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Abstract: The linear noise approximation (LNA) is a way of approximating the stochastic time evolution of a well-stirred
chemically reacting system. It can be obtained either as the lowest order correction to the deterministic chemical reaction rate
equation (RRE) in van Kampen’s system-size expansion of the chemical master equation (CME), or by linearising the two-
term-truncated chemical Kramers-Moyal equation. However, neither of those derivations sheds much light on the validity of
the LNA. The problematic character of the system-size expansion of the CME for some chemical systems, the arbitrariness of
truncating the chemical Kramers-Moyal equation at two terms, and the sometimes poor agreement of the LNA with the
solution of the CME, have all raised concerns about the validity and usefulness of the LNA. Here, the authors argue that
these concerns can be resolved by viewing the LNA as an approximation of the chemical Langevin equation (CLE). This
view is already implicit in Gardiner’s derivation of the LNA from the truncated Kramers-Moyal equation, as that equation is
mathematically equivalent to the CLE. However, the CLE can be more convincingly derived in a way that does not involve
either the truncated Kramers-Moyal equation or the system-size expansion. This derivation shows that the CLE will be valid,
at least for a limited span of time, for any system that is sufficiently close to the thermodynamic (large-system) limit. The
relatively easy derivation of the LNA from the CLE shows that the LNA shares the CLE’s conditions of validity, and it also
suggests that what the LNA really gives us is a description of the initial departure of the CLE from the RRE as we back
away from the thermodynamic limit to a large but finite system. The authors show that this approach to the LNA simplifies
its derivation, clarifies its limitations, and affords an easier path to its solution.

1 Introduction

The chemical master equation (CME) describes the discrete-
stochastic time evolution of the molecular populations in any
well-stirred chemically reacting system. In the limit of an
infinitely large system, the CME reduces to the reaction rate
equation (RRE), the set of ordinary differential equations
that has long been the cornerstone of deterministic chemical
kinetics. Proposed proofs of that limit result have used a
variety of arguments [1–7], the best known of which is the
‘system-size expansion’ of van Kampen [4, 5]. In the
system-size expansion, the solution of the CME is, in effect,
expanded about the solution of the RRE in a power series in
the reciprocal of the square root of the size of the system.
Including only the next term in this expansion yields what
has come to be known as the linear noise approximation
(LNA) [4, 5]. The expansion aims not only to establish the
fact of the limit, but also to provide a systematic means of
computing increasingly accurate solutions of the CME by
adding perturbation terms to the solution of the RRE.
However, this goal can be achieved only if the coefficients of
the successive terms in the series expansion are well
behaved. That this is not always the case can be illustrated
by two examples.

The first is a bistable chemical system whose stable states
s1 and s2 are separated by an unstable state u so that
s1 , u , s2. The RRE implies that this system will
asymptotically approach s1 if the initial state s0 , u, or s2 if
s0 . u. However, the CME implies that the system will
perpetually visit both stable states, fluctuating around each
si within some average range si for some average time ti

before randomly transitioning to the other stable state.
Clearly it will not be possible to represent those random
transitions between the stable states as any kind of
perturbation to the constant stable-state value predicted by
the RRE. However, this failure of the system-size expansion
does not invalidate the prediction that the solution of the
CME approaches the solution of the RRE in the large-
system limit. That is because the CME also predicts that,
in the limit of an infinitely large system, si/si� 0 and
ti� 1; thus, on any realistic time scale, the system’s
behaviour will appear just as described by the RRE.

A second counter-example is provided by any limit-cycle
oscillator, such as, for example, the Brusselator [8, 9], or
the Wilson–Cowan equations of neural dynamics [10]. In
the case of the Brusselator, the RRE predicts that the
molecular populations x1(t) and x2(t) of its two time-
varying species will evolve in such a way that the state
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point (x1(t), x2(t)) eventually traces out in the x1–x2 plane a
closed curve C (the limit cycle curve) with a fixed period T.
However, the solution to the CME asymptotically approaches
a time-independent crater over the x1–x2 plane whose ridge
is the curve C. That happens because each trajectory, starting
out at a given location on C, undergoes fluctuations about
the RRE prediction, and although fluctuations normal to the
limit cycle will tend to be corrected, fluctuations tangential to
the limit cycle will accumulate. After a sufficiently long
time, it will be impossible to predict the phase of any
particular trajectory. Clearly, it would be folly to try
represent the stationary crater predicted by the CME as a
perturbation to the regularly orbiting point predicted by the
RRE. However, the distribution of an ensemble of
trajectories starting at the same location will relax from the
sharp peak predicted by the RRE at a rate which is, roughly,
inversely proportional to the system size. Thus, by taking the
species populations to be sufficiently large, the time required
for the solution of the CME to relax from a sharp peak
orbiting C with a fixed period to the asymptotic time-
stationary crater can be made so large that deviations from
the behaviour predicted by the RRE will be practically
imperceptible over practical time spans.

The LNA, which includes only the lowest order correction
to the RRE, has been applied by many workers in a variety of
practical contexts [11–16]; fewer workers have made use of
higher order perturbation terms [17–23]. An alternate way
of obtaining the LNA starts with the chemical Kramers-
Moyal equation, which can be derived by formally
expanding selected terms on the right side of the CME in a
Taylor series [5, 6]. If one truncates that expansion at two
terms, one obtains an equation of the Fokker-Planck form.
A linearisation of that equation about the solution of the
RRE gives the LNA [6]. The problem with that derivation
of the LNA is that it does not tell us the conditions under
which a two-term truncation of the Kramers-Moyal
equation should be acceptable. In a recent study by Ferm
et al. [24], the LNA was applied to several specific systems
with mixed results. In some cases the LNA provided an
accurate approximation to the CME, but in other cases
the LNA was found to be very inaccurate. Against this
background, questions about the validity and practical
usefulness of the LNA have arisen.

In this study, we will argue that the LNA can play a useful
though carefully circumscribed role in analysing chemical
systems in which stochasticity is important. However, to fully
appreciate that role, it is necessary to approach the LNA in a
new way. The context of this new approach to the LNA is a
relatively new proof of the result that the CME becomes
equivalent to the RRE in the large system limit [7]. This
proof does not rely on either the system-size expansion or a
truncation of the Kramers-Moyal equation, and it makes clear
what the practical restrictions on the result are. In Section 2,
we review this proof, and in the process establish our
notation. In Section 3, we show how, from an intermediate
result of that proof called the chemical Langevin equation
(CLE), the LNA emerges surprisingly easily through a well-
motivated approximation. (The CLE is mathematically
equivalent to the two-term truncated Kramers-Moyal equation
mentioned earlier, but our derivation of the CLE does not
make use of that fact.) In Section 4 and the Appendix, we note
that an additional advantage of this way of deriving the LNA is
the simpler way it suggests for solving the LNA. From this
perspective, we propose in Section 5 a refined role for the
LNA in the study of stochastically evolving chemical systems.
In Section 6, we give three numerical examples which illustrate

our thesis that the LNA is valid, at least over sufficiently
restricted times, for any chemical system that is sufficiently
large. In Section 7, we summarise our conclusions.

