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Michaelis–Menten speeds up tau-leaping under a wide range of conditions
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This paper examines the benefits of Michaelis–Menten model reduction techniques in stochastic
tau-leaping simulations. Results show that although the conditions for the validity of the reduc-
tions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the
reductions result in a substantial speed-up for tau-leaping under a different range of conditions than
they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping
are determined by different properties of system dynamics. © 2011 American Institute of Physics.
[doi:10.1063/1.3576123]

I. INTRODUCTION

Biochemical systems typically involve complex networks
with many reactions and many molecular species. While
studying such systems, reduced models can not only benefit
simulation speed but also aid in the understanding of complex
models. The Michaelis–Menten (M–M) approximation1, 2 of
enzyme–substrate reactions, which replaces the set of three
reactions

E + S
c1
⇀↽
c2

E S
c3→ E + P, (1)

with the single reaction

S
c→ P, (2)

is a widely used model reduction technique for ordinary dif-
ferential equation (ODE) chemical kinetics models, and has
been the subject of refinements over the years.3–5

Recent studies have shown that the M–M approximation
can also benefit the simulation of stochastic chemical kinetics
models. With regard to the use of the M–M approximation in
the stochastic simulation algorithm (SSA),6 Rao and Arkin7

derived a stochastic M–M approximation from the quasi-
steady-state assumption (QSSA); and Mastny et al.8 verified
the QSSA using perturbation analysis. Gillespie et al.9 ex-
amined the validity of the same abridgment for a similar but
simpler reaction set

S1
c1
⇀↽
c2

S2
c3→ S3, (3)

abridged to

S12
c→ S3. (4)

They showed that the abridgment is valid for SSA under four
sets of conditions, and that for only one of these cases does
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it result in a substantial speed-up for SSA. Sanft et al.10 ex-
tended the analysis to the M–M approximation and obtained
similar results.

However, little attention has been paid to the abridgment
when it is used in the context of tau-leaping. The tau-leaping
algorithm11 is an approximate strategy to accelerate SSA sim-
ulations. This paper examines the conditions for validity and
for speed-up of the abridgment applied to both reaction set (3)
and reaction set (1) in the context of tau-leaping, and shows
that the abridgment results in a substantial speed-up for tau-
leaping under a different range of conditions than is the case
for SSA.

II. BACKGROUND

Consider a well-stirred chemical reaction system with
n molecular species S1, . . . , Sn and m reaction channels
R1, . . . , Rm . Let xi (t) denote the population of species Si

at time t , and x(t) = (x1(t), . . . , xn(t))T the state vector of
the system at time t . Let each reaction R j be character-
ized by its propensity function a j (x) and stoichiometry vec-
tor ν j : the probability that one R j reaction will occur in the
next infinitesimal time interval [t, t + dt), given x(t) = x, is
a j (x) dt , and the change to the system’s state vector induced
by one R j reaction is ν j . Then the dynamics of the whole sys-
tem can be described by the chemical master equation.12 The
SSA is an exact method to numerically solve the chemical
master equation by simulating a large number of trajectories
of the system.

The tau-leaping algorithm is an approximate method to
accelerate SSA. Instead of simulating one reaction at a time,
tau-leaping steps the system by a selected time interval, τ ,
during which many reactions may fire. The idea is that if the
propensity functions are nearly constant during the interval,
the number of times that each reaction fires can be approxi-
mated by a Poisson random number P(a j (x)τ ). Then the state
of the system can be advanced by the formula

x(t + τ ) ≈ x(t) +
m∑

j=1

P(a j (x)τ ) ν j . (5)
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The requirement that the propensities are nearly constant dur-
ing the time interval [t, t + τ ] is called the leap condition: for
some ε � 1,

|�τ a j (x)/a j (x)| ≤ ε, for all j = 1, . . . , m. (6)

The step size τ is dictated by the need to satisfy the leap con-
dition.

It is easy to see that the tau-selection strategy is crucial
to the accuracy and speed of tau-leaping simulations. Several
strategies have been proposed. The most widely used strategy
for mass action reactions is due to Cao et al.13 In that strategy,
the leap condition is written in terms of the changes in species
populations rather than the changes in propensities, and the
expression for τ is given by

τ = min
i

{
max {εxi/gi , 1}∣∣∑

j νi j a j (x)
∣∣ ,

max {εxi/gi , 1}2∣∣∑
j ν2

i j a j (x)
∣∣

}
, (7)

where ε � 1 is the preset accuracy control parameter, νi j are
the stoichiometric terms, and gi is the highest order of reac-
tion in which species Si appears as a reactant. (For further
details, see Ref. 13.)

