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Discrete Stochastic Circadian Model

This model is the discrete stochastic version constructed from Leloup and Gold-

beter’s (Leloup and Goldbeter, 2003) 16-state mammalian model. In Tables S1

and S2, we list the reactions involved in a single cell. To convert molar con-

centrations in the deterministic model to populations (number of each chemical

species) requires converting the concentration to units of molecules per liter

then multiplying by a cell volume V . The scaling constant Ω is given by

Ω = NA [molecules/liter]× V [liters], (1)

where Avogadro’s number NA = 6.022× 1023.
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Statistical analysis of long periods

Statistical analysis of the significance of the long periods was carried out us-

ing three separate models for noise. To evaluate the possibility that Poisson-

distributed noise arising from the stochastic nature of photon emissions was

responsible for the appearance of long periods, testing was carried out against

the null hypothesis of a homogenous Poisson process. To evaluate the possi-

bility that the combination of a serially correlated process and CWT analysis

was generating spurious long-period signals, a population-based analysis was

carried out using a null hypothesis of 1/f -type noise; a stochastic process with

significant serial correlations. Finally, an analysis was carried out using bio-

luminesence data from BMAL1 knockout cells as a null distribution; deletion

of BMAL1 is known to remove circadian behavior in whole animals, thus use

of this data as a null distribution allows us to compare known aperiodic data

against the test data to determine statistical significance.

As the CWT analysis bins periodic behavior into a discrete but user-selectable

number of levels, the distributions of periods in traces from individual cells were

treated as observations drawn from a single multinomial distribution with un-

known parameter vector p̂i, with different values of i ∈ {1, 2, 3, 4} denoting the

4 possible combinations of data sets (Webb et al. versus Liu et al.) and cell

type (SCN slice data versus SCN dispersed data). Under the assumption that

p̂i has a prior distribution of a Dirichlet distribution with a diffuse, noninfor-

mative prior parameter αprior = [0.1 , 0.1 , . . .0.1], we may use straightforward

conjugate analysis (see, e.g. Robert and Casella (2004)) to determine the pos-

terior density of p̂i. Having observed a series of observations X , we may readily

find that p̂i | X is likewise Dirichlet-distributed with a posterior parameter

αposterior = αprior +
∑n

i=1 X
(i). Random draws from the posterior distribution

were generated by sampling and renormalizing Gamma random variables using

the “gamrnd” function of the MATLAB statistics toolbox.

To determine statistical significance against 1/f -type noise and BMAL1

2



knockout data, posterior distributions for each were generated from the CWT

of the processes as described above. A sampled value of either p̂1/f or p̂KO

was then drawn, and compared to a sample drawn from the distribution p̂i un-

der consideration. The values of p̂i above the values of either p̂1/f or p̂KO, as

appropriate, were determined. This pairwise comparison process was repeated

100,000 times, allowing us to estimate the probability that a random observation

from our null distribution would be greater than a random observation from our

test distribution along a variety of infradian periods, thus calculating a series

of p-values. Testing of SCN slice data via this method produced absolutely no

statistically significant infradian periods of length greater than 36 hours, and

plots are thus omitted. Testing of SCN dispersed data infradian periodicities

revealed some periodicities that were statistically significant at the p < 0.01

level against null hypotheses of both 1/f -type noise and BMAL1 knockout data

for dispersed cells from both Webb et al. (2009) and Liu et al. (2007) (Figure

S7).

Significantly, the BMAL1 knockout data appears to have slightly elevated

power in the period range of roughly 40 to 46 hours (see Figure S8); this led

to no statistically significant periods in this range for the Webb et al. data

evaluated against the BMAL1 knockout distribution, and very few statistically

significant periods for the Liu et al. data. It should be noted that the stochastic

model best able to reproduce the period distribution of dispersed cells involves

increasing the Bmal1 repression rate, thus lowering the protein count of this

species. This further supports the hypothesis that low levels of BMAL1 pro-

tein in the SCN contribute towards a tendency to longer periods and suggests

that the BMAL1 knockout data may not be perfectly appropriate for modeling

complete arrhythmicity in individual cells.

To determine statistical significance against a homogenous Poisson process,

a different approach was needed due to the manner in which the spectral charac-

teristics (and hence corresponding CWT) of a Poisson process change with the

mean of the process. Rather than constructing a population density estimate,
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we instead constructed cell by cell density estimates for dispersed cells from both

Webb et al. and Liu et al., and compared them to an upper 99% quantile of

the corresponding Poisson noise process of equal mean (see Figure S6, D,E,F for

an example). As above, statistical significance was evaluated across all periods.