2 Route from the CME to the RRE

We consider a system of N chemical species S1, . . . , SN whose
molecules can undergo M chemical reactions R1, . . . , RM. If
the molecules of the reactant species are dilute and well-
stirred inside some volume V, it can be shown [7, 25] that
for each chemical reaction channel Rm there should exist a
function am of x ; (x1, . . . , xN), where xi is the current
number of molecules of species Si, that satisfies

am(x) dt ; the probability that an Rm reaction event will

occur in the next infinitesimally small time interval dt

(m = 1, . . . , M ) (1)

This function is called the propensity function of reaction Rm,
as it quantifies the propensity of Rm to fire. Equation (1)
implies that the time-dependent state vector of the system
X(t) ; (X1(t), . . . , XN(t)), where Xi(t) is the number of
molecules of species Si at time t, is a jump Markov process.

There are two important consequences of (1) that follow
rigorously by applying the laws of probability theory. The
first is the CME [26], which prescribes the time evolution
of the function P (x, t|x0, t0); the probability that X(t) will
equal x given that X(t0) ¼ x0 for any t ≥ t0:

∂P(x, t|x0, t0)

∂t
=
∑M
m=1

[am(x− nm)P(x− nm, t|x0, t0)

− am(x)P(x, t|x0, t0)] (2)

Here nm ; (n1m, . . . , nNm) is the state-change vector for
reaction Rm, with nim being the change in the Si molecular
population caused by one Rm reaction. The other important
rigorous consequence of (1) is the stochastic simulation
algorithm (SSA) [27, 28]. It enables us to construct
unbiased realisations of X(t) by successively advancing
the system from its current state by exactly one reaction
event. More specifically, if X(t) ¼ x, then with a0(x) ;∑M

j=1 aj(x), the time t to the next reaction will be a sample
of the exponential random variable with mean a−1

0 (x), and
the index m of that reaction will be a sample of the integer
random variable with probability mass am(x)/a0(x). With t
and m chosen according to those specifications (there are
several ways of doing that), the SSA advances the system
from state x at time t to state x+ nm at time t+ t.

The journey from this discrete-stochastic CME/SSA
description to the traditional continuous-deterministic
description of the RRE begins with a formula that was
originally proposed to speed up the SSA [29, 30]. The idea
was to advance the system from state x at time t by a
‘preselected’ time t which encompasses more than one
reaction event. If we take care to choose the time step t
small enough that all the propensity functions remain
approximately constant during t, that is, if

am(x) 8 constant in [t, t + t), ∀m
(first leap condition) (3)

then the state change in that step can easily be estimated. The
Poisson random variable with mean at, P(at), can be defined
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as the number of events that will occur in a time t given that
adt, where a is any positive constant, is the probability that an
event will occur in the next infinitesimal time dt. This
fact coupled with (1) implies that, under condition (3), the
number of firings of reaction channel Rm in the next t will
be the Poisson random variable Pm(am(x)t). As each of
those firings of Rm changes the system’s state by nm, the
state of the system at time t+ t can be computed as

X (t + t) 8 x+
∑M
m=1

Pm(am(x)t)nm (4)

This is called the tau-leaping formula. Its accuracy depends
solely on how well condition (3) is satisfied, because that
condition alone controls how accurately the number of Rm

firings in time t can be approximated by Pm(am(x)t).
Although the tau-leaping formula (4) can often be used to

simulate the evolution of a chemical system with acceptable
accuracy faster than the SSA, our interest in (4) here is that
it constitutes the first step in the journey from the CME/
SSA to the RRE. The second step in that journey imposes a
second condition on t in (4), namely that t also be large
enough to satisfy

am(x)t ≫ 1, ∀m (second leap condition) (5)

As kP(am(x)t)l = am(x)t, the physical import of requirement
(5) is that each reaction channel will on average fire many
more times than once in the next time step t. Now, a well-
known result in random variable theory is that a Poisson
random variable whose mean m is very large compared
with 1 can be approximated by a normal random variable
with mean m and variance m; in symbols, with N (m, s2)
denoting the normal random variable with mean m and
variance s2, P(m) 8N (m, m) whenever m≫ 1. Therefore
if both leap conditions (3) and (5) are satisfied, we can use
the identity N (m, s2) ; m+ sN (0, 1) to further
approximate the tau-leaping formula (4) as follows

X (t + t) 8 x+
∑M
m=1

N m(am(x)t, am(x)t)nm

8 x+
∑M
m=1

am(x)t+
��������
am(x)t

√
N m(0, 1)

[ ]
nm

8 x+
∑M
m=1

nmam(x)t+
∑M
m=1

nm

������
am(x)

√
Nm(t)

��
t
√

In the last line, the Nm(t) comprise a set of M statistically
independent temporally uncorrelated normal random
variables with means 0 and variances 1. As t here is
assumed to be small enough to satisfy the first leap condition
yet also large enough to satisfy the second leap condition, it
has the character of a ‘macroscopic infinitesimal’. As is often
done in physics, we will simply denote it by dt. Recalling
that x stands for X(t), we thus conclude that

X (t + dt)− X (t) 8
∑M
m=1

nmam(X (t)) dt

+
∑M
m=1

nm

����������
am(X (t))

√
Nm(t)

���
dt
√

(6)

This equation is called the chemical Langevin equation (CLE)
[1–3, 31–33]. It can be shown (see for example [31]) to be
mathematically equivalent to the Fokker-Planck equation that
is obtained by truncating the Kramers-Moyal expansion of
the CME at two terms. Owing to that mathematical
equivalence, the two-term-truncated Kramers-Moyal equation
can legitimately be called the chemical Fokker-Planck
equation (CFPE).

Two caveats concerning the CLE (which also apply to the
mathematically equivalent CFPE) should be kept in mind.
First, the CLE will be valid only if the system admits a
macroscopically infinitesimal time increment dt ¼ t that
satisfies both leap conditions (3) and (5). We note that it is
easy to find chemical systems for which that requirement
cannot be met, and for those systems the CLE (6) will not
be valid.