III. RESULTS

A. Abridgment of reaction set (3): Conditions
for validity

Both SSA and tau-leaping are based on the same assump-
tion that the dynamics of the chemical reaction system is gov-
erned by the propensity functions as defined above. In the
case of the unimolecular reaction R3 in reaction set (3), given
the population x2 of species S2, the probability for reaction
R3 to fire in the next infinitesimal time dt is given by the
product of the corresponding propensity function a3 and dt :
a3dt = c3x2dt . Gillespie et al.9 showed that this condition is
mathematically equivalent to the following condition: in the
absence of competing reactions, the time to the next firing
of reaction R3 is an exponential random variable with mean
1/(c3x2). Therefore, the validity condition of the abridgment
is that the time to the next firing of reaction R3 (the event
of a S3 molecule being generated) must be approximately
an exponential random variable with mean 1/aa(x12), where
x12 = x1 + x2 and aa(x12) is the propensity function of the
abridged reaction. Note that aa is a function of x12 = x1 + x2,
rather than a3 being a function of x2. Since both SSA and
tau-leaping share the same assumption above of how the sys-
tem dynamics is governed by propensity functions, this va-
lidity condition for the abridgment holds for both SSA and
tau-leaping. The additional assumption in tau-leaping that the
propensity functions are nearly constant during each time step
does not affect the validity condition.

For reaction system (3), Gillespie et al.9 showed that the
validity condition can be satisfied if and only if(

c1

c1 + c2 + c3

) (
c3

c1 + c2 + c3

)
� 1, (8)

which is satisfied if and only if at least one of the four condi-
tions holds:

c2 � c1, (9a)

c3 � c1, (9b)

c1 � c3, (9c)

c2 � c3, (9d)

and the propensity function of the abridged model is given by

aa(x12) = c1c3x12

c1 + c2 + c3
, (10)

where x12 = x1 + x2.
Because SSA and tau-leaping share the same validity

condition, (8) is also the condition for the validity of the
abridgment for tau-leaping, and the propensity function is
given by Eq. (10).

B. Abridgment of reaction set (3): Conditions
for speed-up

Gillespie et al.9 also showed that under only one condi-
tion will the abridgment speed up the SSA simulation sig-
nificantly: c2 � c3. This is because the SSA simulates ev-
ery reaction event of the system; thus the speed of an SSA
simulation is determined by the number of reaction firings.
When c2 � c3, many fewer reaction firings take place in the
abridged system than in the original system.

For tau-leaping, since the speed of the simulation is de-
termined by the size of the leap step τ , we must re-examine
the conditions for speed-up. The leap condition (7) requires
that all propensity functions remain almost constant during
a time step. Thus, the time step of tau-leaping is restricted by
how fast the propensity functions change and is implicitly re-
stricted by how fast the populations of the reactants change.
The key to a significant acceleration of tau-leaping simulation
by abridgment is to remove the intermediate highly reactive
species with the following properties:

1. Their populations change rapidly, thus the step size
of tau-leaping is restricted by those species.

2. The distributions of their populations remain almost
constant for a much longer time than their popula-
tions do, thus the average values of the correspond-
ing propensity functions over time during this new
longer step can be approximated by the expectations
of those propensity functions over the distributions.

For the abridgment of reaction set (3) to reaction
set (4), the conditions for validity of the abridgment are given
in Eqs. (8) or (9). To examine the extent of speed-up, we com-
pare the time step τ f of the full model (3) with the time step
τa of the abridged model (4) under different conditions in the
Appendix. Several interesting conclusions can be summarized
from the analysis:

1. The abridgment always speeds up tau-leaping, as
shown in (A9) and (A18).

2. The conditions corresponding to a substantial speed-
up from the abridgment for both tau-leaping and SSA
are compared in Table I. The condition εx12 � 1 is
assumed in all the conditions for tau-leaping, as this
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TABLE I. Conditions for a substantial speed-up from the abridgment, for tau-leaping and SSA, applied to
reaction set (3).

