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Abstract

Background

In a complex disease, the expression of many geamsbe significantly altered,
leading to the appearance of a differentially egpeel "disease module”. Some of
these genes directly correspond to the diseaseopipe (i.e. "driver” genes), while
others represent closely-related first-degree fmgls in gene interaction space. The
remaining genes consist of further removed "pass®rgenes, which are often not
directly related to the original cause of the dégea For prognostic and diagnostic
purposes, it is crucial to be able to separateytbap of "driver” genes and their first-

degree neighbours, (i.e. "core module") from theegal "disease module”.

Results
We have developed COMBINER: COre Module Biomarkdentification with

Network ExploRation. COMBINER is a novel pathwaysbd approach for selecting
highly reproducible discriminative biomarkers. Wpphed COMBINER to three
benchmark breast cancer datasets for identifyingpgmstic biomarkers.
COMBINER-derived biomarkers exhibited 10-fold higheproducibility than other
methods, with up to 30-fold greater enrichmentkpown cancer-related genes, and
4-fold enrichment for known breast cancer suscépgbnesMore than 50% and 40%
of the resulting biomarkers were cancer and breaster specific, respectively. The
identified modules were overlaid onto a map of doéllular pathways that
comprehensively highlighted the hallmarks of can€erthermore, we constructed a
global regulatory network intertwining several ftinoal clusters and uncovered 13

confident "driver” genes of breast cancer metastasi

Conclusions
COMBINER can efficiently and robustly identify dese core module genes and

construct their associated regulatory network. tHea same wayit is potentially

applicable in the characterization of any disehaédan be probed with microarrays.



Background

In recent years, gene expression signatures basddNA microarray technology
have proven useful for predicting the risk of btezancer. Agendia's MammaPrint
has become the first FDA-cleared breast cancempiag marker chip containing 70
gene signatures [1]. Many other microarray-baseanarkers, such as 76 gene
signatures [2] have been derived using independiztiat sources. However, there are
only three overlaps between MammaPrint's 70-geeVdang's 76-gene signatures.
Furthermore, many of these markers are functionatiselated to breast cancer. In
order to identify robust, functionally relevant eise biomarkers, it is crucial to find

gene signatures that are consistent in variousstataes.

A complex disease such as breast cancer resutteiny differentially expressed
genes (DEGSs), which together can be used to canisrtidisease module” network
[3]. Some of these DEGs directly correspond ®dlsease phenotype (i.e. "driver”
genes). The expression changes enacted on ther dianes lead to a cascade of
changes of other genes: initially to their firsgdee interaction neighbors[4],
followed by downstream effects to so-called "pags€hgenes. Due to their direct
relevance to the biology of the disease in questiba expression changes of the
driver genes and their first-degree neighbours (hembers of the "core module"),
should be more consistent than those of the pass@@mes when compared across
independent cohorts. However, it is often diffica separate the core module from
the passenger genes for a given disease[5, Ghidipaper, we aim to isolate the core
module from the more general disease module arnbefuidentify the driver genes

using network analysis.

The most intuitive way of finding the disease conedule is to identify the
Differential Expressed Genes (DEGs) over varioubods. Unfortunately, the
typically larger number of passenger genes in eautort will contribute to the
majority of gene overlaps, due to statistical cleané more biologically-motivated
technique for identifying the core module is to dfiroverlapping differentially
expressed pathways. However, a pathway may alstaicohundreds of passenger
genes with respect to the disease in question. edder, the number of DEGs in a
pathway is not always directly proportional to tledevance of that pathway in the

disease.



In light of the aforementioned challenges, we pe&pdo identify Pathway
Activities (PAs) from cohorts of data and use supsed classification to isolate a
consistent core module. Each PA is a vectoregging the information of all
genes expressed in a pathway [7-11]. The use sffe¥®iomarker identification has
been shown improve reproducibility and disease@dldunctional enrichment of the
resulting biomarkers[7]. The main idea behind owthod is to infer the most
significant PAs in each data cohort, and validdtes¢ PAs using classification
methods in other cohorts. If a PA also scores Ihigh all the other cohorts, we
consider it to be consistently differentially exgged in the disease of interest.
Furthermore, we would consider the genes that mgkéhe PA to belong to the
disease core module.