Second, the CLE practically never accurately quantifies
rarely occurring system trajectories. The reason for that is
that the Poisson-to-normal approximation which we made
in deriving the CLE, namely approximating P(m) by
N (m, m) when m≫ 1, while accurate for sample values of
those two random variables that are within a few standard
deviations

p
m of their means m, will be very inaccurate for

sample values in the near-zero tails of the two distributions
(e.g. 10210 against 10220). In the case of the Poisson
random variables Pm(am(x)t) in the tau-leaping formula (4),
those near-zero tails quantify unlikely or rarely occurring
firing numbers of the reaction channels, and they in turn
give rise to unlikely or rarely occurring system behaviours.
As a consequence, the CLE practically always greatly
underestimates the likelihood of rarely occurring events. In
some situations, rarely occurring events will have little or
no practical impact; for example, a rare large transient
fluctuation about the mean in a unimodal distribution might
be quickly forgotten. However, in other situations, a rarely
occurring event can have dramatic consequences, for
example, a spontaneous transition from one stable state to
the other stable state in a bistable system. As the CLE
misses rarely occurring events, which according to the
CME/SSA will occur if we observe the system for a long
enough time, we conclude that the CLE will generally be
valid over ‘only a limited span of time’. In other words, if
both leap conditions are satisfied, the CLE will accurately
describe the ‘typical’ behaviour of the system that would be
observed over a limited span of time, but it will not
accurately describe ‘atypical’ behaviour that would be
observed over an arbitrarily long time span.

Assuming henceforth that we will be satisfied with
knowing the typical behaviour of the system over a limited
span of time, the following question arises: under what
circumstances will both leap conditions be simultaneously
satisfied, so that the above derivation will justify invoking
the CLE (6)? For physically realistic propensity functions
and state-change vectors, it has been proven [7] that both
leap conditions will be satisfied if the system is sufficiently
close to the thermodynamic limit. The thermodynamic limit
is the traditional large-system limit in statistical mechanics
in which the molecular populations and the containing
volume V all approach infinity in such a way that the
species concentrations

Zi(t) ;
Xi(t)

V
(7)

stay constant (with respect to that limit, not with respect to t).
The argument proving this result goes roughly as follows (see
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[7] for details): first we establish as an empirical fact that,
as the thermodynamic limit is approached, all physically
reasonable propensity functions diverge linearly with the
system size; more specifically, as the thermodynamic limit
is approached

am(x)� V ãm(z) (m = 1, . . . , M ) (8)

where z ; x/V is the system size-independent concentration
variable, and the functions ãm are independent of the
system size and are either the same or nearly the same as
the functions am. Next, we observe that the first leap
condition (3) can always be satisfied simply by taking t
sufficiently small. With t thus fixed, we then get close
enough to the thermodynamic limit that the replacement (8)
will be justified, allowing us to write the second leap
condition (5) as Vãm(z)t≫ 1. That condition can evidently
be satisfied simply by continuing far enough towards the
thermodynamic limit. Thus, we conclude that, by getting
close enough to the thermodynamic limit, we can satisfy
both leap conditions, and thereby assure that the CLE (6)
(and its companion CFPE) holds – at least over a
sufficiently limited span of time.

Being close to the thermodynamic limit is not only a
sufficient condition for the validity of the CLE, but also a
necessary condition. That is because the time-varying
molecular populations Xi(t), which are discretely varying
integer variables, will not look like the continuously
varying real variables in the CLE unless the Xi(t) are
ranging over values that are ≫ 1. It is therefore always
permissible to make the large-system replacement (8) in the
CLE (6). Upon doing that, and then dividing through by V,
we obtain the ‘concentration form’ of the CLE

Z(t + dt)− Z(t) 8
∑M
m=1

nmãm(Z(t)) dt

+ 1���
V
√

∑M
m=1

nm

���������
ãm(Z(t))

√
Nm(t)

���
dt
√

(9)

Equation (9) makes it easy to see what happens to the CLE
when we finally proceed fully to the thermodynamic limit.
The two terms on the left side of (9), and also the first term
on the right, will all stay constant. However, the second
term on the right will go to zero. Therefore in the full
thermodynamic limit the CLE (9) reduces to

Z(t + dt)− Z(t) =
∑M
m=1

nmãm(Z(t)) dt

This is equivalent to the ordinary differential equation

dZ(t)

dt
=
∑M
m=1

nmãm(Z(t)) (10a)

Equation (10a) is the RRE, expressed in terms of the species
concentrations. If we multiply it through by V and again
make use of the property (8), we obtain the RRE in terms
of the molecular populations

dX (t)

dt
=
∑M
m=1

nmam(X (t)) (10b)

In summary, if any chemical system is sufficiently close to the
thermodynamic limit, its CLE will be valid for at least a
limited duration of time. The closer the system is to the
thermodynamic limit, the longer the CLE’s duration of
validity will be. And if the system is taken all the way to
the thermodynamic limit, the CLE will become the RRE
with an essentially infinite duration of validity – assuming,
that is, that an infinitely large system can be kept well stirred.

3 Deriving the LNA

Against the background summarised in the preceding
paragraph, we will now derive the LNA as an approximation
to the CLE, assuming of course that the system is close
enough to the thermodynamic limit that the CLE is valid.
Observing that the CLE (9) differs from the RRE (10a) by a
term that is proportional to 1/

p
V, we make the ansatz that the

solution Z(t) to the CLE will differ from the solution Ẑ(t) to
the RRE by a term that is likewise proportional to 1/

p
V. We

note that this ansatz is essentially the same as that originally
made by van Kampen [4, 5] and echoed by Gardiner [6]. We
seek, therefore, a solution to the CLE (9) of the form

Z(t) = Ẑ(t)+ 1���
V
√ j(t) (11)

where Ẑ(t) is the deterministic function that satisfies the RRE
(10a)

dẐ(t)

dt
=
∑M
m=1

nmãm(Ẑ(t)) (12)

and also the initial condition

Ẑ(t0) = Z(t0) (13)

To find the stochastic function j(t) that makes (11) a solution of
(9), we begin by substituting (11) into (9) to obtain

[Ẑ(t + dt)− Ẑ(t)]+ 1���
V
√ [j(t + dt)− j(t)]

=
∑M
m=1

nmãm Ẑ(t)+ 1���
V
√ j(t)

( )
dt

+ 1���
V
√

∑M
m=1

nm

�����������������������
ãm Ẑ(t)+ 1���

V
√ j(t)

( )√
Nm(t)

���
dt
√

As Ẑ(t) satisfies the RRE (12), then Ẑ(t + dt)− Ẑ(t) on the left

side of this equation can be replaced by Smnmãm(Ẑ(t)) dt.