c2 �� c3

c2 � c1 c3 � c1 c1 � c3 c2 � c3

Tau-leaping x12 � 2(c2 + c3)3

εc2
1c3

⎧⎪⎪⎨
⎪⎪⎩

x12 � 1
ε
, if c2 � c1

c3
2εc2

� x12 � 2c2
1

εc2c3
, if c2 � c3

x12 � 2c2
1

εc2c3
, otherwise

c2 � c1 or x12 � 2c2
1

εc2c3

SSA ∅ x12 > 0

is the situation where tau-leaping is advantageous
over SSA. It is easy to see that for most situations
(except for when c2 � c3), tau-leaping simulation
benefits from the abridgment under a wider range of
conditions than is the case for SSA simulation.

C. Abridgment of enzyme-substrate system

For the enzyme–substrate system (1), Sanft et al.10

showed that the condition for validity of the stochastic M–M
approximation is the same as that of the deterministic case,3

namely,

ET � S0 + Km, (11)

where ET = E(t) + E S(t), S0 = S(0), and Km = (c2 + c3)
/c1. The propensity function of the abridged system is also
the same as the deterministic M–M rate:

a(x) ≈ VmaxS

Km + S
, (12)

where Vmax = c3 ET . And, under only one condition will the
abridgment speed up the SSA simulation significantly: c2

� c3.
Applying the same arguments in Sec. III A, the condition

for validity and the stochastic M–M rate are the same for tau-
leaping as for SSA.

On the other hand, for tau-leaping, the abridged system
is no longer a mass-action system. However, it is easy to see
that the propensity function (12) depends on the population of
S, and

�τ a

a
= Km�τ S

(Km + S − �τ S)S
<

�τ S

S
. (13)

Thus the τ selection strategy in Eq. (7) with g = 1 can be used
to calculate the tau-leaping step size of the abridged system:

τa = εS

VmaxS/(Km + S)
= ε(Km + S)

Vmax
. (14)

To calculate the characteristic tau-leaping step size of the
original system, we can make use of the corresponding ODE
results as estimates of the expected populations:

E ≈ ET Km

Km + S
, (15a)

E S ≈ ET S

Km + S
. (15b)

Applying the τ selection strategy (7), we can easily see
that τ f < τa by examining the contribution to τ of the change
in S. Then by examining the contribution to τ of the changes
in E and E S, we have

τ f <
max

{
ε min

{
E, E S

}
, 1

}2

c1SE + (c2 + c3)E S
. (16)

When εE ≤ 1 or εE S ≤ 1, which is equivalent to

min {Km, S} ≤ Km + S

εET
, (17)

we obtain

τ f <
1

c1SE + (c2 + c3)E S
= Km + S

2(c2 + c3)ET S
, (18)

τ f

τa
<

c3

2(c2 + c3)εS
. (19)

Again, we are only interested in the case εS � 1, where tau-
leaping is advantageous over SSA. In this case, τ f � τa , and
the speed gain grows as c2/c3 increases. Note that since Km

+ S � ET and ε � 1, condition (17) is actually a very loose
condition.

When εE > 1 and εE S > 1, which is equivalent to

min {Km, S} >
Km + S

εET
, (20)

TABLE II. Conditions for a substantial speed-up from the M–M abridgment, for tau-leaping and
SSA, applied to the enzyme–substrate system (1).

c2 �� c3 c2 � c3

Tau-leaping S � εE2
T or

(
Km + S

min {Km , S}
)2

� εE2
T

S
S �� εE2

T or

(
Km + S

min {Km , S}
)2

� c3εE2
T

c2 S

SSA ∅ S > 0



134112-4 Wu et al. J. Chem. Phys. 134, 134112 (2011)

TABLE III. Simulation time and speed-up of SSA and tau-leaping under different initial conditions,
for parameter set I, applied to reaction set (3).

