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In biochemical systems, the occurrence of a rare event can be accompanied by catas-

trophic consequences. Precise characterization of these events using Monte Carlo

simulation methods is often intractable, as the number of realizations needed to wit-

ness even a single rare event can be very large. The weighted stochastic simulation

algorithm (wSSA) [J. Chem. Phys. 129, 165101 (2008)] and its subsequent exten-

sion [J. Chem. Phys. 130, 174103 (2009)] alleviate this difficulty with importance

sampling, which effectively biases the system toward the desired rare event. How-

ever, extensive computation coupled with substantial insight into a given system is

required, as there is currently no automatic approach for choosing wSSA parameters.

We present a novel modification of the wSSA—the doubly weighted SSA (dwSSA)—

that makes possible a fully automated parameter selection method. Our approach

uses the information-theoretic concept of cross entropy to identify parameter values

yielding minimum variance rare event probability estimates. We apply the method

to four examples: a pure birth process, a birth-death process, an enzymatic futile

cycle, and a yeast polarization model. Our results demonstrate that the proposed

method (1) enables probability estimation for a class of rare events that cannot be

interrogated with the wSSA, and (2) for all examples tested, reduces the number of

runs needed to achieve comparable accuracy by multiple orders of magnitude. For

a particular rare event in the yeast polarization model, our method transforms a

projected simulation time of 600 years to three hours. Furthermore, by incorpo-

rating information-theoretic principles, our approach provides a framework for the

development of more sophisticated influencing schemes that should further improve

estimation accuracy.
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I. INTRODUCTION

Nature employs a variety of mechanisms to ensure the robustness of biochemical systems.

Through principles like feedback and redundancy, many naturally occurring systems exhibit

consistent behavior in spite of changing environments1. Although biochemical systems are

inherently stochastic2, mechanisms conferring robustness often prevent highly variable be-

havior and the associated catastrophic consequences. These consequences, often manifesting

as organismal disease states, are thus inherently rare, yet their accurate characterization is

of great interest3.

A common approach for studying stochastic biochemical behavior employs Monte Carlo

methods like the stochastic simulation algorithm (SSA)4. For particularly rare events (say,

p ≤ 10−7), characterization with the SSA is not feasible, as the number of simulated realiza-

tions needed to witness even a single rare event can be very large. To address this limitation,

Kuwahara and Mura developed the weighted SSA (wSSA), which combines importance sam-

pling with the SSA to bias the system of interest toward the rare event5. Kuwahara and

Mura demonstrated that by careful selection of reaction biasing parameters, the wSSA en-

abled rare event probability estimates of equivalent accuracy to the SSA using up to ten

orders of magnitude less computation. However, the authors did not provide a systematic

approach for selecting favorable biasing parameters, and a wSSA estimate generated using

poorly chosen parameter values can be substantially less accurate than one generated with

the SSA.

Gillespie et al. recently developed an extension to the wSSA that simultaneously calcu-

lates rare event probability estimates and associated estimator variances6. This permitted

the evaluation of multiple sets of parameter values, followed by selection of the set that

confers the lowest variance. They illustrated the effectiveness of their method on small

biochemical systems (the largest example comprised six reactions), but their approach still

requires substantial system insight when determining which parameter values to test. With-

out such insight, all parameter value combinations should be tested to ensure an optimal

combination, and the computational complexity of this method grows exponentially with

the number of reactions in the system. Given these constraints, use of the wSSA for char-

acterizing rare events in real world systems is not tractable.

In this paper, we present a novel modification of the wSSA, called the doubly weighted
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SSA (dwSSA), that makes possible a principled, fully automated, and efficient method for

reaction biasing parameter selection. Our presentation is structured as follows: Sections II

and III present the modified version of the wSSA and the automated parameter selection

method, respectively. Section IV provides the detailed algorithms of our method. In Section

V we apply the dwSSA to four test models of increasing complexity. Finally, in Section VI

we summarize our contributions and motivate a promising future area of research.

II. MODIFIED WSSA FORMULATION

We begin with a brief review of the wSSA; further details can be found in Kuwahara

and Mura5 and Gillespie et al.6 We assume a well-stirred chemical system whose molecular

population state at time t is represented by the random process X(t). The system state

can be altered by the firing of M reactions, whose propensities at time t are in the set

{aj(X(t)) : j = 1, . . . ,M} with sum a0(X(t)). The “direct method” implementation of the

SSA simulates a reaction trajectory by sequentially generating the time to the next reaction

τ and the index of the next reaction j′ as exponential and categorical random variables,

respectively. We assume that each trajectory is run until some stopping time T , which is

the smaller of the time to reach the rare event and the final simulation time. Thus, the

probability of the entire system trajectory J ≡ (τ1, j
′
1, . . . , τNT , j

′
NT

) given X(0) = x0 is as

follows:

PSSA(J) =

NT∏
i=1

[
a0(X(ti))e

−a0(X(ti))τidτi ×
aj′i(X(ti))

a0(X(ti))

]

=

NT∏
i=1

[
aj′i(X(ti))e

−a0(X(ti))τidτi
]

(1)

with ti ≡
∑i

j=1 τj and NT the total number of reactions that fire in the interval [0, T ].