Doing that, and then multiplying through by
���
V
√

, we obtain

j(t + dt)− j(t)

=
���
V
√ ∑M

m=1

nm

[
ãm Ẑ(t)+ 1���

V
√ j(t)

( )
− ãm(Ẑ(t))

]
dt

+
∑M
m=1

nm

�����������������������
ãm Ẑ(t)+ 1���

V
√ j(t)

( )√
Nm(t)

���
dt
√

(14)

This is the equation that j(t) must satisfy in order for Z(t) in (11)
to exactly satisfy the CLE (9). However, as we are near the
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thermodynamic limit where Z(t) ≃ Ẑ(t), it is reasonable to
expect that the term j(t)/

p
V in (11) will be small compared

with Ẑ(t), thus we can make the approximation

ãm Ẑ(t)+ 1���
V
√ j(t)

( )
8 ãm(Ẑ(t))

+
∑N

k=1

∂ãm(z)

∂zk z=Ẑ(t)

∣∣∣∣∣ 1���
V
√ jk(t)

( )

8 ãm(Ẑ(t))+ 1���
V
√

∑N

k=1

fmk(t)jk(t)

(15)

where in the last step we have defined the deterministic functions

fmk(t) ;
∂ãm(z)

∂zk

∣∣∣∣
z=Ẑ(t)

(m = 1, . . . , M ; k = 1, . . . , N )

(16)

Substituting (15) into (14), and then discarding all terms in
1/

p
V of order ≥1, as the approximation (15) implicitly

requires us to do, we finally obtain

j(t + dt)− j(t) 8
∑N

k=1

∑M
m=1

nmfmk(t)

( )
jk(t) dt

+
∑M
m=1

nm

���������
ãm(Ẑ(t))

√
Nm(t)

���
dt
√

(17)

Equation (17) is van Kampen’s LNA [4, 5]. In view of the
definition (11) and the initial condition (13), (17) is to be
solved subject to the initial condition

j(t0) = 0 (18)

Although the LNA (17) might appear to be more complicated
than the CLE (9) which it approximates, the LNA is in one
important respect simpler: its stochastic term is independent of
the process that it defines. That is not true of the CLE (9), nor
of the mathematically equivalent (14).

We should comment here on the connection between the
foregoing derivation of the LNA to both van Kampen’s
original derivation [4, 5] and Gardiner’s later derivation
[6]. As mentioned earlier, the ansatz (11) is common to all.
However, van Kampen applied that ansatz to the CME, not
to the CLE as we have done here. In addition, he inferred
the LNA by expanding both sides of the CME in a Taylor
series about Ẑ(t) and then equating terms of equal order in
1/

p
V. Although the tactic of equating terms of the same

order in an expansion parameter is common in analysis, the
mathematical justification for doing that here is not
completely clear, because the set of power functions {1, x,
x2, x3 . . .} is not orthogonal. In any case, there is no
assurance that the resulting series expansion will be well
behaved, as apparently it is not in the two examples
described in Section 1. Our derivation of the LNA from the
CLE avoids those difficulties, and has the additional
advantage of being simpler. Of course, we have not derived
van Kampen’s full system-size expansion; indeed, the only
way to do that is to follow van Kampen and apply the ansatz
(11) directly to the CME. However, it was not our objective
here to derive the system-size expansion; our objective was

to derive the CLE/CFPE, the LNA and the RRE
independently of that sometimes ill-conditioned expansion.

Our derivation of the LNA is more in line with Gardiner’s
derivation [6], which linearised the two-term-truncated
Kramers-Moyal expansion of the CME. As that two-term-
truncated Kramers-Moyal equation turns out to be
mathematically equivalent to the CLE (6), linearising one is
mathematically equivalent to linearising the other. However,
although Gardiner simply assumed the validity of the
truncated Kramers-Moyal equation, we derived the CLE via
a series of physically transparent approximations
which showed under what conditions the CLE (and hence
the mathematically equivalent CFPE) should be valid.
Conveniently, fewer mathematical manipulations are
required to linearise the CLE than the CFPE.

4 Solution of the LNA

The solution of the LNA (17) is known [4–6]: each
component ji(t) of j(t) is a normal random variable with
mean zero and variance kii(t)

ji(t) 8N (0, kii(t)) (i = 1, . . . , N ) (19)

and is statistically dependent on the other components
through the covariances

cov{ji(t), jj(t)} = kji(t)jj(t)l ; kij(t) (i, j = 1, . . . , N )

(20)

Here the (deterministic) functions kij(t) are the solutions of
the set of coupled, linear, ordinary differential equations

dkij(t)

dt
8
∑N

k=1

∑M
m=1

nimfmk(t)

( )
kkj(t)

+
∑N

k=1

∑M
m=1

njmfmk(t)

( )
kki(t)

+
∑M
m=1

nimnjm ãm(Ẑ(t)) (i, j = 1, . . . , N ) (21)

for the initial conditions

kij(t0) = 0 (i, j = 1, . . . , N ) (22)

where fmk(t) is as defined in (16), and Ẑ(t) is the solution of the
RRE (12). As any set of normal random variables is completely
determined by their means, variances and covariances, the
above constitutes a complete characterisation of the solution
j(t) of the LNA (17).

Heretofore, the customary way of obtaining the above
results [5, 6] was to solve the Fokker-Planck equation
corresponding to the Langevin (17). In the Appendix, we
show how the solution follows directly from (17).

5 LNA describes incipient stochastic
behaviour near the thermodynamic limit

In Section 2 we proved, without invoking the system-
size expansion or making a summary truncation of the
Kramers-Moyal equation, that any realistic chemical system
which is sufficiently close to the thermodynamic limit will
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be accurately described, at least for limited time spans, by the
CLE, and in the full thermodynamic limit by the RRE. To the
question of how large a system must be in order for the CLE or
the RRE to produce ‘acceptable’ results, no general answer can
be given apart from a post-facto comparison of simulated CLE
or RRE trajectories with SSA trajectories. The answer will
depend not only on the topology of the reaction network, but
also on the values of the reaction rates. There is, however,
another less formidable question in this vein that we could
pose. Suppose we start with the system effectively at the
thermodynamic limit, and hence well described by its RRE,
and then gradually move the system towards a finite but still
large size. What will be the first noticeable stochastic
departures from the deterministic behaviour predicted by the
RRE?

