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Abstract  

Background 

In a complex disease, the expression of many genes can be significantly altered, 

leading to the appearance of a differentially expressed "disease module".   Some of 

these genes directly correspond to the disease phenotype, (i.e. "driver" genes),  while 

others represent closely-related first-degree neighbours in gene interaction space.  The 

remaining genes consist of further removed "passenger" genes, which are often not 

directly related to the original cause of the disease.  For prognostic and diagnostic 

purposes, it is crucial to be able to separate the group of "driver" genes and their first-

degree neighbours, (i.e. "core module") from the general "disease module".   

Results 

We have developed COMBINER: COre Module Biomarker Identification with 

Network ExploRation. COMBINER is a novel pathway-based approach for selecting 

highly reproducible discriminative biomarkers. We applied COMBINER to three 

benchmark breast cancer datasets for identifying prognostic biomarkers. 

COMBINER-derived biomarkers exhibited 10-fold higher reproducibility than other 

methods, with up to 30-fold greater enrichment for known cancer-related genes, and 

4-fold enrichment for known breast cancer susceptible genes. More than 50% and 40% 

of the resulting biomarkers were cancer and breast cancer specific, respectively. The 

identified modules were overlaid onto a map of intracellular pathways that 

comprehensively highlighted the hallmarks of cancer. Furthermore, we constructed a 

global regulatory network intertwining several functional clusters and uncovered 13 

confident "driver" genes of breast cancer metastasis.  

Conclusions 

COMBINER can efficiently and robustly identify disease core module genes and 

construct their associated regulatory network.  In the same way, it is potentially 

applicable in the characterization of any disease that can be probed with microarrays. 
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Background  
In recent years, gene expression signatures based on DNA microarray technology 

have proven useful for predicting the risk of breast cancer. Agendia's MammaPrint 

has become the first FDA-cleared breast cancer prognosis marker chip containing 70 

gene signatures [1].  Many other microarray-based biomarkers, such as 76 gene 

signatures [2] have been derived using independent data sources.  However, there are 

only three overlaps between MammaPrint's 70-gene and Wang's 76-gene signatures.  

Furthermore, many of these markers are functionally unrelated to breast cancer.  In 

order to identify robust, functionally relevant disease biomarkers, it is crucial to find 

gene signatures that are consistent in various data sources.   

A complex disease such as breast cancer results in many differentially expressed 

genes (DEGs), which together can be used to construct a "disease module" network 

[3].   Some of these DEGs directly correspond to the disease phenotype (i.e. "driver" 

genes).  The expression changes enacted on the driver genes lead to a cascade of 

changes of other genes: initially to their first-degree interaction neighbors[4], 

followed by downstream effects to so-called "passenger" genes.  Due to their direct 

relevance to the biology of the disease in question, the expression changes of the 

driver genes and their first-degree neighbours (i.e. members of the "core module"), 

should be more consistent than those of the passenger genes when compared across 

independent cohorts.  However, it is often difficult to separate the core module from 

the passenger genes for a given disease[5, 6].  In this paper, we aim to isolate the core 

module from the more general disease module and further identify the driver genes 

using network analysis.     

The most intuitive way of finding the disease core module is to identify the 

Differential Expressed Genes (DEGs) over various cohorts.  Unfortunately, the 

typically larger number of passenger genes in each cohort will contribute to the 

majority of gene overlaps, due to statistical chance.  A more biologically-motivated 

technique for identifying the core module is to find overlapping differentially 

expressed pathways.  However, a pathway may also contain hundreds of passenger 

genes with respect to the disease in question.  Moreover, the number of DEGs in a 

pathway is not always directly proportional to the relevance of that pathway in the 

disease.   
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In light of the aforementioned challenges, we propose to identify Pathway 

Activities (PAs) from cohorts of data and use supervised classification to isolate a 

consistent core module.   Each PA  is a vector aggregating the information of all 

genes expressed in a pathway [7-11].  The use of PAs for biomarker identification has 

been shown improve reproducibility and disease-related functional enrichment of the 

resulting biomarkers[7].  The main idea behind our method is to infer the most 

significant PAs in each data cohort, and validate these PAs using classification 

methods in other cohorts.  If a PA also scores highly in all the other cohorts, we 

consider it to be consistently differentially expressed in the disease of interest. 

