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Abstract

Cells in the suprachiasmatic nucleus (SCN) display remarkable precision,

while either physically or chemically decoupling these cells from each other

leads to a dramatic increase in period-to-period variability. Where previous

studies have classified cells as either arrhythmic or circadian, our wavelet

analysis reveals that individual cells, when removed from network interac-

tions, intermittently express circadian and/or longer infradian periods. We

reproduce the characteristic period distribution of uncoupled SCN cells with a

stochastic model of the uncoupled SCN cell near a bifurcation in Bmal1 tran-

scription repression. This suggests that the uncoupled cells may be switching

between two oscillatory mechanisms: the indirect negative feedback of pro-

tein complex PER-CRY on the expression of Per and Cry genes, and the

negative feedback of CLOCK-BMAL1 on the expression of Bmal1 gene. The

model is particularly sensitive near this bifurcation point, with only a small

change in Bmal1 transcription repression needed to switch from the stable

precision of coupled SCN cells to the unstable oscillations of decoupled in-

dividual cells, making this rate constant an ideal target for cell signaling in

the SCN.
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Introduction

Disorders of circadian timekeeping may be an underlying cause of diseases

that have become more prevalent in modern times since the invention of the

electric light (Moore-Ede et al., 1983). In mammals the suprachiasmatic nu-

cleus (SCN), a brain region of about 20,000 neurons, serves as the master

circadian clock (Welsh et al., 2010) coordinating timing throughout the body

and entraining the body to daily light cycles. Experiments in which cell-to-

cell signaling between SCN neurons is disrupted by physical separation of

the cells (Herzog et al., 2004) or by blocking vasoactive intestinal polypep-

tide (VIP) mediated signaling (Aton et al., 2005) show that the remarkable

precision of the circadian clock at the level of the organism relies on this

intercellular signaling. In the absence of cell-to-cell signaling, each SCN neu-

ron and the SCN as a whole have significantly less stable oscillations. This

has been measured in PER2::LUC bioluminescence recordings, firing rate

recordings, and animal behavioral data.

Quantification and identification of the potential cause of the period in-

stability in individual cells is an important step toward understanding the

SCN system. Previous studies evaluated the distribution of periods over

time (see Aton et al. (2005); Herzog et al. (2004); Levine et al. (2002)) using

Fourier-based methods. Wavelet decomposition is better suited for captur-

ing the temporal period variability observed in individual cells, and has been

used on a wide range of biological oscillators (Addison, 2005; Baggs et al.,
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2009; Bartnik et al., 1992; Brai and Stefanovska, 1998; Klevecz and Murray,

2001; Kong et al., 1998; Morlet et al., 1991; Price et al., 2008). Stochastic

models based on small 3-state and 5-state deterministic models have demon-

strated that individual cells display an increase in period variability as either

the number of molecules is reduced, or model parameters are adjusted to be

near a bifurcation point where oscillations cease (Forger and Peskin, 2005;

Gonze and Goldbeter, 2006).

We combine Morlet continuous wavelet transform (CWT) analysis as de-

scribed by Mallat (1999) and Torrence and Compo (1998) with a detailed

stochastic model of gene regulation in SCN neurons to investigate the cause

of period instability in individual SCN neurons. We compare PER2::LUC bi-

oluminescence of dispersed SCN wild-type neurons from two labs (Ko et al.,

2010; Liu et al., 2007; Webb et al., 2009) to a stochastic model derived from

the 16-state deterministic Leloup and Goldbeter gene regulatory network

model (Leloup and Goldbeter, 2003, 2004). This reconstruction and the use

of a more detailed model provide novel insight into potential biological mech-

anisms underlying the observed period variability in decoupled SCN neurons.
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Materials and Methods

Experimental Procedure for Collecting Circadian SCN

Data

Single cell data were previously published in Liu et al. (2007), Ko et al.

