For the former, we chose a normalized L; distance, intended to provide approximately equal
weight to each of the system species. Although this distance function yielded excellent per-
formance, other functions are certainly possible (e.g. sum of squared deviations). However,
we note that work performed using the related approximate Bayesian computation (ABC)
methods suggests that the resulting parameter estimates are not sensitive to the choice of
the distance metric [31]. The latter two parameters dictate the number of trajectories [pK]
used to refine parameter estimates at each step of the CE phase. Additionally, in order for
the CE phase to converge, the proportion of simulated trajectories that are consistent with
data in each time interval must be > p in the final step. In the first three models tested
in this work, we found K = 10* and p = .001 to be sufficient for relatively fast completion
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of the CE phase. For the auto-regulatory gene network model, these values were not ade-
quate to enable the generation of (100 x p)% consistent trajectories, and we increased K to
105 and lowered p to .0001 to achieve convergence. Similarly, the original values were not
sufficient for the yeast-polarization model, although we chose to terminate the CE phase
prematurely rather than incur an additional simulation cost by increasing K. This practice
did not noticeably impact the time required to execute MCEM iterations, which suggests
that the actual proportion of simulated consistent trajectories was only slightly less than
.001. In general, we suggest starting with K = 10* and p = .001 and increasing K only
if computationally favorable. Otherwise, we would recommend terminating the CE phase
when the distance from the observed data reaches a steady minimum value. We note that the
CE phase of MCEM? with early termination resembles the ABC method of Toni et al. [31],
with two important differences. First, the ABC method requires a user-defined threshold
for selecting simulated trajectories based on their distances from observed data, whereas
MCEM? automatically chooses this threshold using the parameter p. Second, the method
of Toni et al. requires accurate prior bounds on parameter values, whereas MCEM? needs
no prior parameter information. This latter difference also sets our method apart from the
SML and histogram-based approaches for identifying MLEs [2, 12], both of which require
prior parameter bounds to execute a genetic algorithm.

Another important advantage of MCEM? over existing MLE methods is the ease with
which it can estimate parameter uncertainty. Existing MLE methods return parameter
point estimates, but these estimates carry no measures of confidence or interdependency.
In contrast, MCEM? returns a multivariate parameter uncertainty estimate. This estimate
indicates correlations between particular parameter estimates (see Figures 5 and 11, along
with measures of the information content of the observed data for each unknown parameter
(compare confidence ellipses of 65 to other parameters in Figure 10). In order to generate un-
certainty estimates, MCEM? assumes that MLEs are multivariate log-normally distributed,
which can be shown to be true as the number of data points increases asymptotically. How-
ever, 30 data points appear to be sufficient to satisfy this assumption (Figure 3), with possi-
bly as few as five being acceptable (decay-dimerization dataset: Figure 10). Of the pairwise
confidence ellipses generated in this work (describing estimates of the birth-death process,
decay-dimerization, and auto-regulatory gene network), we observed only one instance where
the true parameter pair did not reside within the 99% confidence ellipse (parameters 65 and
0 of auto-regulatory gene network: Figure 11C). Nevertheless, we note that the true param-
eter values in this case line up with the major axis of the corresponding ellipse, suggesting
that MCEM? was still able to correctly identify the ratio of the parameters. We note that
Bayesian approaches like the Poisson approximation method also generate multivariate pa-
rameter uncertainty estimates which provide similar information to that given by MCEM?2.

We compared MCEM? to the recently proposed Poisson approximation and SGD approaches

by applying all three methods to four examples: birth-death process, decay-dimerization,
auto-regulatory gene network, and the yeast-polarization model. Overall, the results demon-
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strate that MCEM? performs relatively well for all examples. The first example illustrated
that predictions made by the Poisson approximation method increasingly lose accuracy as
species molecule counts tend to zero. MCEM? avoids any such accuracy loss due to its ex-
act simulation of consistent trajectories. The second example illustrated a limitation of the
SGD method: to function properly, it requires systems to contain combinations of reactions
that do not alter species counts. MCEM? (as well as the Poisson method) imposes no such
requirement. The divergence of the gradient descent in the yeast-polarization model also
suggests that the mere presence of these combinations of reactions are not sufficient to lead
to good SGD performance.