Furthermore, we would consider the genes that make up the PA to belong to the 

disease core module.   

In this work, we develop a novel biomarker identification framework entitled 

COre Module Biomarker Identification with Network ExploRation (COMBINER). 

COMBINER identifies "core module" (Fig. 1) that are consistently differentially 

expressed as a whole in the data cohorts of interest.  COMBINER uses a Core Module 

Inference (CMI) component to infer candidate PAs from pathway database, a 

Consensus Feature Elimination (CFE) component to filter out irreproducible PAs, and 

a multi-level reproducibility validation framework to  find the consistent PAs, which 

in turn make up the complete core module.  In its final step, COMBINER uses known 

pathways and protein networks to identify  the driver genes within this core module.     

To illustrate its utility, we apply COMBINER to three benchmark breast cancer 

datasets.  We evaluate the resulting core modules for accuracy, reproducibility, and 

enrichment for known cancer-related genes. We then explore the roles of the 

COMBINER-identified core modules in the hallmarks of cancer, and we reconstruct a 

breast cancer-specific interaction network composed of functionally coherent 

modules.  Finally, we summarize our analyses by identifying 13 high confidence 

driver genes from COMBINER markers.  

  

Results  

Overview  

COMBINER is a multi-level optimization framework for identifying core module 

markers (Figure 1, Materials and methods).  Briefly, COMBINER infers candidate 
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submodules from known pathways, identifies the reproducible "core module" using 

independent cohorts, and uses intracellular signaling pathways and protein networks 

to identify the "driver" genes from the "core module".  

We applied COMBINER to three independent breast cancer datasets to evaluate 

its effectiveness: Netherlands [12], USA [2], and Belgium [13].  We obtained 

pathway information from the MsigDB v3.0 Canonical Pathways subset [14].  To 

decrease redundancy, we applied pathway filtering to remove bulky pathways such as 

KEGG Pathways of Cancer.  This resulted in a pathway dataset containing 624 

pathways with 5,155 genes assayed in all three benchmark datasets. 

Core Module Inference improves reproducibility and classification accuracy 

A primary challenge of pathway inference is to find pathway subsets that are 

reproducible between independent datasets.  We compared Core Module Inference 

(CMI)  with five other inference methods as well as individual genes (see Materials 

and methods).  When compared to a range of numbers of inferred Pathway Activities 

(PAs), CMI showed two-fold increased reproducibility over the related CORG 

method and about  a 10-fold improvement over other methods (Figure 2).  

We then compared the classification accuracy of CMI and the other inference 

methods using Linear Discriminant Analysis-Consensus Feature Elimination (LDA-

CFE) classifiers focused on the top 100 inferred PAs (Materials and methods).    As 

shown in Figure 3, COMBINER run using PA vectors identified by CMI (CMI-

COMBINER) exhibits better overall accuracy than the other methods coupled with 

COMBINER.  Similarly, CMI also shows good overall accuracy using the SVM 

classifier (Supplementary Figure S1).  
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Core module markers enrich cancer-related genes  

We compared the enrichment of known cancer genes in the biomarkers discovered by 

CMI-COMBINER, (93 genes); CORG-COMBINER, (i.e. COMBINER run using 

CORG activity vectors), (123 genes); Subnetwork markers (1162 genes) ([7], 

www.cellcircuits.com); MammaPrint's 70-gene signature (G70) (70 genes) [1]; and 

Wang's 76-gene signature (G76) (76 genes) [2].  Seven known cancer gene datasets 

were compared (see Materials and methods).  Both CMI-COMBINER and CORG-

COMBINER showed much higher enrichment of cancer-related genes in their 

biomarker signatures (Table 1).  Specifically, CMI- and CORG-COMBINER showed 

up to 4-fold increased enrichment over subnetwork markers and up to 30-fold 

enrichment over other gene signatures.  In particular for known breast cancer genes in 

Census, they exhibited up to 4 fold enrichment over others.  More than 50% and 40% 

of the resulting biomarkers are cancer and breast cancer specific, respectively. 