We then tabulated the proportion of cells that contained statistically significant

power at the p < 0.01 level against the null hypothesis of Poisson noise (the

proportion of cells in which the blue line exceeded the green line at the indi-

cated period). The resulting plots are displayed in Figure S5. In both cases,

a significant number of cells are observed to have some long-period oscillations

with high statistical significance.

We conclude that the long-period observations cannot be solely attributed

to either a) an unforeseen interaction of the CWT with a serially correlated

process, or b) the effect of shot noise on the individual cell observations. While

analysis against a null distribution of BMAL1 knockout data greatly reduces the

appearance of statistically significant periods in the 40 to 46 hours range, this

is consistent with our modeling hypothesis that reduced expression of BMAL1

plays a key role in the appearance of these longer periods in dispersed cells.
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Wavelet analysis of synthetic data sets

The effect of a single skipped period and the advantage of the CWT over stan-

dard Fourier methods for analyzing nonstationary data are highlighted below.

A single skipped period due to either interfering noise or lack of data does not

significantly affect the estimate of instantaneous period using the CWT (Fig-

ure S9). This property highlights the robustness of the CWT in evaluating

instantaneous periods.

The advantage of the CWT over the Fourier transform for analysis of period

in nonstationary oscillators is illustrated in Figure S10; the use of the Fourier

transform incorrectly identifies a single period at roughly the average period for

the entire signal, while the CWT accurately identifies the nonstationary nature

of the oscillator, and provides good estimates for the changing period of the

oscillator over time.
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Table S1: Reactions 1 – 27 in discrete stochastic model based on 16 state Leloup
& Goldbeter model

Reaction Probability of reaction Transitions

0 G→G+MP w0 = (νsPΩ)
Bn

N

(KAPΩ)n+Bn
N

MP→MP + 1

1 MP→ w1 = (νmPΩ)
MP

(KmPΩ)+MP
MP→MP − 1

2 MP→ w2 = kdmpMP MP→MP − 1

3 G→G+MC w3 = (νsCΩ)
Bn

N

(KACΩ)n+Bn
N

MC→MC + 1

4 MC→ w4 = (νmCΩ)
MC

(KmCΩ)+MC
MC→MC − 1

5 MC→ w5 = kdmcMC MC→MC − 1

6 G→G+MB w6 = (νsBΩ)
(KIBΩ)m

(KIBΩ)m+Bm
N

MB→MB + 1

7 MB→ w7 = (νmbΩ)
MB

(KmBΩ)+MB
MB→MB − 1

8 MB→ w8 = kdmbMB MB→MB − 1
9 MP → PC w9 = kspMP PC→PC + 1

10 PC → PCP w10 = (V1PΩ)
PC

(KpΩ)+PC
PC→PC − 1, PCP→PCP + 1

11 PCP → PC w11 = (V2PΩ)
PCP

(KdpΩ)+PCP
PC→PC + 1, PCP→PCP − 1

12 PCC→PC + CC w12 = k4PCC PC→PC + 1, CC→CC + 1
PCC→PCC − 1

13 PC + CC→PCC w13 = (k3

Ω )PCCC PC→PC − 1, CC→CC − 1
PCC→PCC + 1

14 PC→ w14 = kdnPC PC→PC − 1
15 MC → CC w15 = ksCMC CC→CC + 1
16 CC → CCP w16 = (V1CΩ)

CC

(KpΩ)+CC
CC→CC − 1, CCP→CCP + 1

17 CCP → CC w17 = (V2CΩ)
CCP

(KdpΩ)+CCP
CC→CC + 1, CCP→CCP − 1

18 CC→ w18 = kdncCC CC→CC − 1

19 PCP → w19 = (νdPCΩ)
PCP

(KdΩ)+PCP
PCP→PCP − 1

20 PCP→ w20 = kdnPCP PCP→PCP − 1

21 CCP → w21 = (νdCCΩ)
CCP

(KdΩ)+CCP
CCP→CCP − 1

22 CCP→ w22 = kdnCCP CCP→CCP − 1
23 PCC → PCCP w23 = (V1PCΩ)

PCC

(KpΩ)+PCC
PCC→PCC − 1, PCCP→PCCP + 1

24 PCCP → PCC w24 = (V2PCΩ)
PCCP

(KdpΩ)+PCCP
PCC→PCC + 1, PCCP→PCCP − 1

25 PCN→PCC w25 = k2PCN PCC→PCC + 1, PCN→PCN − 1
26 PCC→PCN w26 = k1PCC PCC→PCC − 1, PCN→PCN + 1
27 PCC→ w27 = kdnPCC PCC→PCC − 1