The wSSA as presented in Ref.5 biases the selection of reaction indices according to

predilection functions {bj(X(t)) : j = 1, . . . ,M}, given by:

bj(X(t)) ≡ γjaj(X(t)), b0(X(t)) =
M∑
j=1

bj(X(t)) (2)

where each γj is a positive constant. The probability of the same reaction trajectory J under

the wSSA is thus given by:
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PwSSA(J) =

NT∏
i=1

[
a0(X(ti))e

−a0(X(ti))τidτi ×
bj′i(X(ti))

b0(X(ti))

]
. (3)

In order to correct for the above reaction selection bias, the wSSA assigns the following

weight to each trajectory, whose product with the probability (3) equals the probability (1):

WwSSA(J) =

NT∏
i=1

aj′i(X(ti))/a0(X(ti))

bj′i(X(ti))/b0(X(ti))
. (4)

We propose a modified version of the wSSA—the “doubly weighted SSA” (dwSSA)—in

which both reaction selection and time to the next reaction are perturbed. The general

representation of an SSA importance sampling scheme that possesses these two properties

can be found in Chapter 11 of Ref.7. The advantages of the dwSSA over the wSSA are

twofold: (1) the dwSSA makes possible the characterization of rare events in some systems

that cannot be interrogated with the wSSA, and (2) the dwSSA enables an automated

method for properly choosing the predilection function parameters γ = [γ1, . . . , γM ]. We

illustrate the first advantage with an example in Section V, and we present the automated

method behind the second advantage in Section III.

The dwSSA selects reaction indices in the same way as the wSSA, but it generates the

time to the next reaction using a modified exponential distribution with mean 1/b0(X(t)).

Thus, the probability of a reaction trajectory J under the dwSSA take the form:

PdwSSA(J) =

NT∏
i=1

[
b0(X(ti))e

−b0(X(ti))τidτi ×
bj′i(X(ti))

b0(X(ti))

]

=

NT∏
i=1

[
bj′i(X(ti))e

−b0(X(ti))τidτi
]
. (5)

The correcting weight, whose product with the probability (5) equals the probability (1), is:

WdwSSA(J) =

NT∏
i=1

[
aj′i(X(ti))e

−a0(X(ti))τi

bj′i(X(ti))e−b0(X(ti))τi

]

=

NT∏
i=1

[
exp {(b0(X(ti))− a0(X(ti))) τi} × (γj′i)

−1
]
. (6)

The remaining steps of the dwSSA are identical to the wSSA and are described in algorithm

form in Section IV. We note that dwSSA trajectories, unlike wSSA trajectories, can be
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viewed as SSA trajectories of a modified system where the original rate constant of each

reaction has been multiplied by the corresponding predilection function parameter γj.

In this paper, we estimate rare event probabilities of the form p(x0, E ; t), defined as the

probability that the system starting at time 0 in state x0 will first reach any state in the set

E at some time ≤ t. The Monte Carlo estimator of this quantity using the standard SSA is:

p̂SSA(x0, E ; t) =
1

K

K∑
k=1

[
I{S(Jk)∩E}

]
, (7)

where Jk is the kth SSA trajectory simulated over the time interval [0, T ] with initial state

x0, K is the total number of trajectories, and I{S(Jk)∩E} takes a value of 1 if any of the states

visited by Jk (denoted by S(Jk)) are in E (0 otherwise). The expression in (7) is equivalent

to the number of trajectories that successfully reach the rare event divided by the total

number of trajectories.

Similarly, using the weight in (6), the Monte Carlo estimator for p(x0, E ; t) using the

dwSSA is:

p̂dwSSA(x0, E ; t) =
1

K

K∑
k=1

[
I{S(Jk)∩E}WdwSSA(Jk)

]
, (8)

where Jk now represents the kth simulated dwSSA trajectory. Equation (8) is equivalent to

the sum of the dwSSA weights for trajectories successfully reaching the rare event divided

by the total number of trajectories.