Additionally, CMI-COMBINER showed greater enrichment than CORG-

COMBINER with respect to the Atlas of Cancer Genes, which is the largest cancer 

gene collection.  Consistent to Chuang et al's results[7],  we also found insignificant 

enrichment in CANgene dataset including 122 mutative genes from 11 breast cancer 

cell lines.  A possible explanation is that "the cancer cell lines capture a different 

disease state than that found in the population of patients surveyed by microarray 

profiling." [7]  The COMBINER core module markers with associated pathways are 

summarized in Supplementary Tables S1 and S3.  Supplementary Table S2 lists the 

overlaps between CMI-/CORG-COMBINER and KEGG pathways of cancer, along 

with up-/down-regulation information. 
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Core module markers highlight the hallmarks of canc er 

As shown in Figure 4, the COMBINER-discovered biomarkers are overlaid on the 

hallmarks of cancer [15, 16], which integrate the common intracellular signalling 

pathways of all subtypes of cancer.  The components of the core modules from CMI 

and CORG along with eighteen common markers are listed in different fonts.  The 

remaining proteins (most were not differentially expressed) in the pathways are 

consolidated into unlabeled nodes.  Figure 4 shows that the identified core modules 

comprehensively highlight the hallmarks, demonstrating the high specificity of 

COMBINER.  In particular, 18 common markers, which we regard as the most 

reliable predictors, describe well-characterized processes involving growth factors, 

survival factors, the cell cycle, and the extracellular matrix.  The modules unique to 

CMI-COMBINER include anti-apoptosis and JAK-STAT cascades, while pathways 

describing anti-growth factors and death factors were unique to CORG-COMBINER.  

A few well-known mutant proteins, including cyclin D1 and p53, may play an 

important role in connecting other signatures [7], but they showed only limited 

predictive ability in the three breast cancer datasets.   

Core module markers in predicted protein-protein in teraction networks 
underpin functional modules 

Figure 5 shows how a regulatory network was constructed using the interactome of 

the core modules.  The regulatory network was divided into a few functional modules, 

including cell cycle and ECM.  These functional modules were interconnected by 20 

"hub" genes (larger pink/green nodes), 13 of which overlapped with the hallmarks of 

cancer (Supplementary Table S1, Figure 4).  Our results imply that these 13 "hub" 

markers are the essential "driver" genes of breast cancer metastasis (Table 2).  For 

example, BRCA1 is among the most well-characterized genes whose mutation gives 

rise to breast cancer.   In addition, low E2F1 transcript levels strongly predicted good 
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prognosis based on quantitative RT-PCR in 317 primary breast cancer patients [17].  

We further enlarged the nodes of three standard breast cancer indicators TP53, 

BRCA1, and ERBB2, which connect many of the surrounding hub genes.  Although 

TP53 and ERBB2 are useful for a mechanistic understanding of breast cancer, they 

were not identified as discriminative gene markers. A regulatory network was also 

created representing CORG-COMBINER (Supplementary Figure S2), but no 

additional "hub" markers were found.    

 

Conclusions  
Identifying accurate and reproducible disease biomarkers is an important challenge 

for gene expression analysis. To facilitate this task, we developed COMBINER, a 

novel pathway-based biomarker identification method that extracts the essential "core 

module" of disease from known biological networks. Compared to existing methods, 

COMBINER substantially improves the reproducibility and cancer-specific 

enrichment of its resulting biomarkers. We examined the identified markers in 

intracellular signalling networks highlighting the hallmarks of cancer.  Reassembling 

the core modules into a regulatory network, we found 13 "driver" genes connecting 

eight functional modules.  We anticipate such molecular descriptions to prove even 

more useful when applied to diseases that are less well-characterized; our current 

work focuses on several such applications. 

Methods 

Gene expression, pathways, cancer gene databases, a nd interactome 

We used three breast cancer datasets from different countries of origin to evaluate our 

method: Netherlands [12], USA [2], and Belgium [13].   Each dataset recorded 

whether the assayed patients developed metastasis within 5 years after surgery.   The 
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Netherlands, USA, and Belgium datasets contain expression profiles for 295, 286, and 

198 patients, respectively, with 78, 107, and 35 patients experiencing metastasis.  All 

of the patients in the USA and Belgium datasets had lymph-node-negative disease, 

although their estrogen receptor (ER) types differed.  The Netherlands data contained 

both lymph-node positive and negative disease patients with differing ER types, 130 

of which received adjuvant systemic therapy including chemotherapy and hormonal 

therapy.  We performed a two-tailed t-test on the gene expression values of each 

dataset to distinguish between metastatic and non-metastatic patients, considering 

genes with p-value ≤ .05 as differentially expressed (DE).  