In this work, we develop a novel biomarker idewtfion framework entitled
COre Module Biomarker Identification with NetworkxjoRation (COMBINER).
COMBINER identifies "core module" (Fig. 1) that acensistently differentially
expressed as a whole in the data cohorts of inte@SMBINER uses a Core Module
Inference (CMI) component to infer candidate PAenfr pathway database, a
Consensus Feature Elimination (CFE) componenttar fiut irreproducible PAs, and
a multi-level reproducibility validation framewotk find the consistent PAs, which
in turn make up the complete core module. Inintalfstep, COMBINER uses known
pathways and protein networks to identify the erigenes within this core module.

To illustrate its utility, we apply COMBINER to the benchmark breast cancer
datasets. We evaluate the resulting core modoleadcuracy, reproducibility, and
enrichment for known cancer-related genes. We tbeeplore the roles of the
COMBINER-identified core modules in the hallmarkscancer, and we reconstruct a
breast cancer-specific interaction network compos#d functionally coherent
modules. Finally, we summarize our analyses bwtitieng 13 high confidence

driver genes from COMBINER markers.

Results
Overview

COMBINER is a multi-level optimization framework rfadentifying core module

markers (Figure 1, Materials and methods). Brie@DMBINER infers candidate

-4 -



submodules from known pathways, identifies the adpcible "core module" using
independent cohorts, and uses intracellular sigggdiathways and protein networks
to identify the "driver" genes from the "core maeglul

We applied COMBINER to three independent breasteadatasets to evaluate
its effectiveness: Netherlands [12], USA [2], anéldglum [13]. We obtained
pathway information from the MsigDB v3.0 Canoni¢Zthways subset [14]. To
decrease redundancy, we applied pathway filteongmove bulky pathways such as
KEGG Pathways of Cancer. This resulted in a payhdataset containing 624

pathways with 5,155 genes assayed in all threehmeak datasets.

Core Module Inference improves reproducibility and classification accuracy

A primary challenge of pathway inference is to fipdthway subsets that are
reproducible between independent datasets. We a@upCore Module Inference
(CMI) with five other inference methods as welliadividual genes (see Materials
and methods). When compared to a range of nunabénserred Pathway Activities
(PAs), CMI showed two-fold increased reproducipilibver the related CORG
method and about a 10-fold improvement over otirethods (Figure 2).

We then compared the classification accuracy of Gid the other inference
methods using Linear Discriminant Analysis-ConsenBaature Elimination (LDA-
CFE) classifiers focused on the top 100 inferred PMaterials and methods). As
shown in Figure 3, COMBINER run using PA vectorentified by CMI (CMI-
COMBINER) exhibits better overall accuracy than tither methods coupled with
COMBINER. Similarly, CMI also shows good overaktcaracy using the SVM

classifier (Supplementary Figure S1).



Core module markers enrich cancer-related genes

We compared the enrichment of known cancer genttgeibiomarkers discovered by
CMI-COMBINER, (93 genes); CORG-COMBINER, (i.e. COMMER run using
CORG activity vectors), (123 genes); Subnetwork ke (1162 genes) ([7],
www.cellcircuits.com); MammaPrint's 70-gene signat(G70) (70 genes) [1]; and
Wang's 76-gene signature (G76) (76 genes) [2].esénown cancer gene datasets
were compared (see Materials and methods). Botir@B®MBINER and CORG-
COMBINER showed much higher enrichment of canckatee genes in their
biomarker signatures (Table 1). Specifically, Cdihd CORG-COMBINER showed
up to 4-fold increased enrichment over subnetworkrkers and up to 30-fold
enrichment over other gene signatures. In padrdolr known breast cancer genes in
Census, they exhibited up to 4 fold enrichment @tkers. More than 50% and 40%
of the resulting biomarkers are cancer and breaster specific, respectively.
Additionally, CMI-COMBINER showed greater enrichmenthan CORG-
COMBINER with respect to the Atlas of Cancer Geneiich is the largest cancer
gene collection. Consistent to Chuang et al'sltg3]i we also found insignificant
enrichment in CANgene dataset including 122 mueagenes from 11 breast cancer
cell lines. A possible explanation is that "then@a cell lines capture a different
disease state than that found in the populatiopatients surveyed by microarray
profiling.” [7] The COMBINER core module markerstivassociated pathways are
summarized in Supplementary Tables S1 and S3. |Supptary Table S2 lists the
overlaps between CMI-/CORG-COMBINER and KEGG patysvaf cancer, along