III. AUTOMATIC SELECTION OF DWSSA PARAMETER VALUES

Like the wSSA, the dwSSA requires user-defined predilection function parameters. While

the wSSA extension detailed in Ref.6 allows the user to assess the effects of estimator vari-

ance, it does not provide a priori guidance for selecting parameter values. However, the

dwSSA combined with the information-theoretic concept of cross entropy enables a fully

automated, efficient method for selecting low-variance parameter values. In the follow-

ing subsections we describe the integration of the dwSSA into the general cross-entropy

(CE) method of Rubinstein8,9. The first subsection begins by deriving an expression, “cross

entropy”, that approximates the estimator variance conferred by a given set of dwSSA pa-

rameters. Next, we identify an optimization problem whose solution is the set of parameter
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values that minimizes the cross entropy. Finally, we outline a fully automated algorithm

that solves the above problem without requiring any prior system knowledge. The second

subsection derives a closed-form solution for the optimal parameter values that requires

minimal computational expense.

A. Application of the cross-entropy method to the dwSSA

We saw in (8) that the dwSSA estimator for p(x0, E ; t) ≡ p incorporates the ratio of

trajectory probabilities WdwSSA(J) = PSSA(J)/PdwSSA(J). Assume for the moment that we

had complete freedom to weight our system such that PdwSSA(J) could take the form of

P∗dwSSA(J), defined as:

P∗dwSSA(J) =
I{S(J)∩E}PSSA(J)

p
. (9)

If we use P∗dwSSA(J) in place of PdwSSA(J) to compute WdwSSA(J), upon substitution into

(8) and some algebraic manipulation we see that p̂dwSSA(x0, E ; t) = p. Put another way,

our estimator exhibits zero variance and perfect accuracy. However, use of (9) is obviously

impractical, since even if we knew the exact value for p we would have no way of actually

producing dwSSA trajectories that satisfied (9). Instead, suppose we choose PdwSSA(J) to

minimize some measure of distance between itself and P∗dwSSA(J). Specifically, we minimize

the cross entropy D (Kullback-Leibler divergence), which is defined as:

D(P∗dwSSA,PdwSSA) ≡ EP∗

[
ln

P∗dwSSA(J)

PdwSSA(J)

]
= EP∗ [ln P∗dwSSA(J)]− EP∗ [ln PdwSSA(J)]

≈ 1

K

K∑
k=1

[ln P∗dwSSA(J∗k)]−
1

K

K∑
k=1

[ln PdwSSA(J∗k)]

≈ 1

K

K∑
k=1

[ln P∗dwSSA(J∗k)]−
1

K

K∑
k=1

[
ln PdwSSA(Jk)×

P∗dwSSA(Jk)

PSSA(Jk)

]
≡ D. (10)

Here, EP∗ is the expectation operator with respect to the (impractical) P∗dwSSA(J)-associated

system, and J∗k and Jk represent kth trajectories generated from the P∗dwSSA(J)-associated

and PSSA(J)-associated systems, respectively. The second to last line in (10) is a Monte
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Carlo approximation whose second term depicts the use of importance sampling to transform

the reference system from one with trajectory probability P∗dwSSA(J) to one with probability

PSSA(J).

Substituting (9) into (10) and denoting PdwSSA(J) more precisely as PdwSSA(J; γ), the

last two lines of (10) become:

D(γ) ≡ 1

K

K∑
k=1

[
ln
I{S(J∗k)∩E}PSSA(J∗k)

p

]
− 1

K

K∑
k=1

[
ln PdwSSA(Jk; γ)×

I{S(Jk)∩E}

p

]
, (11)

where D can be viewed as a function of the dwSSA parameters γ. Our goal is to minimize

(11) with respect to γ. This is equivalent to the simpler maximization problem:

max
γ

(
K∑
k=1

[
I{S(Jk)∩E} × ln PdwSSA(Jk; γ)

])
, (12)

since the first term in (11) does not depend on γ and p is a constant. In typical applications,

the argument in (12) is a convex function of γ (i.e. hill-shaped) and differentiable8, so we can

produce Monte Carlo estimates of the dwSSA parameter values that confer minimum cross

entropy (γ̂∗) by taking partial derivatives with respect to each γj and setting the resulting

expressions to 0:

K∑
k=1

[
I{S(Jk)∩E} ×∇

γ
ln PdwSSA(Jk; γ̂∗)

]
= 0 . (13)

The form of PdwSSA(J; γ) given in (5) enables an analytical solution to (13) (details below).

This is in contrast to the wSSA trajectory probability (3) which, when substituted into

(13), would require a much more expensive numerical solution. The latter follows from

the observation that the factor
∏NT

i=1 [1/b0(X(ti))] in (3) does not cancel like it does in (5);

consequently, upon taking the logarithm and differentiating (13), we cannot compute a

closed form solution for γ̂∗. In general, distributions belonging to a natural exponential

family (such as the dwSSA trajectory distribution (5)) lead to closed form expressions for

cross-entropy parameter estimates8. In this case, the analytical solution to (13) provided

by the dwSSA results in a computationally efficient, principled method for selecting low-

variance parameter values.