(2010), and Webb et al. (2009), and were obtained according to methods

described therein. Briefly, SCN neurons with or without various clock gene

knockouts were dispersed from 1-7 day old PER2::LUC reporter mice (Yoo

et al., 2004) and cultured for up to 5 weeks at a density of 100-300 cells/sq

mm in medium containing 5-10% fetal bovine serum. For comparison to

dispersed cultures, neurons were also cultured with relatively intact tissue

organization as SCN slices. For imaging, cells were transferred to serum-free,

HEPES-buffered medium containing B27 supplement and luciferin, placed on

the stage of an inverted microscope kept at 36-37 ◦C, and imaged with a low-

noise CCD camera. Circadian clock function was measured as a time series

of PER2::LUC bioluminescence intensities for single cells in 30-60 minute

intervals over 6-8 days. For additional details on bioluminescence imaging

methods, see Welsh et al. (2005, 2010). All animal procedures were approved

and performed in accordance with local institutional guidelines as indicated

in Webb et al. (2009), Liu et al. (2007), and Ko et al. (2010).

These data were collected in two different labs. Although methods used

to collect these data were broadly similar, a number of differences could have

affected the results. For example, Webb et al. used mice of a pure C57/BL6
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genetic background instead of a mixed background, lower cell density of 100

cells/sq mm instead of 300 cells/sq mm, and started imaging sooner at 4 days

in culture instead of 2-7 weeks in culture. Accordingly, the wild type datasets

from the two different labs were analyzed separately (Liu et al., 2007; Webb

et al., 2009).

Wavelet Tools for Analysis of Circadian Data

Well-established Fourier-based methods used to classify and analyze biolumi-

nescence data in circadian oscillators share the common implicit assumption

that the data are strongly stationary, and have a fixed frequency for the

duration of the data (Levine et al., 2002). Such methods can misclassify

nonstationary signals as either having a single period (see, for example, Fig-

ure 9 in the Supplement) or as being aperiodic due to the spread of signal

intensity over a range of frequencies (Mallat, 1999). This may reduce the sta-

tistical significance of any individual frequency below the limits of detection.

Thus, for the analysis of the nonstationary data presented in this paper, we

selected the Morlet wavelet, which is closely related to the familiar tools of

Fourier analysis (Bartnik et al., 1992; Mallat, 1999), and can be considered

as a technique to adaptively window a Fourier transform in such a way that

the temporal duration of the window is adjusted to each frequency being an-

alyzed. The direct application of the Morlet wavelet allows for simultaneous

estimation of phase, frequency, and amplitude of a particular data set while

simultaneously detrending it, all without the strong parametric assumptions
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that cause difficulty for traditional methods (Baggs et al., 2009).

Wavelets, including the Morlet wavelet, have been successfully used to

analyze biological data across a wide range of time scales such as ECG sig-

nals (Addison, 2005; Kong et al., 1998; Morlet et al., 1991), EEG signals

(Bartnik et al., 1992), human blood-flow dynamics (Brai and Stefanovska,

1998), and yeast RNA transcription data (Klevecz and Murray, 2001). The

Morlet wavelet has also seen use in analysis of circadian period shifts and

multiple simultaneous oscillations due to gene knockout/knockdown in mice

(Price et al., 2008), as well as use in constructing gene association networks

for oscillators of the mammalian circadian clock (Baggs et al., 2009).

Price et al. (2008) focuses on the use of the CWT in analyzing individual

time series for the presence or absence of infradian and ultradian rhythms,

and Baggs et al. (2009) apply the time-frequency decomposition properties of

the CWT to determine gene network structure in the SCN. We extend these

results by considering the distributional properties of the circadian period

as measured by PER2::LUC photon emissions. We focus on pooling data

from the CWT analysis of multiple circadian oscillators in order to evaluate

properties of the overall period distribution.

Briefly, applying the Morlet wavelet to a data series generates a Contin-

uous Wavelet Transform table: a complex-valued field across scales (corre-

sponding to frequencies), and translations (corresponding to time). This set

of complex values is often converted to radial coordinates and each coordi-

nate magnitude and phase angle is plotted separately as a function of scale
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and translation. Here we consider only the magnitude plots (see, for exam-

ple, the lower panes of Figure 1). The magnitude of the complex value at

any scale and translation indicates the approximate strength of the frequency

corresponding to the selected scale at a time corresponding to the translation

(Mallat, 1999). The final row of the table – the “scaling coefficients” – pro-

vides information about all low-frequency components of the signal beyond

the resolution of the CWT table, including shifting baselines and the mean

power of the signal.