with up-/down-regulation information.



Core module markers highlight the hallmarks of canc er

As shown in Figure 4, the COMBINER-discovered biokeas are overlaid on the
hallmarks of cancer [15, 16], which integrate tlmnmon intracellular signalling
pathways of all subtypes of cancer. The componeintse core modules from CMI
and CORG along with eighteen common markers atedlign different fonts. The
remaining proteins (most were not differentiallypeessed) in the pathways are
consolidated into unlabeled nodes. Figure 4 shinasthe identified core modules
comprehensively highlight the hallmarks, demonstgatthe high specificity of
COMBINER. In particular, 18 common markers, whiake regard as the most
reliable predictors, describe well-characterizedcpsses involving growth factors,
survival factors, the cell cycle, and the extradall matrix. The modules unique to
CMI-COMBINER include anti-apoptosis and JAK-STATscades, while pathways
describing anti-growth factors and death factorsewmique to CORG-COMBINER.
A few well-known mutant proteins, including cyclidl and p53, may play an
important role in connecting other signatures [@lit they showed only limited

predictive ability in the three breast cancer deatsas

Core module markers in predicted protein-protein in teraction networks
underpin functional modules

Figure 5 shows how a regulatory network was congiusing the interactome of
the core modules. The regulatory network was ddiohto a few functional modules,
including cell cycle and ECM. These functional mia$ were interconnected by 20
"hub" genes (larger pink/green nodes), 13 of wiuebrlapped with the hallmarks of
cancer (Supplementary Table S1, Figure 4). Ouwltesmply that these 13 "hub"
markers are the essential "driver" genes of breaster metastasis (Table 2). For
example, BRCA1 is among the most well-charactergedes whose mutation gives

rise to breast cancer. In addition, low E2F1dcaupt levels strongly predicted good
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prognosis based on quantitative RT-PCR in 317 pyrbaeast cancer patients [17].
We further enlarged the nodes of three standardsbreancer indicators TP53,
BRCAL, and ERBB2, which connect many of the surdiig hub genes. Although
TP53 and ERBB2 are useful for a mechanistic undedshg of breast cancer, they
were not identified as discriminative gene markérgegulatory network was also
created representing CORG-COMBINER (Supplementarguré S2), but no

additional "hub" markers were found.

Conclusions
Identifying accurate and reproducible disease br&era is an important challenge

for gene expression analysis. To facilitate thisktave developed COMBINER, a
novel pathway-based biomarker identification mettiaat extracts the essential "core
module” of disease from known biological networkempared to existing methods,
COMBINER substantially improves the reproducibilitand cancer-specific

enrichment of its resulting biomarkers. We examirted identified markers in

intracellular signalling networks highlighting tiheallmarks of cancer. Reassembling
the core modules into a regulatory network, we a8 "driver" genes connecting
eight functional modules. We anticipate such makacdescriptions to prove even
more useful when applied to diseases that areviedischaracterized; our current

work focuses on several such applications.

Methods

Gene expression, pathways, cancer gene databases, a nd interactome
We used three breast cancer datasets from diffecemitries of origin to evaluate our
method: Netherlands [12], USA [2], and Belgium [13] Each dataset recorded

whether the assayed patients developed metastakia & years after surgery. The
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Netherlands, USA, and Belgium datasets containesgion profiles for 295, 286, and
198 patients, respectively, with 78, 107, and 3&epés experiencing metastasis. All
of the patients in the USA and Belgium datasets lgagph-node-negative disease,
although their estrogen receptor (ER) types ditfer&he Netherlands data contained
both lymph-node positive and negative disease matiwith differing ER types, 130
of which received adjuvant systemic therapy inatgdchemotherapy and hormonal
therapy. We performed a two-tailed t-test on tle@egexpression values of each
dataset to distinguish between metastatic and netastatic patients, considering
genes with p-valug .05 as differentially expressed (DE).