Table S2: Reactions 28 – 51 in discrete stochastic model based on 16 state
Leloup & Goldbeter model

Reaction Probability of reaction Transition

28 PCN → PCNP w28 = (V3PCΩ)
PCN

(KpΩ)+PCN
PCN→PCN − 1, PCNP→PCNP + 1

29 PCNP → PCN w29 = (V4PCΩ)
PCNP

(KdpΩ)+PCNP
PCN→PCN + 1, PCNP→PCNP − 1

30 PCN +BN→IN w30 = (k7

Ω )PCNBN PCN→PCN − 1, BN→BN − 1
IN→IN + 1

31 IN→PCN +BN w31 = k8IN PCN→PCN + 1, BN→BN + 1
IN→IN − 1

32 PCN→ w32 = kdnPCN PCN→PCN − 1
33 PCCP → w33 = (VdPCCΩ)

PCCP

(KdΩ)+PCCP
PCCP→PCCP − 1

34 PCCP→ w34 = kdnPCCP PCCP→PCCP − 1

35 PCNP → w35 = (VdPCNΩ) PCNP

(KdΩ)+PCNP
PCNP→PCNP − 1

36 PCNP→ w36 = kdnPCNP PCNP→PCNP − 1
37 MB → BC w37 = ksBMB BC→BC + 1
38 BC → BCP w38 = (V1BΩ)

BC

(KpΩ)+BC
BC→BC − 1, BCP→BCP + 1

39 BCP → BC w39 = (V2BΩ)
BCP

(KdpΩ)+BCP
BC→BC + 1, BCP→BCP − 1

40 BC→BN w40 = k5BC BC→BC − 1, BN→BN + 1
41 BN→BC w41 = k6BN BC→BC + 1, BN→BN − 1
42 BC→ w42 = kdnBC BC→BC − 1
43 BCP → w43 = (VdBCΩ)

BCP

(KdΩ)+BCP
BCP→BCP − 1

44 BCP→ w44 = kdnBCP BCP→BCP − 1

45 BN → BNP w45 = (V3BΩ)
BN

(KpΩ)+BN
BN→BN − 1, BNP→BNP + 1

46 BNP → BN w46 = (V4BΩ)
BNP

(KdpΩ)+BNP
BN→BN + 1BNP→BNP − 1

47 BN→ w47 = kdnBN BN→BN − 1

48 BNP → w48 = (VdBNΩ) BNP

(KdΩ)+BNP
BNP→BNP − 1

49 BNP→ w49 = kdnBNP BNP→BNP − 1

50 IN → w50 = (VdINΩ) IN
(KdΩ)+IN

IN→IN − 1

51 IN→ w51 = kdnIN IN→IN − 1



Table S3: Default model parameter values

Parameter Value
k1(h

−1) 0.4
k2(h

−1) 0.2
k3(nM

−1 · h−1) 0.4
k4(h

−1) 0.2
k5(h

−1) 0.4
k6(h

−1) 0.4
k7(nM

−1 · h−1) 0.5
k8(h

−1) 0.1
kAP (nM) 0.7
kAC(nM) 0.6
kIB(nM) 2.2
kdmb(h

−1) 0.01
kdmc(h

−1) 0.01
kdmp(h

−1) 0.01
kdn(h

−1) 0.01
kdnc(h

−1) 0.12
Kd(nM) 0.3
Kdp(nM) 0.1
Kp(nM) 0.1
KmB(nM) 0.4
KmC(nM) 0.4
KmP (nM) 0.31
ksB(h