By selecting a series of points across translations at which the magnitude

of the CWT reaches local maxima (the “CWT ridges”), estimates of the

frequency evolution of the periodic components of the signal can be obtained.

The scales of the CWT ridge are typically converted back to frequency or

period (see e.g. Torrence and Compo (1998)) while the translations are used

to indicate time. Once recovered from the CWT heat map, the CWT ridge

may be considered as a list of wavelength-translation pairs, where each point

represents the strongest oscillatory component of the cell at that time point.

In some cases, particularly when noise levels are high and multiple oscillators

may be contributing to the signal, simply selecting the global or local maxima

at each translation may not be the optimal method of extracting the CWT

ridge (see Abid et al. (2007) for an overview of ridge extraction techniques and

their associated issues, and Carmona et al. (1999) for the “Crazy climber”

algorithm used in Baggs et al. (2009)). Tracking the period of the oscillator

by selecting the translation-by-translation maximum (Carmona et al., 1997)
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from the CWT table provides a robust, rapid, and deterministic method

for generating the ridge plot and examining the frequency evolution of the

oscillator over time, allowing us to characterize the variation in dominant

period of the cell and consider the source of this variability.

The initial CWT analysis that all of the following analyses and period dis-

tribution estimates are based on was performed as follows: to reduce edge ef-

fects, the original data for analysis were first mean-centered and then padded

with an equal length of zeros at the beginning and end of the data set. The

CWT was calculated in the Fourier domain using methods described in Mal-

lat (1999) and Torrence and Compo (1998). The standard representation of

scales as voices within octaves (see Mallat (1999) and Torrence and Compo

(1998) for details) was used, with 64 voices per octave, which was found to

provide adequate resolution. Note that the range of periods that can be

measured in a data set is limited by the sample rate and the length of the

experiment. Following the computation of the inverse Fourier transform, the

resulting CWT table was truncated to the length of the original data series in

order to remove the zero-padding. The translation-by-translation maximum

of the norm was selected as the ridge, and the scale at which that maxi-

mum occurred was extracted and converted back to instantaneous period as

described in Mallat (1999) and Torrence and Compo (1998). Ridges were

identified via translation-by-translation maxima as described above. Ridges

that fell into the scaling coefficients of the CWT were identified with loss

of periodicity and no dominant period was recorded for those time points;
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the scaling coefficients are also excluded from the histograms and heatmaps

presented throughout.

Computational Model

A deterministic model of the mammalian circadian gene network, developed

by Leloup and Goldbeter (Leloup and Goldbeter, 2003, 2004), was chosen for

conversion to a stochastic model because it contained enough detail to trace

period instabilities to the underlying biological mechanisms and provided Per

mRNA levels for comparison with PER2:LUC biological experiment data.

The use of a stochastic model allowed us to examine whether period fluctu-

ations due to molecular reaction events could be the cause of PER protein

period instability in SCN neurons.

We converted the deterministic model into a stochastic model by chang-

ing reaction rates to propensities for discrete reaction events, and converting

concentrations of chemical species to population counts (see Supplement).

Time-dependent solutions were computed using the Stochastic Simulation

Algorithm (SSA) due to Gillespie (1976) and implemented in the C pro-

gramming language. Initial conditions were selected randomly from a previ-

ous simulation, which was run long enough for any transients to settle. This

randomization of initial conditions along with the random firing of reactions

during the simulation gave each simulated cell a unique time history.

Following the procedure for continuation analysis of an oscillatory sys-

tem XPPAUTO (Ermentrout, 2001) was utilized to compute the period as
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a function of model parameters (Figure 4). The identical wavelet analysis

(implemented in MATLAB) to that used on the biological data was used to

analyze the model data.