The reference cancer genes for enrichment analgsis collected from datasets

including NetPath [18] (all cancersttp://www.netpath.org/ Atlas of Cancer Genes

[19] (all cancershttp://atlasgeneticsoncology.oygCensus Genes [20] (all cancers),
CANgenes [21] (breast  cancer), G2SBC [22] (breastancer,

http://www.itb.cnr.it/breastcancgr/and KEGG Pathways of Cancer [23] (all cancers,

KEGG hsa05200ttp://www.genome.jp/kegqg/pathway /hsa/hsa05200d)htm

Pathway information was obtained from the MsigDBOv&anonical Pathways
subset [14, 24]. This collection contains 880 paiys collected from seven hand-
curated pathway databases including KEGG, ReactanteBiocarta.

Predicted protein protein interaction informatioasaobtained from STRING 9

[25].

Core Module Inference

The CMI method adopts the strategy of the CORG atk{i0] of finding the genes
with the most discriminative power, differing inrdle ways: first, the CORG method
collects CORGs only from the up- or downregulatatiset of genes in a pathway,

and some key genes can thus be discarded. Imrasgn€MI considers both up- and
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downregulation together. Second, CMI improves treedy search for the
discriminative set of genes. Third, CMI consideny differentially expressed genes.
As illustrated in Box 1, given a pathway consistofggenes §s,... g, ..., gn} ranking
by a descending order of their absolute t-scoraf) their normalized expression
values {&0y),..., Z(gn)}, determining a core moduleg{,..., g«} is equivalent to

finding theK™ component, such that

K =argmax{,, @ ). 1)

where

zij=1 Z(gi )Signd:score (gi ))
R = Ji

0 , |gUDEGs # 0O

, 1< j<min(|g, O DEGs |,20), ¢, JDEGs ¥ ( @

g is thei™ DEG in descending order arfg) is the PA containing frong; to g;.
| g, U DEGs| denotes number of DEGs in the pathway, The DEGddbgult are the

genes with p-valug 0.05 in a two-tailed t-test. We limit the largesarker size to 20

DEGs. In fact, most marker sets have fewer thacoP@onents.

Reproducibility power

We consider two pathways to be reproducible if thmathway activities provide

similar discriminative power for all independenttatets. First, we rank the PAs
inferred from the inference dataset in descendirgroby their tscores. Then, we

define reproducibility by

1 i i
Cscore(N) = ﬁzi'\iltscore(Pl ) |:ﬂsoore(R/) , (3)

where P' is thei™ PA in descending order in the inference dataged, B is its

corresponding PA in the validation dataset. Ferlifeast cancer datasets, the overall
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reproducibility is then given by the average Csaufréhe inferred pathways over all
six inference-validation pairs.

Six methods were compared in this work, includilfd|OCORG(Leeet al, 2008),
Mean[9], Median[9], PCAJ[8], and Individual Gene. R{Log likelihood Ratio, [11])

was not compared here, because it is not discuisthd same gene expression space.

Consensus Feature Elimination (CFE)
In this work, gene expression and activity vectare generalized as features for
classification. Given a set of featureg,{Xo,..., Xn} with class labels ¥, ys,..., yn} €{

-1, +1}, the task of binary classification is tadia decision function

>0= xUclass(+)
D(x): <0= xUclass(-) (4)
=0= x[decision boundary,
We choose a linear decision function, which candescribed as a separating

hyperplane:

D(x)=wlX+b, (5)

with w the weight vector ank the bias value.