SSA Tau-leaping

x1(0) tend Original(s) Abridged(s) Speed-up Original (s) Abridged (s) Speed-up

1 × 105 1 58 9 6 50 1 50
1 × 106 1 650 110 6 5 1 5
1 × 107 1 5800 900 6 3 1 3
1 × 106 10 1660 290 6 220 2 110

we obtain

τ f <
ε2 ET min {Km, S}2

2(c2 + c3)S(Km + S)
, (21)

τ f

τa
<

εE2
T c3 min {Km, S}2

2(c2 + c3)S(Km + S)2

= c3

2(c2 + c3)

1

εS

(
εET min {Km, S}

Km + S

)2

. (22)

The condition for the abridgment to gain a substantial speed-
up in this case is given by

c3

2(c2 + c3)

1

εS
�

(
Km + S

εET min {Km, S}
)2

. (23)

Either S � εE2
T , or c2 � c3 and S �� εE2

T , or if the values of
Km and S are widely separated will there be a large speed-up.

The conditions corresponding to a substantial speed-up
from the M–M abridgment for both tau-leaping and SSA are
compared in Table II. It is easily seen that the M–M abridg-
ment yields a significant speed-up for tau-leaping under a
different range of conditions than it does for SSA, for the
enzyme–substrate system.

IV. NUMERICAL EXAMPLES

Based on the analysis in Sec. III, we tested and timed
the abridgment to different reaction systems under different
conditions using the adaptive tau-leaping code in STOCHKIT

2.0.14 The tests were carried on a personal computer with an
Intel Core 2 Quad Q9300 2.5 GHz central processing unit and
4 GB RAM.

A. Speed-up of reaction set (3)

For the abridgment of reaction set (3), we choose two sets
of parameters to show the different speed-up behavior of SSA
and tau-leaping. Parameter set I was chosen as follows: c1

= 1, c2 = 100, c3 = 100. This corresponds to the condi-
tion c2 + c3 � c1. To show how condition (A16) factors into
the speed-up, we set x2(0) = x3(0) = 0, and varied x1(0)
= x12(0). The simulation time and speed-up of SSA and tau-
leaping under different initial conditions or to the differ-
ent system end time tend, all with 10 000 runs, is shown in
Table III. ε was set to 0.01 in the τ selection. We can see
from the table that: (a) the speed-up gain of SSA from the
abridgment does not change as the initial condition changes.

This agrees with the results of Gillispie et al.9 because the
speed-up gain of SSA is determined solely by the c2/c3 ratio;
(b) tau-leaping gains a considerable speed-up when condition
(A16) is satisfied; and (c) the speed-up of tau-leaping is not
large when condition (A16) is not satisfied, but if tend is large
enough the system will go into the region of condition (A16)
eventually and tau-leaping will benefit substantially from the
abridgment. All of these results agree with the analysis.

Parameter set II was chosen so that c1 � c3 � c2 to
illustrate the only case for which tau-leaping would not
gain a substantial speed-up, regardless of the system end
time tend. The speed-up of tau-leaping under different ini-
tial conditions or to different tend is shown in Table IV. The
other parameters and values are set to: c1 = 100, c2 = 0.01,
c3 = 1, x2(0) = x3(0) = 0, ε = 0.01. Noting that c3/(2εc2)
= 5000 and 2c2

1/(εc2c3) = 2 × 108, we can see that the re-
sults are consistent with condition (A26): tau-leaping will
benefit substantially from the abridgment when c3/(2εc2)
� x12 � 2c2

1/(εc2c3). A quick test of SSA shows that the
speed-up for SSA under this set of parameters is between 3
and 4. Tau-leaping benefits from the abridgment more signif-
icantly than SSA when condition (A26) is satisfied.

B. Speed-up of enzyme–substrate system

For the abridgment of enzyme–substrate system (1), we
chose three sets of parameters and initial conditions to show
the different speed-up behavior of SSA and tau-leaping:

1. c1 = 1, c2 = 10, c3 = 10, S(0) = 1 × 105, E(0)
= 100, E S(0) = P(0) = 0, tend = 10. This set cor-
responds to the condition c2 �� c3 and S � εE2

T .
According to the analysis, only tau-leaping should
be able to gain a substantial speed-up from the
abridgment;

2. c1 = 1, c2 = 100, c3 = 1, S(0) = 1 × 105, E(0)
= 100, E S(0) = P(0) = 0, tend = 10. This set corre-
sponds to the condition c2 � c3 and S � εE2

T . Un-

TABLE IV. Speed-up of tau-leaping (abridged system vs original system)
for different initial conditions or system end times, for parameter set II, ap-
plied to reaction set (3).

x1(0) 1 × 104 1 × 106 1 × 108

tend = 1 4 20 3
tend = 10 3 17 34
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TABLE V. Simulation time and speed-up of SSA and tau-leaping under different parameters and initial
conditions, applied to enzyme–substrate system (1).