Results

Wavelet Analysis Reveals Non-Stationary Periods

We use CWT analysis as described above to recover period information from

the SCN oscillators. Figure 1 displays examples of the initial CWT analysis

performed on three individual cells; the traces in the upper panels correspond

to the heatmaps in yellow, white, and red in the lower panels, which are used

to generate the ridges highlighted in green. Each ridge point indicates the

dominant oscillatory period for the cell at the indicated time; this analysis is

repeated across all cells in the data set (see Supplement for more examples).

For oscillators that exhibit strongly stochastic behavior, distributional

information about the period of the oscillator is much more relevant than

examining the time-frequency evolution of a single realization – as proposed

in Price et al. (2008) and used in Baggs et al. (2009). We utilize both

period variability histograms and period distribution plots to examine this

distributional behavior of SCN oscillators.

Period variability histograms (Figure 2) display the period variability of

various populations of SCN cells as inferred by CWT analysis; each cell’s

instantaneous period over time was estimated individually using the CWT
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as described above, and the standard deviation of that period over time was

calculated to estimate the stability of the cell’s oscillations. The results using

CWT analysis are consistent with those described in Herzog et al. (2004) and

Aton et al. (2005): dispersed SCN cells display a significantly broader range of

period standard deviations than coupled SCN cells. Note that the slice data

from both labs (Figure 2, A and C) displays a significantly tighter cluster of

variances than the corresponding dispersed data, but that the modal variance

is not zero, indicating that there is some inherent variability in the periods

of even coupled SCN cells. Analysis of cells decoupled by physical dispersion

(Figure 2, B and D) illustrate that the range of period variability increases

significantly in the absence of intracellular communication.

The distribution of instantaneous periods across time for a pooled popu-

lation of SCN oscillators is displayed in period distribution plots. A simple

histogram of instantaneous periods is created for each cell (see Supplement,

Figure 5, blue lines, for individual cell examples), and a population histogram

is assembled to visualize the period distribution over a population of cells.

Figure 3 (A and B) compares the period distribution of coupled and dis-

persed cells. As expected from previously published results, the dispersed

cell period distribution is wider than that of coupled cells in an SCN slice.

Dispersed cells spend half of their time at periods between 23-42 hrs. (data

from Webb et al. (2009)) or 22-30 hrs. (data from Liu et al. (2007)), while

coupled cells spend half of their time at a narrower range of periods between

24-29 hrs. The period distribution of dispersed cells also has a long period
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tail up to 48-53 hours, while at the same time there are few periods shorter

than 18 hours. The long period tail observed here by using wavelet analysis is

a distinguishing characteristic of the underlying stochastic processes driving

the oscillations.

While cellular heterogeneity is one possible explanation for the overall

population distribution of periods, both direct examination of individual cell

plots (see Figure 1 and Supplemental Figures 1 and 2) as well as analysis

of the frequency distribution of individual cells reveal that an assumption of

heterogeneity does not appear to be required to explain these data. Most

dispersed wild-type SCN cells have circadian periods (20-30 hrs.) most of the

time. Across all cells 79.4% of all recorded oscillations are in the circadian

range. However, the majority of cells (67.6%, 255 out of 377) also exhibit

non-circadian behavior, a dominant period outside of 20-30 hrs. There are

only a few cells (5.8%, 22 out of 377) that have no dominant period within

the circadian range. We therefore conclude that a heterogeneous popula-

tion of cells oscillating with different periods is not needed to reproduce the

distribution of periods observed in biological cells (Figure 3). The observed

period distribution across the cell population may be obtained from a homo-

geneous population of cells where each cell is a stochastic oscillator with a

non-stationary period; such a population will necessarily include cells that –

due to the stochastic nature of their oscillations – do not exhibit any circa-

dian behavior during the short time for which they are observed. Detailed

visualization of individual cells in the Supplement (see Supplemental Fig-

11



ures 1 and 2) illustrate the varied behaviors cells can display within a single

brief time series, supporting the conclusion that a homogeneous population

of stochastic oscillators is adequate to explain the observed data.