Linear classifiers such as Linear Discriminant Asa (LDA) [26] and linear
Support Vector Machines (SVM) [27] use differingtioization criteria to estimate
the weight vector. Intuitively, the weights indieahe importance of the associated
features. Guyost al proposed Recursive Feature Elimination (RFE), tvmneanoves
features recursively based on their weights [2Bwever, classical RFE exhibits
lack of stability in feature selection [29]. In doast to binary classification tasks that
emphasize maximization of classification accurdmgmarker identification requires
features that are both accurate and reproducibl®ss multiple experiments. Thus,

we propose a Consensus Feature Elimination (CH&tpaph to improve the stability
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of RFE. As illustrated in Figure 6, we first geater 100 alternative 5-fold random
splits of samples, upon which we construct 500sdi@ss and record their AUCs

(Area Under ROC Curve) and weight vectors. Eadtufe was then ranked by

L 500 i\2 )
average square welngzjzl(w‘) /500. The lowest ranking feature was removed

recursively until the maximum average AUC was aobie This process, which has
also been called Multiple RFE [30] or ensemble deatselection [31] is known to
increase biomarker reproducibility and accuracy dsy much as 30% and 15%,
respectively. For the breast cancer datasets idedcm this work, we found the
maximum AUC to be very stable, while the correspogdiomarker set was not
always unique. Thus we chose to repeat the abmeegure 100 times, selecting the
most frequently occurring biomarkers as the finarker set.
Seven methods were compared in this work, inclu@hgl, CORG[10], Mean

[9], Median[9], PCA [8], LLR(Log likelihood Ratid,L1]), and Individual Gene.

Cancer gene enrichment analysis

The cancer gene enrichment analysis examines epeesentation of known cancer
genes in a gene signature. Assuming the total pummbgenes N, cancer genes M,
and signature genes J, the probability of havingemtban K cancer genes in a
signature follows a hypergeometric distribution:

)
P(# of cancer genesK ) —lzii()&, (6)

N
M
Software

COMBINER was implemented in Matlab R2010a with Matl Bioinformatics

toolbox v3.5.
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Figures

Figure 1 - Schematic overview of COMBINER

COMBINER uses Core Module Inference (CMI) to inf@ndidate pathway activities
from each pathway in an inference dataset, ConseRsature Elimination (CFE) to
filler out irreproducible activities in validatiordatasets, and a multi-level
reproducibility validation framework to conduct paiise validations to find common
reproducible activities which make up the "core mletli To identify the "driver”

genes, we reassemble the resulting core module emsaria both intracellular
signalling pathways and a large overall regulatoegwork reflecting interactions
between pathways.

Figure 2 - Reproducible power of pathway inference methods. The
N

reproducibility of a pathway is measured CQ;gre(N):% i:1tscore(l3,i)Eﬂsmre(l?,i),

where P is thei™ PA in descending order in the inference datasd, R is its
corresponding PA in the validation datagdte overall reproducibility is then defined
as the average Cscore of selected top inferredwpgthactivities over all six
inference-validation pairs. We did not compareRLinethod, which transfers gene
expression to a log-likelihood space. We comp&#td with five inference methods,
including the CORG, mean, median, first componeates of PCA, as well as no-
inferring gene method. Comparing by different e @f top inferred activities, the
CMI showed significant better overall reproduciyilover other methods.

Figure 3 - Comparison of CMI and other inference m  ethods-based COMBINER
using LDA-CFE classifiers focused on the top 100 in  ferred pathways. Seven
methods were compared here, including CMI, CORGam&ledian, PCA, LLR and
Individual Gene. (a) Classification accuracy foesb feature set: pair-wise
comparisons.  Starting from all 100 inferred patkwactivities, we recursively
removed the activity with the lowest average weigbm 500 LDA classifiers, until
the maximum average AUC was reached. The processepaated 100 times and the
most frequently occurring marker set was regardedha ultimate marker. We
measured classification accuracy of each methamblnputing AUC mean * standard
error for the final feature set. (b) Classificatiaccuracy overall. The overall
classification accuracy was measured by computivey dverage maximum mean
AUC of all six inference-validation pairs. On aage, CMI was superior to the other
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methods, even though its activity vector consisieéxpression values from only a
few genes in each pathway.