This less ambitious question can be answered by the LNA,
as it essentially mediates between the CLE and the RRE. By
combining the result (19) with the solution (11) to the CLE
(9), we may conclude that the incipient stochastic behaviour
of the concentration of species Si is Zi(t) 8 Ẑi(t)+V−1/2×
N (0, kii(t)), or equivalently

Zi(t) 8N (Ẑi(t), V
−1kii(t)) (i = 1, . . . , N ) (23)

Here, kii(t) is part of the solution to (21) for the initial condition
(22). In words, as we back off from an infinitely large system to
a finite system, the initial break from the purely deterministic
behaviour of the RRE (13) will be normal random
fluctuations in the concentrations of species Si about the
RRE values Ẑi(t) with standard deviations

���������
kii(t)/V

√
.

Therefore as we move towards the thermodynamic limit, the
sizes of the fluctuations in the concentrations will decrease in
proportion to

�����
1/V

√
. Multiplying (23) through by V gives us

the population version of this result

Xi(t) 8N (X̂i(t), Vkii(t)) (i = 1, . . . , N ) (24)

This says that the incipient stochastic behaviour will manifest
itself as normal random fluctuations in the populations of
species Si about the RRE values X̂i(t) with standard
deviations

��������
Vkii(t)

√
. Therefore as we move toward the

thermodynamic limit, the sizes of the fluctuations in the
populations will increase in proportion to

p
V, whereas

the populations themselves will of course increase (more
rapidly) in proportion to V.

To see what is implied by the covariances kij(t) for i = j,
we will make use of the easily proved identity

cov{(a1 + b1Y1), (a2 + b2Y2)} = b1b2cov{Y1, Y2}

Applying this identity to (11), and then making use of the
definition (20), we find that the covariance of the Si

concentration with the Sj concentration is

cov{Zi(t), Zj(t)} = (V−1/2)2cov{ji(t), jj(t)}

8 V−1kij(t) (25a)

And multiplying this result through by V2 gives for the
species populations

cov{Xi(t), Xj(t)} 8 Vkij(t) (25b)

A more revealing indicator of the degree of coupling between
any two random variables X and Y than their covariance is

their correlation,

corr{X , Y} ;
cov{X , Y }����������������

var{X }var{Y}
√

The correlation is a dimensionless number between 21 and
+1, with the value +1 implying that X and Y are perfectly
correlated (as would be the case if Y ¼ X ), the value 21
implying that X and Y are perfectly anti-correlated (as
would be the case if Y ¼ 2X ), and the value 0 implying
that X and Y are uncorrelated. It follows from Eqs. (25) that

corr{Xi(t), Xj(t)} = corr{Zi(t), Zj(t)} 8
kij(t)�����������

kii(t)kjj(t)
√

(26)

The fact that correlation (26) is independent of V carries a
rather surprising conclusion. The correlation between the
populations (or concentrations) of any two species in the
LNA is exactly the same as it is in the full thermodynamic
limit where the RRE applies. Therefore as we back off from
the full thermodynamic limit, the only initial indicator of
the finiteness of the system will be the normal fluctuations
of the individual species about their RRE means with the
variances given in (23) and (24).

To make practical use of the LNA, we need two things.
First, we need a general purpose computer program to solve
the RRE (12) for a given chemical system. It could be
argued that that should always be done as a first step
towards understanding the given system. Second, we need a
general purpose computer program to solve the differential
equation (21) for the kij(t), making use of the solution to
the RRE (12). In that regard, notice that equations (21) are
not as complicated as they might at first appear. Although
they are coupled, they are linear. In addition, the fact that
the concentration propensity functions ãm(z) are usually
either linear or quadratic in the components of z means that
the quantities fmj(t) in (21), which are defined in (16), will
usually be either constant or linear in a single component of z.

If the system is stable, in that the solution of the RRE (12)
has a well-defined, time-independent asymptotic limit

Ẑ(t� 1) = Ẑ(1) (27)

and if we are interested only in the equilibrium behaviour of
the system, then the above tasks simplify considerably. The
asymptotic solution to the RRE can be found simply by
solving the set of purely algebraic equations obtained by
setting the left side of (12) to zero

∑M
m=1

nmãm(Ẑ(1)) = 0 (28)

And the kij(1) can be found by solving the set of purely
algebraic equations obtained by setting the left side of (21)
to zero

∑N

k=1

∑M
m=1

nimfmk(1)

( )
kkj(1)+

∑N

k=1

∑M
m=1

njmfmk(1)

( )
kki(1)

+
∑M
m=1

nimnjm ãm(Ẑ(1)) = 0 (i, j = 1, . . . , N )

(29)

So at equilibrium, the earliest indication of finite-system
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effects will be normal fluctuations in the concentration of
species Si about its steady-state RRE value Ẑi(1) with
standard deviation

����������
kii(1)/V

√
.

6 Numerical examples

We conclude by presenting three numerical examples to
illustrate our thesis that, for practical purposes, the LNA will
always give a good description of any real-world chemical
system that is ‘sufficiently large’, but not necessarily if the
system is ‘too small’. In these examples, the specific reaction
probability rate constant cm is defined so that cmdt gives the
probability that a randomly chosen set of Rm reactant
molecules will react accordingly in the next dt. For real-world
chemical reactions, cm will be independent of the system
volume V if Rm is unimolecular, inversely proportional to V
if Rm is bimolecular, and directly proportional to V if Rm is a
zeroth order reaction [6]. Our computations for these
examples were performed using a general purpose LNA
solver that was coded in C++ as a custom driver, built on
top of the StochKit2 stochastic simulation software
framework [34]. For the ordinary differential equations solver,
the code uses CVODE from the SUNDIALS numerical
software suite [35].

Example 1: Our first example is the decay-dimerisation
reaction set

S1 −
c1−� ∅

2S1	
−−−�−−
k2V
−1

c3

S2

S2 −
c3−� S3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(30)

in which an unstable monomer S1 can dimerise to an unstable
dimer S2, which in turn can convert to a stable form S3. The
state-change vectors for these four reactions are

n1 = (−1, 0, 0)
n2 = (−2, 1, 0)
n3 = (2, −1, 0)
n4 = (0, −1, 1)

⎫⎪⎪⎬
⎪⎪⎭ (31a)

The corresponding propensity functions are

a1(x) = c1x1

a2(x) = k2V
−11

2 x1(x1 − 1)
a3(x) = c3x2

a4(x) = c4x2

⎫⎪⎪⎬
⎪⎪⎭ (31b)

The V-independent functions defined in (8) are therefore

ã1(z) = c1z1

ã2(z) = k2
1
2 z2

1

ã3(z) = c3z2

ã4(z) = c4z2

⎫⎪⎪⎬
⎪⎪⎭ (31c)

For the rate constant values, we will take

c1 = 1, k2 = 2, c3 = 0.5, c4 = 0.04 (31d)

and for the initial conditions

X1(0) = 5 ·V, X2(0) = X3(0) = 0 (31e)

By taking the initial molecular populations of all species
proportional to V, the system can be made to approach the
thermodynamic limit simply by letting V� 1.