SSA Tau-leaping

Parameters set Original (s) Abridged (s) Speed-up Original (s) Abridged (s) Speed-up

I 28 8 4 39 0.08 488
II 139 0.8 174 221 0.02 1105
III 695 3 232 0.03 0.02 2

der this condition, both SSA and tau-leaping should
be able to gain a substantial speed-up; and

3. c1 = 1, c2 = 1 × 1010, c3 = 1 × 108, S(0) = 1
× 1010, E(0) = 1 × 108, E S(0) = P(0) = 0,
tend = 1 × 10−12. This set corresponds to the con-
dition that c2 � c3 holds but neither Eq. (17) nor
Eq. (23) holds. The analysis suggests that only SSA
should be able to gain a substantial speed-up from
the abridgment.

The simulation time and speed-up of SSA and tau-
leaping under different parameters and initial conditions, all
with 10 000 runs, are shown in Table V. It is easy to see that
the results agree with the analysis.

C. Accuracy of the M–M abridgment

Next, we tested the accuracy of the M–M abridgment for
tau-leaping. We chose an enyzme substrate reaction set with

the following set of parameters: c1 = 1, c2 = 10, c3 = 10. Ini-
tial conditions were set to S(0) = 105, E(0) = 100, E S(0)
= P(0) = 0. The system end time was set to 10. Thus, the
validity condition for the M–M approximation (11) will be
satisfied all the time. The baseline is the histogram of prod-
uct P at the system end time of 10 000 SSA simulations
of the original enzyme substrate model. 10 000 tau-leaping
simulations were performed for both the original model and
the abridged M–M model. The comparison of the histograms
of the product P for both SSA simulation and tau-leaping
simulation of the original model is shown in Fig. 1, while
the comparison of the histograms of P for SSA simulation
and tau-leaping simulation of the abridged model is shown
in Fig. 2. The Euclidian distance and Manhattan distance in
the figures are respectively L2 norm and L1 norm of the his-
togram distance:15 suppose X and Y are two groups of sam-
ples with N samples in X and M samples in Y , and all the
sample values are bounded in the interval I = [xmin, xmax).
Let L = xmax − xmin. Divide the interval I into K subintervals

FIG. 1. The comparison of histograms of product P at the system end time of SSA simulation and tau-leaping simulation of the original model.
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FIG. 2. The comparison of histograms of product P at the system end time of SSA simulation and tau-leaping simulation of the abridged model.

Ii = [xmin + (i − 1)L/K , xmin + i L/K ). Then the histogram
distance is given by

DK (X, Y ) =
K∑

i=1

∣∣∣∣∣
∑N

j=1 χ (x j , Ii )

N
−

∑M
j=1 χ (y j , Ii )

M

∣∣∣∣∣ ,
(24)

where the characteristic function χ (x, Ii ) is defined as

χ (x, Ii ) =
{

1, if x ∈ Ii ,

0, otherwise.
(25)

The histogram distance results show that the M–M abridg-
ment is accurate and valid under this condition. Different con-

ditions are also tested and all of them show that the M–M
abridgment is valid when the validity condition (11) is satis-
fied.

D. Circadian oscillation model

Next, we consider a more complicated model: a cir-
cadian oscillation model in the Drosophila period protein
(PER).16 The scheme of the model is shown in Fig. 3. In
this model, per mRNA (M) is synthesized in the nucleus and
transfers to the cytosol at a maximum rate vs . It is also de-
graded by an enzyme there with a maximum rate Vm and

FIG. 3. Scheme of the model for circadian oscillations in PER. Six out of the ten reactions are Michaelis–Menten reactions.
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TABLE VI. Simulation time and speed-up of SSA and tau-leaping with different c2/c3 ratios,
applied to the circadian oscillation model.