To control for the possibility that the observed long periods are artifacts,

we follow a Monte Carlo procedure as described in detail in the Supplement.

Briefly, null distributions for period distribution are generated from both

1/f -type noise – a stochastic process with significant serial correlations –

and bioluminescence data generated by BMAL1 knockout cells. We consider

BMAL1 knockout cells a good representation of arrhythmic cells because they

do not display any dominant oscillation period. Distributional estimates for

the period histograms are formed by modeling the data as the output of

a multinomial distribution and obtaining the distribution of the underlying

probability vector using conjugate priors. Random samples from these null

distributions are then taken and compared to random samples taken from

posterior distributions generated using the biological data, investigating in-

fradian periods of 36 hours or longer. Comparing a large number of pairwise

samples drawn in such a manner allows us to estimate p-values of the ob-

served data against the two null hypotheses. Dispersed cells from both labs

have statistically significant infradian periodicities at a p-value of p < 0.01

(see Supplement, Figure 6). Complete details and results are available in the

Supplement.

As Poisson noise has spectral characteristics which change slightly with

the mean of the signal, a different approach is taken to test for statistical
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significance against a null hypothesis of Poisson noise. Rather than testing

the population, each cell is tested individually against a homogeneous Poisson

process with a mean equal to the original signal. Statistical significance for

each individual cell at each individual period is then evaluated at a p-value

of < 0.01, and the proportion of cells that contain statistically significant

power at each period band are then tallied. Dispersed data from both Liu

et al. (2007) and Webb et al. (2009) indicate that a number of individual

cells display statistically significant power at a range of infradian periods

(Supplement Figures 3 and 4). As above, complete details are accessible in

the Supplement.

Modeling Provides a Possible Mechanism

An increase in period variability can be achieved either by reducing the num-

ber of molecules in the stochastic model, or by adjusting model parameters

to be near a bifurcation point where oscillations are less stable. In this study

we consider both techniques and show results from the following model vari-

ants: a discrete stochastic version of the Leloup and Goldbeter model (Leloup

and Goldbeter, 2003) as the number of molecules is reduced; near a non-

oscillatory bifurcation point of the mean Period gene (Per) transcription

rate νsP ; near an unstable range in the Bmal1 gene transcription repression

KIB; and near an unstable range in the mean Bmal1 gene transcription rate

νmB (Figure 4).

Surprisingly, by lowering the molecular count alone, we are not able to
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reproduce the biological period distribution. As the molecular population

is lowered the period distribution does widen (Figure 3-C), but does not

exhibit the long-periods observed in the biological data. Next we test the

model near a non-oscillatory bifurcation point of mean Per transcription

rate νsP . This model variation was used in To et al. (2007) to produce a

heterogeneous population of cells with a desired percentage of oscillatory and

non-oscillatory cells. It has the advantage that increasing Per transcription

through inter-cellular coupling restores rhythmicity to all the cells, which

is a necessary condition for inter-cellular synchrony. Approaching the νSP

bifurcation widens the period distribution (Figure 3-D); however the long

periods which we have shown to be significant in our analysis in the previous

section are not reproduced.

To determine how the stochastic model can be made to produce the long

periods, bifurcation analysis of the deterministic Leloup and Goldbeter model

is employed. Our analysis identifies two sets of parameters that are capable

of producing the longer periods observed in the dispersed cell data. The

first set (Figure 4 left column) is associated with the PER-CRY feedback

loop and requires an order of magnitude change in value to produce the

period range. The second set (Figure 4 right column) is associated with

the CLOCK-BMAL1 feedback loop or global scale factors, and produces the

observed period range with less than an order of magnitude change. Global

parameters νsTot and ksTot change the transcription and protein production

rates of all three key genes. Changes in these global parameters are reflected
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in the Bmal1 mRNA transcription rate and BMAL1 protein production rate,

and so produce the same 2 branch bifurcation behavior found in parameters

affecting the production of Bmal1 mRNA.

For the second set of parameters, the period versus parameter functions all

have two oscillatory branches connected by an unstable oscillatory segment.