The reference cancer genes for enrichment analysis were collected from datasets 

including NetPath [18] (all cancers, http://www.netpath.org/), Atlas of Cancer Genes 

[19] (all cancers, http://atlasgeneticsoncology.org/), Census Genes [20] (all cancers), 

CANgenes [21] (breast cancer), G2SBC [22] (breast cancer, 

http://www.itb.cnr.it/breastcancer/), and KEGG Pathways of Cancer [23] (all cancers, 

KEGG hsa05200 http://www.genome.jp/kegg/pathway /hsa/hsa05200.html).   

Pathway information was obtained from the MsigDB v3.0 Canonical Pathways 

subset [14, 24].  This collection contains 880 pathways collected from seven hand-

curated pathway databases including KEGG, Reactome, and Biocarta.   

Predicted protein protein interaction information was obtained from STRING 9 

[25].   

Core Module Inference 

The CMI method adopts the strategy of the CORG method [10] of finding the genes 

with the most discriminative power, differing in three ways:  first, the CORG method 

collects CORGs only from the up- or downregulated subset of genes in a pathway, 

and some key genes can thus be discarded.   In contrast, CMI considers both up- and 
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downregulation together.  Second, CMI improves the greedy search for the 

discriminative set of genes.  Third, CMI considers only differentially expressed genes.   

As illustrated in Box 1, given a pathway consisting of genes {g1,… gi, ..., gn} ranking 

by a descending order of their absolute t-scores, with their normalized expression 

values  {z(g1),…, z(gn)}, determining a core module {g1,…, gK} is equivalent to 

finding the Kth component, such that  

 arg max( ( ))score jK t P= , (1) 

where  

1
( )sign( ( ))

,1 min(| |, 20),    | | 0,

0                                                                                    ,    | | 0.

j

i score ii
i i

j

i

z g t g
j g DEGs g DEGs

P j

g DEGs

=

 ≤ ≤ ∈ ∈ >

= 
 ∈ =

∑
 (2) 

gi is the ith DEG in descending order and Pj is the PA containing from g1 to gj. 

| |ig DEGs∈  denotes number of DEGs in the pathway, The DEGs by default are the 

genes with p-value ≤ 0.05 in a two-tailed t-test.  We limit the largest marker size to 20 

DEGs. In fact, most marker sets have fewer than 20 components.   

Reproducibility power 

We consider two pathways to be reproducible if their pathway activities provide 

similar discriminative power for all independent datasets.  First, we rank the PAs 

inferred from the inference dataset in descending order by their tscores.  Then, we 

define reproducibility by 

 
1

1
( ) ( ) ( )

N i i
score score I score Vi

C N t P t P
N =

= ⋅∑ , (3) 

where i
IP  is the ith PA in descending order in the inference dataset, and i

VP  is its 

corresponding PA in the validation dataset.  For the breast cancer datasets, the overall 
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reproducibility is then given by the average Cscore of the inferred pathways over all 

six inference-validation pairs.    

Six methods were compared in this work, including CMI, CORG(Lee et al, 2008), 

Mean[9], Median[9], PCA[8], and Individual Gene. LLR(Log likelihood Ratio, [11])  

was not compared here, because it is not discussed in the same gene expression space. 

Consensus Feature Elimination (CFE)  

In this work, gene expression and activity vectors are generalized as features for 

classification.  Given a set of features {x1, x2,..., xn} with class labels {y1, y2,..., yn} ϵ{  

-1, +1}, the task of binary classification is to find a decision function  

 

0 ( )
( ) 0 ( )

0

class
D class







> ⇒ ∈ +
< ⇒ ∈ −
= ⇒ ∈

x

x                 
x                 
x decision boundary,

 (4) 

We choose a linear decision function, which can be described as a separating 

hyperplane: 

 ( )D = ⋅ + ，x w x b  (5) 

with w the weight vector and b the bias value. 