SSA Tau-leaping

c2/c3 Original (s) Abridged (s) Speed-up Original (s) Abridged (s) Speed-up

0.01 1042 674 2 1271 3 424
1 1701 674 3 2103 3 701
100 78 200 674 116 83 800 3 2.8 × 104

Michaelis constant Km . The PER protein (PER0) is synthe-
sized at a rate proportional to M by a first-order rate constant
ks . The reversible phosphorylations of the PER proteins, be-
tween P0 and P1 and between P1 and P2, are governed by
a set of Michaelis–Menten reactions at maximum rates Vi ,
with Michaelis constants Ki (i = 1, 2, 3, 4). The bisphospho-
rylated form P2 is degraded by an enzyme with a maximum
rate Vd and Michaelis constant Kd , and transported into the
nucleus with a first-order rate constant k1. The nuclear bis-
phosphorylated form of PER PN is transported into the cy-
tosol with a first-order rate constant k2, while it also exerts
a negative feedback on per transcription described by a Hill
equation with repression threshold constant KI and Hill co-
efficient n. The detailed kinetic laws, parameter values, and
initial conditions can be found in Goldbeter.16

To compare the results with the original M–M model to a
comparable mass-action model, we converted this 5 species,
10 reaction model into a full 17 species, 22 reaction stochastic
model by replacing all the 6 Michaelis–Menten reactions with
enzyme–substrate reactions. The system volume was chosen
to be the characteristic size of a cell nucleus, 1000 μm3. Then
we varied the ratios of backward dissociation rates [c2 in sys-
tem (1)] to forward dissociation rates [c3 in system (1)] of the
enzyme–subsrate compounds, to see the different speed-up
behavior of the Michaelis–Menten abridgment applied to SSA
and tau-leaping. To simplify the problem, we took all of the
six ratios (corresponding to c2/c3) to be the same. The simu-
lation time and speed-up of SSA and tau-leaping with differ-
ent c2/c3 ratios, all with 1000 runs and tend = 1, is shown in
Table VI. The result shows that for this model, SSA will
gain a large speed-up from the M–M abridgment only when
c2 � c3 is satisfied, while tau-leaping can benefit substan-
tially from the M–M abridgment under a wider range of
conditions.
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APPENDIX: ANALYSIS OF SPEED-UP OF THE
ABRIDGMENT OF REACTION SET (3)

For this analysis, we assume that εx12 � 1, as this is the
situation where tau-leaping is advantageous over SSA.

For the abridged model (4), applying the τ selection strat-
egy (7), we get

τa = εx12

c1c3x12/(c1 + c2 + c3)
= ε(c1 + c2 + c3)

c1c3
. (A1)

On the other hand, the step size τ f of the original model
(3) is restricted by the minimum of

τ11 = max {εx1, 1}∣∣c1x1 − c2x2

∣∣ , (A2a)

τ12 = max {εx1, 1}2∣∣c1x1 + c2x2

∣∣ , (A2b)

τ21 = max {εx2, 1}∣∣c1x1 − (c2 + c3)x2

∣∣ , (A2c)

τ22 = max {εx2, 1}2∣∣c1x1 + (c2 + c3)x2

∣∣ . (A2d)

Since τ f varies with x1 and x2, the expectations of x1

and x2 are used to calculate the characteristic time step of the
original system. Because it is a linear system, the expectations
of x1 and x2 are the same as the results of the corresponding
ODE solutions. Let x1 and x2 denote the expectation of x1 and
x2, and x ′ = dx/dt . Then

x1
′ = −c1x1 + c2x2, (A3a)

x2
′ = c1x1 − (c2 + c3)x2. (A3b)

To evaluate the τ values in (A2), we are concerned with
the ratio r between x2 and x1:

x2 = r x1. (A4)

Substituting (A4) into (A3), we have

r ′ = −c2r2 + (c1 − c2 − c3)r + c1. (A5)

Applying the QSSA (r ′ = 0) and requiring that r > 0, we
obtain

r = (c1 − c2 − c3) +
√

(c1 − c2 − c3)2 + 4c1c2

2c2
. (A6)
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Now consider the different conditions under which the
abridgment is valid:

1. Conditions (9a) or (9b): If either of these conditions
holds, then c2 + c3 � c1, hence

r = c1 − c2 − c3

2c2

(
1 −

√
1 + 4c1c2

(c1 − c2 − c3)2

)

≈ c1

c2 + c3
� 1. (A7)