Leloup and Goldbeter (Leloup and Goldbeter, 2004) identified each of the two

oscillatory branches with one of the feedback loops present in the circadian

clock. Song et al. (2007) demonstrated that a simple model consisting of

interlocked positive and negative feedback loops could behave as either a

bistable switch or an oscillator depending on the relative strengths of the

two feedback loops. Selecting parameter values that allow switching between

the oscillatory branches provides a mechanism by which longer periods may

be generated by the model.

The Bmal1 transcription repression KIB and transcription rate νmB are

chosen from the second group of parameters for their maximum period value

and sensitivity. Stochastic simulation results (Figure 3-E) show that as KIB

is increased the period distribution of the stochastic model widens, creating

a longer tail on the distribution of infradian periods, and at the same time

increasing the mean period.

To quantify the difference between period distributions, the Kullback-

Leibler (KL) divergence (Kullback and Leibler, 1951) is used. The Kullback-

Leibler divergence provides a measure of “distance” or “divergence” between

statistical densities in terms of relative information gain. Smaller values of
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the KL divergence indicate two distributions that are more nearly similar.

Increasing the Bmal1 transcription repression KIB produces the lowest KL

divergence (Table 1) while preserving oscillatory behavior and hence pro-

duced the best period distribution fit among the models studied (Figure 3).

Discussion

We show that individual SCN cells, when uncoupled from network interac-

tions, are capable of producing a wide range of periodic behaviors which vary

over time. Analysis of the period distributions show that the majority of cells

(over 80%) are capable of producing at least transient circadian rhythms over

the length of the observed data. This result agrees with previous studies (Liu

et al., 2007; Webb et al., 2009; Welsh et al., 1995) which report that 53% to

80% of dispersed SCN cells express circadian rhythms. However, our wavelet

visualization also reveals that nearly 10% of all dispersed cells have statis-

tically significant (p < 0.01) instantaneous periods ranging from 40 to 46

hours.

Though it is possible that the long periods could be due to multiple oscil-

lators, such as those found in dinoflagellates (Roenneberg and Morse, 1993),

we assume that is not the case and measure the single strongest period at

each instant of time. Visualization of the periodic behavior of the individual

cells over time via CWT ridge plots shows that this variation in periodic

behavior occurs within individual cells. This suggests that SCN cells are

noisy oscillators that are homogeneous in their ability to produce transient
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circadian rhythms.

We reproduce the period distribution observed in dispersed cells with the

stochastic model by operating near a bifurcation point in the Bmal1 tran-

scription repression parameter. Leloup and Goldbeter (Leloup and Gold-

beter, 2004) identified each of the two oscillatory branches in the Bmal1

transcription repression parameter with two feedback loops in the circadian

gene regulatory network. Selecting parameter values that allow switching

between the oscillatory branches provides a mechanism for producing the

observed period distribution. This requires only a modest change in param-

eter values. By comparing the behavior of the model at two different types

of bifurcation points we illustrate that the distribution of the infradian peri-

ods is different between these two points, and that the wavelet analysis can

distinguish these models and with the aid of the Kullback-Leibler divergence

select the most appropriate model.

A central question regarding the SCN system is how does it produce such

precise oscillations with so much period variability in individual cell oscilla-

tors? So far, in order to reproduce the individual cell period variability most

models have required that they be operated near a bifurcation point (even

at low molecular count). This investigation has pointed to a different type of

bifurcation (between two oscillatory regimes) for reproducing dispersed cell

period distributions than the fixed point bifurcations used in To et al. (2007)

and Liu et al. (2007). The advantage of this type of bifurcation may be that

by switching to a longer period without quenching oscillations the system
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may be more easily shifted to a new light entrainment schedule.

The period distribution of the cell model is an important property for

modeling synchronization in a system of coupled oscillators because it has

an effect on the formation of clusters of synchronized cells (Kogan et al.,

2008). Many questions remain to be answered about the coupled system.

What intercellular mechanisms provide the stability observed in the coupled

system? How does stochastic noise of individual cells contribute to stability

and synchronization in the coupled SCN? It may be that the coupled system

achieves greater stability through increased signal-to-noise provided by inter-

cellular connectivity, while the presence of stochastic noise adds tractability

to the SCN allowing it to more readily entrain to changes in light schedule.