Linear classifiers such as Linear Discriminant Analysis (LDA) [26] and linear 

Support Vector Machines (SVM) [27] use differing optimization criteria to estimate 

the weight vector.  Intuitively, the weights indicate the importance of the associated 

features.  Guyon et al proposed Recursive Feature Elimination (RFE), which removes 

features  recursively based on their weights [28].  However, classical RFE exhibits 

lack of stability in feature selection [29]. In contrast to binary classification tasks that 

emphasize maximization of classification accuracy, biomarker identification requires 

features that are both accurate and reproducible  across multiple experiments.  Thus, 

we propose a Consensus Feature Elimination (CFE) approach to improve the stability 
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of RFE.  As illustrated in Figure 6, we first generate 100 alternative 5-fold random 

splits of samples, upon which we construct 500 classifiers and record their AUCs 

(Area Under ROC Curve) and weight vectors.  Each feature was then ranked by 

average square weight ( )2500

1
= / 500j

j=∑w w . The lowest ranking feature was removed 

recursively until the maximum average AUC was achieved.  This process, which has 

also been called Multiple RFE [30] or ensemble feature selection [31] is known to 

increase biomarker reproducibility and accuracy by as much as 30% and 15%, 

respectively.  For the breast cancer datasets described in this work, we found the 

maximum AUC to be very stable, while the corresponding biomarker set was not 

always unique.  Thus we chose to repeat the above procedure 100 times, selecting the 

most frequently occurring biomarkers as the final marker set.   

Seven methods were compared in this work, including CMI, CORG[10], Mean 

[9], Median[9], PCA [8], LLR(Log likelihood Ratio, [11]), and Individual Gene. 

Cancer gene enrichment analysis 

The cancer gene enrichment analysis examines over-representation of known cancer 

genes in a gene signature.  Assuming the total number of genes N, cancer genes M, 

and signature genes J, the probability of having more than K cancer genes in a 

signature follows a hypergeometric distribution:  

 0
(#  of cancer genes ) 1

K

i

J N J

i M i
P K

N

M

=

−  
  −  > = −

 
 
 

∑ .   (6)   

Software 

COMBINER was implemented in Matlab R2010a with Matlab Bioinformatics 

toolbox v3.5.    
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Figures 

Figure 1  - Schematic overview of  COMBINER 
COMBINER uses Core Module Inference (CMI) to infer candidate pathway activities 
from each pathway in an inference dataset,  Consensus Feature Elimination (CFE) to 
filter out irreproducible activities in validation datasets, and a multi-level 
reproducibility validation framework to conduct pair-wise validations to find common 
reproducible activities which make up the "core module".  To identify the "driver" 
genes, we reassemble the resulting core module markers in both intracellular 
signalling pathways and a large overall regulatory network reflecting interactions 
between pathways. 

Figure 2 - Reproducible power of pathway inference methods. The 

reproducibility of a pathway is measured by
1
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where 
i

IP  is the ith PA in descending order in the inference dataset, and 
i

VP  is its 
corresponding PA in the validation dataset. The overall reproducibility is then defined 
as the average Cscore of selected top inferred pathway activities over all six 
inference-validation pairs.   We did not compare LLR method, which transfers gene 
expression to a log-likelihood space.  We compared CMI with five inference methods, 
including the CORG, mean, median, first component score of PCA, as well as no-
inferring gene method.  Comparing by different ranges of top inferred activities, the 
CMI showed significant better overall reproducibility over other methods. 

 

Figure 3  - Comparison of CMI and other inference m ethods-based COMBINER 
using LDA-CFE classifiers focused on the top 100 in ferred pathways.  Seven 
methods were compared here, including CMI, CORG, Mean, Median, PCA, LLR and 
Individual Gene.  (a) Classification accuracy for best feature set: pair-wise 
comparisons.   Starting from all 100 inferred pathway activities, we recursively 
removed the activity with the lowest average weight from 500 LDA classifiers, until 
the maximum average AUC was reached. The process was repeated 100 times and the 
most frequently occurring marker set was regarded as the ultimate marker.  We 
measured classification accuracy of each method by computing AUC mean ± standard 
error for the final feature set.  (b) Classification accuracy overall.  The overall 
classification accuracy was measured by computing the average maximum mean 
AUC of all six inference-validation pairs.   On average, CMI was superior to the other 
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methods, even though its activity vector consisted of expression values from only a 
few genes in each pathway.    