In Fig. 1, we show results for this reaction set with V ¼ 1,
which by (31e) implies a ‘small’ system with only five initial
S1 molecules. Fig. 1a shows the mean S2 concentration kZ2(t)l
and the corresponding one-standard deviation envelope
kZ2(t)l + stdev{Z2(t)} as a function of t, computed in two
different ways: the solid and dashed curves were obtained
by averaging over 105 SSA runs; the dotted curves are the

LNA’s prediction, Ẑ2(t) +
�����������
V−1k22(t)

√
. The step function

curve in Fig. 1a shows a typical SSA trajectory for Z2(t).
Note that concentration trajectories will always be confined
to discrete values for a finite system, and in this V ¼ 1 case
the concentration trajectory numerically coincides with the
population trajectory. In Fig. 1b, the grey histogram shows
the statistical distribution of Z2(t) at time t ¼ 5 as computed
from the same 105 SSA runs. And the solid curve shows
the pdf of the LNA’s prediction for this histogram,
Z2(5) 8N (Ẑ2(5), V−1k22(5)). We see from Figs. 1a and b
that, for this ‘small’ system, the LNA predictions, although
not wildly incorrect, differ noticeably from the exact SSA
results. Even more revealing of the inaccuracy of the LNA
in this case is the fact that the SSA trajectory in Fig. 1a is
far from being a continuous (but not differentiable) curve,
as the CLE and its approximating LNA both imply.

In Fig. 2, we repeat the foregoing analysis with V ¼ 200,
which gives us an initially ‘large’ system with 1000 S2

molecules. We see in Fig. 2a that the LNA’s prediction for
the one-standard deviation envelope for Z2(t) shows no
discernable disagreement with the one-standard deviation
envelope predicted by the 105 SSA runs. Note that the axes
in Figs. 2a are identical to the axes in Fig. 1a. The single
SSA trajectory for Z2(t) in Fig. 2a ( jagged curve) is
evidently much closer to being continuous (but not
differentiable), as implied by the CLE and the LNA. In
Fig. 2b, the S2 concentration histogram for Z2(5) computed
from 105 SSA runs is seen to be accurately duplicated
by the pdf of the LNA’s prediction,
Z2(5) 8N (Ẑ2(5), V−1k22(5)), which is the solid curve. The
LNA for this ‘large’ system clearly works quite well.

Example 2: Our second example is the well-known Schlögl
reaction set

2S1	
−−�−−

k1V
−1

k2V
−2

3S1

∅	−−�−−
k3V

c4

S1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(32)

The state-change vectors for these single-species reactions are

n1 = 1, n2 = −1, n3 = 1, n4 = −1 (33a)

and the propensity functions are

a1(x1) = k1V
−11

2 x1(x1 − 1)

a2(x1) = k2V
−21

6 x1(x1 − 1)(x1 − 2)
a3(x1) = k3V

a4(x1) = c4x1

⎫⎪⎪⎬
⎪⎪⎭ (33b)

The volume dependence assumed here for the trimolecular
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Fig. 1 Decay-dimerisation model in (30) and (31) for V ¼ 1

a Mean and mean + one-standard deviation of the concentration of species S2 computed from 105 SSA simulations (solid and dashed curves) and from the LNA
(dotted curves). The grey step-curve shows a typical SSA trajectory
b Histogram of the species S2 concentration at t ¼ 5, as calculated from 105 SSA simulations (grey histogram), and from the LNA’s normal distribution (solid
curve). The LNA is evidently not accurate for this ‘small’ system

Fig. 2 As in Fig. 1, but with V ¼ 200

a LNA curves are covered by the SSA curves, and the single SSA trajectory has a more continuous appearance
b SSA histogram is accurately described by the LNA distribution. The LNA does quite well for this ‘large’ system
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rate constant c2 is what arises from any physically reasonable
approximation of a set of unimolecular and bimolecular
reactions by a single trimolecular reaction. The V-
independent functions defined in (8) are

ã1(z1) = k1
1
2 z2

1

ã2(z1) = k2
1
6 z3

1

ã3(z1) = k3

ã4(z1) = c4z1

⎫⎪⎪⎬
⎪⎪⎭ (33c)

We take for the parameter values,

k1 = 0.03, k2 = 0.0001, k3 = 200, c4 = 3.5 (33d)

and for the initial condition

X1(0) = 280 ·V (33e)

Fig. 3 shows numerical results for V ¼ 1. In Fig. 3a, the
LNA’s predictions for the one-standard deviation envelope
of Z1(t) (again shown by the dotted curves) is compared
with SSA’s predictions (again shown by the solid and
dashed curves) over the time interval 0 ≤ t ≤ 10. The
SSA results here were again obtained from 105 simulation
runs, and the trajectory of a randomly chosen one of
those SSA runs is shown as the jagged grey curve. We see
that, despite the fairly large number of S1 molecules
here (note that the population in this case is numerically
equal to the concentration), the LNA performs poorly.
The reason why becomes clear when we look at the
corresponding predictions in Fig. 3b for the distribution of

the S1 concentration at time t ¼ 10. The system is bi-modal,
with one stable state at z1 ¼ 82 and the other at z2 ¼ 563.
As the initial S1 concentration of z1 ¼ 280 is above the
separating barrier state, which happens to be at zb ¼ 248,
the deterministic RRE trajectory goes to the upper stable
state. However, some of the SSA trajectories (�22%
in this case) wind up in the lower stable state. Thus,
the LNA’s prediction for the Z1(10) distribution, namely
the single peak described by the solid curve, differs
markedly from the SSA’s double-peak prediction, shown
by the grey histogram. The message here is that, over
this time span, the system is not close enough to the
thermodynamic limit for the LNA to accurately describe its
behaviour.

However, if we increase the system volume to V ¼ 100,
the situation changes dramatically, as shown in Fig. 4. In
Fig. 4a, the one-standard deviation envelope predicted
by the LNA is for practical purposes identical to that
predicted by the SSA over the same time interval
0 ≤ t ≤ 10. And in Fig. 4b, the Z1(10) distribution
predicted by the LNA (solid curve) is practically
indistinguishable from that predicted by the SSA (grey
histogram). At this 100-fold larger system, it is extremely
unlikely (though not absolutely impossible) for an SSA
trajectory that starts at z1 ¼ 280 to visit the lower stable
state before time t ¼ 10. However, of course, if the run
time here were taken to be much larger than 10, the grey
SSA histogram would again become bimodal. The
message here is that if a bistable system is sufficiently
close to the thermodynamic limit, its behaviour over a
sufficiently restricted time span will be very well described
by the LNA.