Period variations imply that the phase response is also affected (Daan

and Pittendrigh, 1976; Gonze and Goldbeter, 2006), so these findings may

also be significant for modeling perturbation effects on the coupled system

such as light entrainment. In addition to measuring the period, wavelets

can be used to extract phase information. Our future work will focus on

developing a coupled cell model using wavelet analysis to examine the phase

of individual cells as they synchronize and respond to perturbations.
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Figure 1: PER2 expression recorded from three representative SCN
cells over 7 days showing examples of cells with unstable (A), stable (B),
or absent (C) circadian periods. The heatmap plots from each cell show
the amplitude of the Continuous Wavelet Transform and the maximum
amplitude at each moment (ridge highlighted in green). Note that this
ridge plot gradually drifts between 23 and 38 hours in the unstable cell,
changes little in the more stable circadian cell, and is consistently infradian
(longer than circadian) in the final plot.
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Figure 2: Distribution of the standard deviation of periods across both
coupled and dispersed cells from Webb et al., Liu et al., and stochastic
modeling. A and B illustrate the distribution of the standard deviation
of slice and dispersed cells, respectively, from Liu et al. (2007). C and D
illustrate the same statistics for data fromWebb et al. (2009). E illustrates
the same statistics for dispersed cells in the stochastic model.
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Figure 3: (A-B) The period distributions of dispersed cells from both
labs are wider than that of coupled cells (SCN slice) and have a long period
tail of up to 48-53 hours. The KIB = 3.5 & 4.0 model distributions show
the presence of long periods consistent with the biological data. (C) De-
creasing the number of molecules in the stochastic model fails to produce
the long period tail observed in the biological data. (D) Decreasing the
Per transcription rate to very close to the bifurcation point (νsP = 1.1)
begins to produce a long period tail, but the period is less likely to be in
the circadian range (24-19 hrs.) than the biological data. (E) Increasing
the Bmal1 transcription repression switches the period from the circadian
range to long periods (40-50 hrs. for KIB = 6.5). (F) Decreasing the
Bmal1 degradation rate also produces a switch, but with less probable
long periods.
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Figure 4: PER-CRY feedback loop parameters (left) and CLOCK-
BMAL1 feedback loop parameters and global scale factors (right) that
produce long periods. The plots on the left have one stable oscillatory
branch and require an order of magnitude change to produce long peri-
ods. In contrast, the plots on the right have two stable oscillatory branches
(solid line) connected by an unstable oscillatory range (dashed line) and
require less than an order of magnitude change to produce long periods.
Circles denote the default parameter values.



Table 1: Kullback-Leibler divergence compares period distributions of
stochastic model variants with both Webb et al. (2009) and Liu et al.
(2007) dispersed wild-type cells. Smaller values of the KL divergence
indicate two distributions that are more similar.

Model number of molecules Ω = 12 Ω = 25 Ω = 50 Ω = 100 Ω = 200
Webb et al. (2009) 1.56 10.8 12.3 12.2 17.2
Liu et al. (2007) 1.29 4.44 5.47 6.08 8.35
Model Per transcription νsP = 1.1 νsP = 1.2 νsP = 1.3 νsP = 1.4 νsP = 1.5
Webb et al. (2009) 0.38 1.66 2.88 4.93 10.8
Liu et al. (2007) 0.73 1.32 2.02 2.76 4.44
Model Bmal1 repression kIB = 2.2 kIB = 3.5 kIB = 4.0 kIB = 5.5 kIB = 6.5
Webb et al. (2009) 10.8 5.21 1.34 1.62 4.74
Liu et al. (2007) 4.44 2.97 1.48 2.89 6.19
Model Bmal1 degradation νmB = 0.65 νmB = 0.7 νmB = 0.75 νmB = 0.8
Webb et al. (2009) 1.88 10.9 10.0 10.8
Liu et al. (2007) 1.86 4.68 3.83 4.44