Figure 4 COMBINER biomarkers overlap with well-know n cancer-related 
signalling pathways.  The core module markers from CMI and CORG are listed in 
normal and italic fonts, respectively, while the common markers are in bold.  
Red/green color denotes up-/down-regulation.  The remaining proteins in the circuit 
are abstracted as unlabeled nodes.  The common core modules of CMI- and CORG-
COMBINER describe growth factors, survival factors, the cell cycle, and the 
extracellular matrix.  Unique pathways to CMI-COMBINER include the anti-
apoptosis and JAK-STAT cascade, while anti-growth factor and death factor 
pathways were discovered uniquely by CORG-COMBINER. 

 

Figure 5 Regulatory networks of CMI-COMBINER biomar kers The pink/green 
nodes denote up-/down-regulation of gene expression .  The orange nodes 
indicate contradictory regulation in different datasets.  Larger nodes are highly 
connected in the network; most are overlaps between CMI- and CORG-COMBINER. 
The three well-known oncogenes for breast cancer metastasis–TP53, BRCA1, and 
ERBB2–were enlarged further.  The core module markers were reassembled into an 
overall interaction network.  Known functional modules  neatly overlay well-
connected clusters.  Many of the highly connected genes are known "driver" genes 
playing an important role in breast cancer metastasis.  

 

Figure 6 Diagram of Consensus Feature Elimination.  We first generated 100 
alternative 5-fold random splits of samples, upon which it constructs 500 classifiers 
with their AUCs as well as weight vectors.  Each feature is then ranked by its average 
square weight.  The lowest ranking feature was removed backward until the 
maximum average AUC was achieved.  The procedure is repeated for 100 times, and 
the most frequently occurring marker set was regarded to be the ultimate marker. 

   

Tables 

Table 1 Cancer Gene Enrichment rate of various brea st cancer gene signatures 

 CMI-COMBINER  CORG-COMBINER  Subnetwork  G70  G76  
NetPath  54.17%* 50.41%* 26.33%* 10.00% 10.53% 
Atlas   60.42%* 46.34% 32.87% 15.71% 18.42% 
Census  11.46%* 13.82%* 5.42%* 2.86% 0.00% 
CANgene  1.04% 1.63% 0.52% 0.00% 0.00% 
G2SBC  43.75%* 46.34%* 19.02% 21.43% 10.53% 
COSMIC  16.67% 17.89%* 7.06% 4.29% 1.32% 
KEGG  35.42%* 29.27%* 9.90%* 8.57% 1.32% 
* p-value < 0.05 for hypergeometric tests 
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Table 2 Confident "driver" genes for breast cancer metastasis 

Symbol Entrez Description 
MAP2K1 [32] 5604 mitogen-activated protein kinase kinase 1 
E2F1 [33] 1869 E2F transcription factor 1 
GRB2[34] 2885 growth factor receptor-bound protein 2 
NFKB1 [35] 4790 nuclear factor of kappa light polypeptide gene enhancer in B-

cells 1 
RB1[36] 5925 retinoblastoma 1 
BRCA1 [37] 672 breast cancer 1, early onset 
FOS [38] 2353 v-fos FBJ murine osteosarcoma viral oncogene homolog 
SOS1[39] 6654 son of sevenless homolog 1 (Drosophila) 
PIK3CA[40] 5290 phosphoinositide-3-kinase, catalytic, alpha polypeptide 
JAK1 [41] 3716 Janus kinase 1 
SHC1[42] 6464 SHC (Src homology 2 domain containing) transforming 

protein 1 
MYC[43] 4609 v-myc myelocytomatosis viral oncogene homolog (avian) 
CCNA2 [38] 890 cyclin A2 

 

Additional files 
Additional file 1 – Supplemental materials 

Figure S1 Comparison of CMI and other pathway inference methods using 
SVM-MRFE classifiers subject to top 100 inferred pathways. 

Figure S2 Unique core modules of cancer pathway identified by CORG-
COMBINER method. 
Additional file 2 – Table S1: List of core genes identified by CMI and CORG 
 
Additional file 3 – Table S2 List of core module genes overlaid in KEGG 
pathway of cancers 
 
Additional file 4 – Table S3 Pathway markers identified by all methods 
 
 

 

 

 

 

 