−1) 0.12
ksC(h

−1) 1.6
ksP (h

−1) 0.6
m 2
n 4

Parameter Value
V1B(nM

−1 · h−1) 0.5
V1C(nM

−1 · h−1) 0.6
V1P (nM

−1 · h−1) 0.4
V1PC(nM

−1 · h−1) 0.4
V2B(nM

−1 · h−1) 0.1
V2C(nM

−1 · h−1) 0.1
V2P (nM

−1 · h−1) 0.3
V2PC(nM

−1 · h−1) 0.1
V3B(nM

−1 · h−1) 0.5
V3PC(nM

−1 · h−1) 0.4
V4B(nM

−1 · h−1) 0.2
V4PC(nM

−1 · h−1) 0.1
Vphos(nM

−1 · h−1) 0.4
νdBC(nM

−1 · h−1) 0.5
νdBN(nM−1 · h−1) 0.6
νdCC(nM

−1 · h−1) 0.7
νdIN(nM−1 · h−1) 0.8
νdPC(nM

−1 · h−1) 0.7
νdPCC(nM

−1 · h−1) 0.7
νdPCN(nM−1 · h−1) 0.7
νmB(nM

−1 · h−1) 0.8
νmC(nM

−1 · h−1) 1.0
νmP (nM

−1 · h−1) 1.1
νsB(nM

−1 · h−1) 1.0
νsC(nM

−1 · h−1) 1.1
νsP (nM

−1 · h−1) 1.5
Ω 25
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Figure S1: Period variability is reduced in the stochastic KIB = 4 model as the
number of molecules is increased (with increasing Ω top to bottom).
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Figure S2: Switching rate from circadian to infradian periods (30 h. crossings)
as a function of Ω. In the deterministic limit (at large Ω) the switching rate
goes to zero.
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Figure S3: Visualization of the range of circadian behaviors possible in dispersed
SCN cells. Cells are displayed in order of increasing period variance, from left
to right and top to bottom. Sixteen uniformly spaced cells across the length of
the data set were selected, transformed, and plotted. Sampled from n=322 cells
from Webb et al. (2009).
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Figure S4: Visualization of the range of circadian behaviors possible in dispersed
SCN cells, as in figure S3, above. Sampled from n=310 dispersed cells from Liu
et al. (2007).
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Figure S5: Graphical summary of statistical testing against the null hypotheses
of a homogeneous Poisson process. Panel A shows the results from 322 dispersed
cells from the Webb et al. (2009). The vertical axis indicates the percentage
of all cells observed that displayed statistically significant periodicities (p-value
of < 0.01) as determined by the CWT ridge for the period indicated on the
horizontal axis. Note that most dispersed SCN cells express measurable periods
in the circadian range over the length of the recording. Panel B shows the results
from statistical testing of 310 dispersed cells from Liu et al. (2007) against null
hypotheses of a homogenous Poisson process. Axes and p-value as in panel A.
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Figure S6: Representative Monte Carlo analysis of three dispersed cells selected
at random from the data pooled from both Webb et al. and Liu et al. (2007)
data under a null hypothesis of 1/f -type noise (A-C) and a homogenous Poisson
process (D-F). Note that the spectral properties of the Poisson process change
according to the intensity of the process; this causes the 99th quantile to have
a different shape between plots. Note that under both noise models, both the
circadian periods and the infradian periods when identified appear to be sta-
tistically significant at the p < 0.01 level; in particular, though shot noise is
capable of generating the observation of spurious long periods, the majority of
observed long period behavior remains statistically significant.
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Figure S7: Plot of p-value versus period for infradian periods in dispersed cell
data from both Webb et al. (A,C) and Liu et. al (B,D). The p-values are plotted
against two different reference distributions as noted in the titles; 1/f -type noise
(A,C) and a distribution derived from the BMAL1 knockout data (B,D).
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Figure S8: Distribution of infradian periods in BMAL1 knockout. Median and
upper/lower 95% bounds are shown. Note that confidence bounds have been
drawn on the sorted set neglecting to account for the sum-to-one constraint
inherent in the Dirichlet distribution, and hence represent worst-case scenarios.
The distribution displays a notably non-flat period distribution, favoring periods
in roughly the 40 to 46 hour range.



0.5

1

1.5

2
A

A
rb

itr
ar

y 
un

its

Time

P
er

io
d

B

0 24 48 72 96 120

40
33

27
21

17
14

11
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period produces only a slight distortion of the instantaneous period estimate for
the oscillator. Units for the Y axis of panel A are arbitrary.
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Figure S10: The effect of a signal with an increasing period (A) on the CWT
ridge (B) and the FFT estimate (C). Note that the FFT incorrectly estimates a
single fixed period for the signal, while the CWT ridge correctly estimates the
linear change in period over time. As in Figure S9 the units for panel A are
arbitrary.