Figure 4 COMBINER biomarkers overlap with well-know n cancer-related
signalling pathways.  The core module markers from CMI and CORG arediste
normal and italic fonts, respectively, while thenooon markers are in bold.
Red/green color denotes up-/down-regulation. Emeaining proteins in the circuit
are abstracted as unlabeled nodes. The commomumiales of CMI- and CORG-
COMBINER describe growth factors, survival factotke cell cycle, and the
extracellular matrix. Unique pathways to CMI-CONNER include the anti-
apoptosis and JAK-STAT cascade, while anti-growHittdr and death factor
pathways were discovered uniquely by CORG-COMBINER.

Figure 5 Regulatory networks of CMI-COMBINER biomar kers The pink/green
nodes denote up-/down-regulation of gene expression . The orange nodes
indicate contradictory regulation in different dedts. Larger nodes are highly
connected in the network; most are overlaps betWzdh and CORG-COMBINER.
The three well-known oncogenes for breast cancdastesis—TP53, BRCA1, and
ERBB2-were enlarged further. The core module marikere reassembled into an
overall interaction network. Known functional mdesi neatly overlay well-
connected clusters. Many of the highly connectedeg are known "driver" genes
playing an important role in breast cancer metéastas

Figure 6 Diagram of Consensus Feature Elimination. We first generated 100
alternative 5-fold random splits of samples, updmch it constructs 500 classifiers
with their AUCs as well as weight vectors. Eachtdee is then ranked by its average
square weight. The lowest ranking feature was wathiobackward until the
maximum average AUC was achieved. The procedurepsated for 100 times, and
the most frequently occurring marker set was regfatd be the ultimate marker.

Tables
Table 1 Cancer Gene Enrichment rate of various brea st cancer gene signatures
CMI-COMBINER CORG-COMBINER Subnetwork G70 G76
NetPath  54.17%* 50.41%* 26.33%* 10.00% 10.53%
Atlas 60.42%* 46.34% 32.87% 15.71% 18.42%
Census 11.46%* 13.82%* 5.42%* 2.86%  0.00%
CANgene 1.04% 1.63% 0.52% 0.00%  0.00%
G2SBC 43.75%* 46.34%* 19.02% 21.43% 10.53%
COSMIC 16.67% 17.89%* 7.06% 4.29% 1.32%
KEGG 35.42%* 29.27%* 9.90%* 8.57% 1.32%

* p-value < 0.05 for hypergeometric tests
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Table 2 Confident "driver" genes for breast cancer metastasis

Symbol Entrez Description

MAP2K1 [32] 5604 mitogen-activated protein kinase kinase 1

E2F1 [33] 1869  EZ2F transcription factor 1

GRB2[34] 2885  growth factor receptor-bound protein 2

NFKB1 [35] 4790 nuclear factor of kappa light polypeptide gene eckain B-

cells1
RB1[36] 5925 retinoblastoma 1
BRCAL1 [37] 672 breast cancer 1, early onset
FOS [38] 2353  v-fos FBJ murine osteosarcoma viral oncogene hognolo

SOS1[39] 6654  son of sevenless homolog 1 (Drosophila)

PIK3CA[40] 5290 phosphoinositide-3-kinase, catalytic, alpha polyjukp

JAK1 [41] 3716  Janus kinase 1

SHC1[42] 6464  SHC (Src homology 2 domain containing) transforming
protein 1

MYC[43] 4609 v-myc myelocytomatosis viral oncogene homolog (ayia

CCNA2[38] 890 cyclin A2

Additional files

Additional file 1 — Supplemental materials

Figure S1 Comparison of CMI and other pathway infeence methods using
SVM-MRFE classifiers subject to top 100 inferred péhways.

Figure S2 Unique core modules of cancer pathway idéfied by CORG-
COMBINER method.

Additional file 2 — Table S1: List of core genes ientified by CMI and CORG

Additional file 3 — Table S2 List of core module gees overlaid in KEGG
pathway of cancers

Additional file 4 — Table S3 Pathway markers idenfiied by all methods
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