Fig. 3 Schlögl model in (32) and (33) for V ¼ 1

a Mean and mean + one-standard deviation of the concentration of species S1 computed from 105 SSA simulations (solid and dashed curves) and from the LNA
(dotted curves). The jagged grey curve shows a typical SSA trajectory
b Histogram of the species S1 concentration at t ¼ 10, as calculated from 105 SSA simulations (grey histogram) and from the LNA’s normal distribution (solid
curve). The LNA is inaccurate for this ‘small’ bi-stable system over this long time frame
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Example 3: Our final example is the famous Brusselator
reaction set

∅ −k1V−� S1

S1 −
c2−� S2

2S1 + S2 −−−−−−−�
k3V
−2

3S1

S1 −
c4−� ∅

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(34)

The state-change vectors for these four reactions are

n1 = (1, 0)

n2 = (−1, 1)

n3 = (1, −1)

n4 = (−1, 0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(35a)

and the corresponding propensity functions are

a1(x) = k1V

a2(x) = c2x1

a3(x) = k3V
−21

2x1(x1 − 1)x2

a4(x) = c4x1

⎫⎪⎪⎬
⎪⎪⎭ (35b)

The V-independent functions defined in (8) are therefore

ã1(z) = k1

ã2(z) = c2z1

ã3(z) = k3
1
2 z2

1z2

ã4(z) = c4z1

⎫⎪⎪⎬
⎪⎪⎭ (35c)

We take values for the rate constants which put the
Brusselator in a limit-cycle regime

k1 = 5000, c2 = 50, k3 = 5× 10−5, c4 = 5 (36a)

For the initial condition, we take

X1(0) = 1001 ·V, X2(0) = 2002 ·V (36b)

which is slightly off of the equilibrium point.
Fig. 5 shows for the case V ¼ 1 the one-standard deviation

envelope for Z1(t) over the time interval 0 ≤ t ≤ 4 as
predicted by the LNA (dotted curves) and the SSA (solid
and dashed curves), the latter again being computed from
105 runs. The grey jagged curve is the Z1(t) trajectory of a
typical one of those SSA runs. The performance of the
LNA in this case is obviously not good. Although the
RRE trajectory Ẑ1(t) (the heavy dotted curve) gives a
reasonable representation of the behaviour of the single-run
SSA trajectory, except for an overall shift in phase, the
LNA’s estimate of the standard deviation about Ẑ1(t)
(lightly dotted curve) is extremely poor. The upper one-

Fig. 4 As in Fig. 3, but with V ¼ 100: moving closer to the thermodynamic limit allows the LNA to give a much more accurate approximation
over this time frame, but over increasingly longer time frames the performance of the LNA will deteriorate

a Mean and mean + one-standard deviation of the concentration of species S1 computed from 105 SSA simulations (solid and dashed curves) and from the LNA
(dotted curves). The jagged gray curve shows a typical SSA trajectory
b Histogram of the species S1 concentration at t ¼ 10, as calculated from 105 SSA simulations (gray histogram) and from the LNA’s normal distribution
(solid curve)
Note that the x-axis in (b) is different from that in Fig. 3b, as none of these simulations reached the lower stable state
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standard deviation envelope predicted by the LNA in the
last oscillation peaks at about 9 × 105, and that peak value
would become even larger if the run had contained more
oscillations.

Fig. 6 shows the results obtained if these calculations are
repeated with the volume increased to V ¼ 105. Here, the
SSA prediction consists of only one simulated trajectory,
because the SSA trajectories at this high molecular

Fig. 5 Brusselator model in (34)–(36) for V ¼ 1: mean and mean + one-standard deviation of the concentration of species S1 as computed
from 105 SSA simulations (solid and dashed curves) and from the LNA (dotted curves)

Jagged grey curve is a typical SSA trajectory for species S1; it shows that although the S1 population sometimes rises to over 6000, for much of the time it is well
under 200. The inaccuracy of the LNA for this ‘small’ limit-cycle system over this time frame is mainly because of the cumulative effects of the fluctuations in the
phase of the oscillator

Fig. 6 Same as Fig. 5, but with V ¼ 105: moving closer to the thermodynamic limit allows the LNA to give a much more accurate
approximation over the same time frame

But over longer time frames, the performance of the LNA would again deteriorate for this limit-cycle oscillator

IET Syst. Biol., pp. 1–14 11
doi: 10.1049/iet-syb.2011.0038 & The Institution of Engineering and Technology 2012

www.ietdl.org



population level take a very long time to compute and the
trajectories were found to be practically indistinguishable
from each other over this span of time. We see that at least
up to time t ¼ 4, the SSA trajectory is well predicted by
the LNA’s very tight one-standard deviation envelope.
However, we can see evidence of a gradually increasing
instability in the LNA’s one-standard deviation envelope at
the peaks of the last two oscillations. If this plot had been
extended to many more oscillations, these overestimates
would eventually become as wildly inaccurate as the LNA
estimates in Fig. 5. However, if the oscillating system is
sufficiently large, the LNA will accurately describe its
behaviour over a sufficiently restricted time span.

This picture is consistent with recent work applying the
LNA to chemical oscillators by Boland et al. [36] and Scott
[37]. They separated the fluctuations into components
normal and tangential to the limit cycle trajectory by
adopting a rotating coordinate frame in the plane of the
Brusselator’s limit cycle, obtained from the RRE. One
obtains an LNA variance for the normal component that is
accurate for moderate molecular populations. However, as
discussed in Section 1, the tangential fluctuations, which are
essentially fluctuations in the phase of the limit cycle
oscillations, grow unboundedly. This unbounded growth in
the phase fluctuations is responsible for the unruly
behaviour shown in Fig. 5 of the standard LNA for
moderate population sizes.

7 Summary

We have shown that if a well-stirred chemically reacting
system is sufficiently close to the thermodynamic limit, the
limit in which the system volume V and the molecular
populations X(t) are infinitely large but the molecular
concentrations Z(t) ; X(t)/V are finite, the system’s time
evolution will be accurately described by the CLE (9), at
least for a limited span of time. The CLE’s duration of
validity will be longer for some systems than others (e.g.
longer for a monostable system than a bistable system or an
oscillating system), but it can always be made as long
as desired simply by taking the system close enough to the
thermodynamic limit. We have further shown that in the
full thermodynamic limit, the CLE becomes the traditional
deterministic RRE (10), in which that infinite-size limit
will be valid for an effectively infinite span of time. We
have arrived at these conclusions without invoking
the sometimes problematic system-size expansion of van
Kampen, and also without making an arbitrary truncation of
the Kramers-Moyal expansion of the CME.