In this case,

x1 ≈ c2 + c3

c1 + c2 + c3
x12 � x2 ≈ c1

c1 + c2 + c3
x12,

(A8)
and εx1 ≈ εx12 � 1 as assumed. Thus the τ f is at
most

τ11 ≈ ε(c2 + c3)

c1c3
< τa . (A9)

Further calculation reveals that τ21 = ∞ and τ12

> τ22. Thus τ f = min {τ11, τ22}.
When εx2 ≤ 1, we have

τ22 ≈ 1

2c1x1
≈ c1 + c2 + c3

2c1(c2 + c3)x12
, (A10)

thus (recalling that εx12 � 1)

τ22

τa
≈ c3

2εx12(c2 + c3)
� 1. (A11)

In this case a significant speed up is ensured. Condi-
tion εx2 ≤ 1 is equivalent to

x12 ≤ c1 + c2 + c3

εc1
. (A12)

When εx2 > 1, we have

τ22 ≈ ε2x12c1

2(c2 + c3)(c1 + c2 + c3)
, (A13)

τ22

τa
≈ εx12c2

1c3

2(c2 + c3)(c1 + c2 + c3)2
≈ εx12c2

1c3

2(c2 + c3)3
.

(A14)

To yield a substantial speed-up in this case, the fol-
lowing condition must be satisfied:

c1 + c2 + c3

εc1
< x12 � 2(c2 + c3)3

εc2
1c3

. (A15)

As a consequence, when c2 + c3 � c1, the condition
for the abridgment to gain a significant speed up in
tau-leaping is (A12) or (A15):

x12 � 2(c2 + c3)3

εc2
1c3

. (A16)

Since c2 + c3 � c1 and ε � 1, this is actually a very
loose condition. If the end time of a simulation is
long enough, the simulation will always gain a large
speed up when there are enough S1 and S2 consumed

and the system goes into the region of condition
(A16).

2. Conditions (9c) or (9d): If either of these conditions
holds, then c1 + c2 � c3, hence

r = c1 − c2 − c3

2c2
+ c1 + c2 + c3

2c2

×
√

1 − 4c2c3

(c1 + c2 + c3)2
≈ c1

c2
. (A17)

In this case, x1 ≈ c2x12/(c1 + c2), x2 ≈ c1x12/(c1

+ c2), and the τ f is at most

τ21 ≈ ε

c3
< τa . (A18)

Further calculation reveals that τ11 = ∞. Thus τ f

= min {τ21, τ12, τ22}.
If c2 � c1, then τ21 � τa , thus τ f < τ12 � τa .
If c2 ∼ c1, then x2 ∼ x1, both εx1 � 1 and εx2 � 1
hold as assumed, thus

τ22 ∼ τ12 ≈ ε2x12c2

2c1(c1 + c2)
∼ ε2x12

4c1

= εx12c3

4(c1 + c2 + c3)
τa . (A19)

The condition to yield a substantial speed gain in this
case is

x12 � 4(c1 + c2 + c3)

εc3
; (A20)

If c2 � c1, then x2 � x1,

τ22 ≈ ε2x12

2c2 + c3
, (A21)

τ12 ≈ max

{
ε2x12c2

2c1(c1 + c2)
,

c1 + c2

2c1c2x12

}
, (A22)

whence

τ22

τa
≈ εx12c3

2c2 + c3
, (A23)

τ12

τa
≈ max

{
εx12c2c3

2c2
1

,
c3

2εx12c2

}
. (A24)

To yield a major speed-up, at least one of (A23) or
(A24) should be much less than 1, which is equiva-
lent to

⎧⎪⎪⎨
⎪⎪⎩

x12 � 2c2
1

εc2c3
, if c2 � c3 or c2 ∼ c3;

c3

2εc2
� x12 � 2c2

1

εc2c3
, if c2 � c3.

(A25)
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Consequently, when c1 + c2 � c3, the condition of a
substantial speed up in tau-leaping is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x12 � 1

ε
, if c2 � c1;

c3

2εc2
� x12 � 2c2

1

εc2c3
, if c2 � c3;

x12 � 2c2
1

εc2c3
, otherwise.

(A26)

Notice c1 + c2 � c3, this is also a very loose condi-
tion. If the end time of a simulation is long enough,
the simulation can always gain a large speed up ex-
cept for the case c2 � c3 and x12 �� c3/(2εc2).
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