When functioning correctly on larger systems, an advantage of both SGD and the Poisson
approximation method over MCEM? is their lower required computational time. In par-
ticular, SGD ran 3.78-fold faster than MCEM? for the auto-regulatory gene network, and
the Poisson method ran an additional 36.8-fold faster than SGD. On the yeast-polarization
model, the Poisson method ran 240-fold faster than MCEM?2. These speed-ups are due to
both methods’ “simulation free” approaches for generating consistent trajectories, which is
advantageous for computationally expensive models. Although the CE phase of MCEM?
typically completes in only a few iterations, the MCEM phase can require > 100 iterations,
with each iteration modifying the parameter estimates only slightly. Thus, a modified version
of MCEM that takes larger steps in parameter space would further accelerate convergence.
Such modifications have previously been described in the literature [28]; consequently, cur-
rent work focuses on incorporating these modifications into MCEM?2. We note that one
simple way to reduce the computational time required by MCEM? is to simulate trajectories
in parallel, using either clusters of CPUs (central processing units) or GPUs (graphics pro-
cessing units). Since each consistent trajectory can be simulated independently of all others,
the computation time of each MCEM? iteration can in principle be reduced to the longest
time required to simulate a single consistent trajectory.

One final enhancement that would broaden the applicability of MCEM? involves accommo-
dating measurement error in the observed data. Implementing this enhancement would be
relatively straightforward given probabilistic error with known distribution. In this case, we
could simply replace the indicator function in Eq. 4b with the corresponding density function
of the error, given a simulated trajectory. This modification would substantially improve
the efficiency of MCEM?, as any simulated trajectory could now have a nonzero likelihood
of generating the observed data (and thus all trajectories could be consistent with observed
data). Future work will focus on incorporating this enhancement into MCEM?Z.

Conclusions
In this work, we developed Monte Carlo Expectation-Maximization with Modified Cross-

Entropy Method (MCEM?), a novel method for maximum likelihood parameter estimation
of stochastic biochemical systems. Through applying MCEM? to five example systems,
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we demonstrated its accurate performance and distinct advantages over existing methods.
We expect these advantages to permit analysis of larger and more realistic biochemical
models, ultimately providing an improved mechanistic understanding of important biological
processes.

Algorithm 1: Pseudo-code for CE phase of MCEM?

1: 9(0) — (1,1,...,1), 0© 00, m«0
2: while 6™ > 0 do

33 me—m-+1
4: to— 0
5l 0 Yk
6: fori=1t%oddo
7: for k=1 to Kiglo . 3
8: generate 0:,2 = <9§7Z;1), e ,0%;?) by evaluating Eq. (8) M times
9: t—t,_1
10: if 7 =1 then
11: X < Xp
12: else
13: x « final state of zETl) .
14: end if ’
15: while ¢t < t; do
16: compute all h;(x)
17: generate 7, 7' using the SSA with 952_1), augment ZETZ)
18: t—t+T, 7"](7;) — r](.fz) + 1, update x to reflect the firing of reaction R;
19: end while
20: end for
21: §(m) « (p x 100)™ quantile of (d(z%),yi), . ,d(zﬁ}?,yﬁ)
22: if + < d then
23: replace ZET), . ,zEZ?) by sampling with replacement from the ZEZZ) satisfying
d(z\Y,y;) < 80)
24: end if

25:  end for R
26: compute 8 according to Eq. (7)
27: end whilA%

28: return 0 :9(m)

Algorithm 2: Pseudo-code for MCEM phase of MCEM?
- (0) ~CE
:0 " «—0 |, n—0
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2: while (upper bound of the change in conditional log-likelihood > .005) do
33 n+—n-+1

4: if n > 1 then

5: increment K’ as described in [19]

6: end if

7 to — 0

g 1l — 0 Vi K

9: fori=1toddo

10: for ¥ =1 to K’ do

11: t— 1,1

12: if © =1 then

13: X <— Xp

14: else

15: X — X 4

16: end if

17: while ¢t < ¢; do

18: compute all h;(x)

19: generate 7, 7/ using the SSA with é(n_l), augment Z,E"),
20: t—t+T, 7"57,3 — 7“](.7,2, + 1, update x to reflect the firing of reaction R;:
21: end while

22: if d(zl(.j,?/,yi) > 0 then

23: reset ZEZ),, r](.7,3/ to values held before step 17

24: goto step 11

25: end if

26: end for

27:  end for R
28:  compute @ according to Eq. (5)
29: end while

30: return 9 = 9(n)

Algorithm 3: Pseudo-code for computing MCEM? uncertainty estimates
1: 19— 0
2 Tjgr 0 vy, K
3: fori=1toddo
4:  for k' =1 to K’ do
t—1t;1
if i =1 then
X <— Xp
else
X — X
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10: end if

11: while t < t; do

12: compute all h;(x)

13: generate 7, j' using the SSA with 6, augment Zik
14: t—1t+71, ryw < rjny +1, update x to reflect the firing of reaction R;
15: end while

16: if d(z;x,y:) > 0 then

17: reset z; ., 75 to values held before step 11

18: goto step 5

19: end if

20: end for

21: end for

22: compute AXA] according to Eq. (10)
23: return X
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