Against this background, we then showed that the LNA in
(11) and (17) can be derived with relative ease as a linearised
approximation of the CLE. This way of deriving the LNA
makes it clear that the LNA shares the CLE’s requirements
for validity, a conclusion that we substantiated in the
numerical examples in Section 6. This way of deriving the
LNA also suggests that it would be more accurate to view
the LNA as an approximation of the CLE, and only
indirectly as an approximation of the CME. This view is
consistent with Gardiner’s derivation of the LNA as a
linearisation of the two-term-truncated Kramers-Moyal
equation, as that truncated equation is mathematically
equivalent to the CLE. This view is also in line with the
more recent findings of Grima et al. [21] that the Fokker-
Planck equation corresponding to the CLE is more accurate
than the LNA.

As the LNA is an approximation of the CLE, and the CLE
becomes the RRE in the thermodynamic limit, what the LNA
gives us in practical terms is a description of the ‘initial
stochastic departure’ of the CLE from the RRE as we back
away from the thermodynamic limit to a finite but still large
system. More specifically, the LNA tells us that that initial
departure from the purely deterministic RRE behaviour
consists of normal fluctuations in the concentration
Z(t) about the deterministic RRE concentration Ẑ(t) with
var{Zi(t)} ¼ V21kii(t), where kij(t) is the solution of the
ordinary differential equation set (21) subject to the initial
condition (22).

For i = j, V21kij(t) is the covariance of the molecular
concentrations of species Si and Sj. The corresponding
correlation in (26), which is a more accurate indicator
of pairwise correlations (the covariance in some
cases behaves oppositely to the correlation), is therefore
independent of V. That means that the pairwise
correlations between species concentrations in the
stochastic LNA regime carry over unchanged into the
deterministic thermodynamic limit, where the variances
and covariances vanish. In other words, the correlations
predicted by the stochastic LNA are in some sense
equally present in the deterministic RRE.

We emphasise that, unlike earlier studies of the
validity of the LNA, our conclusions here are not
restricted to specially chosen systems. We have shown
quite generally that the LNA will serve in the manner
described above for all realistic systems which are
sufficiently large, although in some cases for only a
limited span of time.
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10 Appendix: solving the LNA

Writing the LNA (17) in its component form

ji(t + dt) 8 ji(t)+
∑N

k=1

∑M
m=1

nimfmk(t)

( )
jk (t) dt

+
∑M
m=1

nim

���������
ãm(Ẑ(t))

√
Nm(t)

���
dt
√

(i = 1, . . . , N ) (37)

we will first prove that the ji(t) defined by this equation are
all normal random variables. The key to doing that is a
result in random variable theory which states that if Y1 and
Y2 are two normal random variables, and c1 and c2 are two
sure (non-random) variables, then c1Y1+ c2Y2 is a normal
random variable. This is true even if Y1 and Y2 are
statistically dependent. Therefore as ji(t0) = 0 = N (0, 0)
and Nm(t0) = N (0, 1), we may conclude from the t ¼ t0
version of (37) that ji(t0+ dt) is a normal random
variable – because the coefficients of both jk(t) and Nm(t)
on the right side of (37) are sure variables. The same
reasoning applied to the t ¼ t0+ dt0 version of (37)
then establishes that ji(t0+ 2dt) is a normal random
variable. By induction, we conclude that ji(t) is normal for
all t . t0. (It should be noted that the foregoing logic
cannot be applied to the LNA’s precursor (14), because in
that equation the coefficient of Nm(t) on the right side is
not a sure variable; or from a different point of view,
that cannot be done because the product of a normal
random variable with practically any other random
variable will not be normal. Nor can we in those other
cases invoke the central limit theorem to infer normality
for the sum of ‘infinitely many terms’, because those
terms are not statistically independent.) The N normal
random variables j1(t), . . . , jN(t) will usually not be
statistically independent; however, being normal, they will
be completely specified by their N means and their
N(N 2 1)/2 covariances.

To prove that the normal random variables ji(t) have zero
mean, we first take the average of (37)

kji(t+ dt)l 8 kji(t)l+
∑N

k=1

∑M
m=1

nimfmk(t)

( )
kjk (t)l dt

+
∑M
m=1

nim

���������
ãm(Ẑ(t))

√
kNm(t)l

���
dt
√

(i = 1, . . . , N )

As kNm(t)l ¼ 0, this reduces to the set of coupled ordinary
differential equations

dkji(t)l
dt

8
∑N

k=1

∑M
m=1

nimfmk(t)

( )
kjk (t)l (i = 1, . . . , N )

(38)
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Equation 18 implies the initial condition kji(t)l ¼ 0 for all i.
However, kji(t)l ; 0 is a solution of (38) which satisfies
that initial condition; hence, for all t ≥ t0

kji(t)l ; 0 (i = 1, . . . , N ) (39)

To derive a formula for the time derivative of
kij(t) ; kji(t)jj(t)l, we multiply (37) by itself with i
replaced by j. Retaining only terms up to first order in dt,
that gives

ji(t+ dt) jj(t+ dt) 8 ji(t)jj(t)

+
∑N

k=1

∑M
m=1

nimfmk(t)

( )
jk(t) jj(t) dt

+
∑N

k=1

∑M
m=1

njmfmk(t)

( )
jk(t) ji(t) dt

+
∑M
m=1

nim

���������
ãm(Ẑ(t))

√
Nm(t)jj(t)

���
dt
√

+
∑M
m=1

njm

���������
ãm(Ẑ(t))

√
Nm(t)ji(t)

���
dt
√

+
∑M
m=1

nim

���������
ãm(Ẑ(t))

√
Nm(t)

∑M
l=1

njl

���������
ãl(Ẑ(t))

√
Nl(t) dt

Averaging this equation, using

kNm(t)ji(t)l= kNm(t)lkji(t)l= 0

and

kNm(t)Nl(t)l =
1, if l = m
0, if l = m

{

we obtain

kji(t+ dt) jj(t+ dt)l 8 kji(t)jj(t)l

+
∑N

k=1

∑M
m=1

nimfmk(t)

( )
kjk(t)jj(t)l dt

+
∑N

k=1

∑M
m=1

njmfmk(t)

( )
kjk(t)ji(t)l dt

+
∑M
m=1

nimnjm ãm(Ẑ(t)) dt

(40)

Transposing the first term on the right side, dividing through
by dt, and finally taking the limit dt� 0, we obtain (21).
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