In principle, we can solve (13) for γ̂∗ by simulating K unweighted system trajectories

with the SSA. However, a practical difficulty arises: since we are trying to estimate the
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probability of a rare event, the vast majority of the I{S(Jk)∩E} will be zero. Fortunately, an

extension of the CE method circumvents this difficulty. Just as the dwSSA uses importance

sampling (IS) to bias system trajectories toward a rare event of interest, a multilevel version

of the CE method invokes IS (here, in the form of the dwSSA) to bias trajectories for the

optimization problem in (12) toward the rare event8. Given some reference parameter vector

γ(0), which we assume biases the system towards the rare event, we can rewrite (12) as the

asymptotically (K →∞) equivalent:

max
γ

(
K∑
k=1

[
I{S(J

(0)
k )∩E} ×WdwSSA(J

(0)
k ; γ(0))× ln PdwSSA(J

(0)
k ; γ)

])
(14)

where J
(0)
k is the kth trajectory generated using the dwSSA parameterized with γ(0), and

WdwSSA(J) in (6) is written more precisely as a function of γ(0). Similarly, (13) can be

rewritten as the asymptotically equivalent:

K∑
k=1

[
I{S(J

(0)
k )∩E} ×WdwSSA(J

(0)
k ; γ(0))×∇

γ
ln PdwSSA(J

(0)
k ; γ̂∗)

]
= 0. (15)

The challenge now becomes how to choose γ(0) correctly. The multilevel CE method obviates

this difficulty by defining a series of intermediate “less rare” events and sequentially biasing

the system towards these events until the final rare event is reached.

We begin by simulating K trajectories of the system in the interval [0, T ] using the

dwSSA with all parameters set to 1 (≡ SSA). We record the top dρKe trajectories (where

ρ is typically ∼ 10−2) that evolve farthest in the direction of the set E , and we label those

states reached by the dρKe recorded trajectories that are closest to E (one per trajectory)

as E0. The set E0 represents a “less rare” event (since p̂dwSSA(x0, E0; t) ≥ ρ) which can

be used to generate an intermediate set of dwSSA parameters that bias the system in the

direction of the original rare event. Specifically, if we replace E in (13) with E0, we can solve

for the corresponding optimal dwSSA parameters γ̂(0) (details presented in the following

subsection). Since at least dρKe trajectories will have reached E0 during the course of the

simulation, this solution should be relatively robust.

If we then simulate K trajectories (J
(0)
1 , . . . ,J

(0)
K ) of the system using the dwSSA param-

eterized with γ̂(0), we can define a set of states E1 that is analogous to E0 but closer to E .

We then solve a version of (15) where γ(0) has been replaced with γ̂(0), and E and γ̂∗ have

been replaced with E1 and γ̂(1), respectively. As a result, we will have identified a second
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set of intermediate dwSSA parameters γ̂(1) that bias the system farther in the direction of

the original rare event.

The above procedure can then be repeated n times, until the intermediate set of states

En is contained in E . At this point, we can substitute the last set of generated trajectories

(J
(n−1)
1 , . . . ,J

(n−1)
K ) and corresponding parameter estimates γ̂(n−1) into an otherwise unal-

tered version of (15) to solve for γ̂∗. In so doing, we will have computed a robust estimate of

the optimal dwSSA parameters through a series of intermediate steps which gradually bias

the system toward the original rare event. We provide a detailed algorithmic description of

the above method in Section IV below.

B. Closed-form solution for low-variance dwSSA parameter values

We now present a derivation of the analytical solution to (15) (and hence (13)). Upon

substituting (5) into (15) and suppressing detail in the first two factors inside the summation,

we obtain:

0 =
K∑
k=1

Ik ×Wk ×∇
γ

ln

NTk∏
i=1

[
bj′ki

(Xk(tki))e
−b0(Xk(tki))τkidτ

]
=

K∑
k=1

Ik ×Wk ×∇
γ

ln

NTk∏
i=1

[
ˆγ∗j′ki
aj′ki

(Xk(tki)) exp

{
−τki

M∑
j=1

[γ̂∗j aj(Xk(tki))]

}
dτ

](16)

Upon taking the logarithm, collecting terms not depending on γ̂∗ in Cki, and simplifying,

we get:

0 =
K∑
k=1

Ik ×Wk ×∇
γ

NTk∑
i=1

[
ln( ˆγ∗j′ki

)− τki
M∑
j=1

[γ̂∗j aj(Xk(tki))] + Cki

]
=

K∑
k=1

Ik ×Wk ×∇
γ

 M∑
j=1

[
nkj ln(γ̂∗j )

]
−

NTk∑
i=1

[
τki

M∑
j=1

[γ̂∗j aj(Xk(tki))] + Cki

]
=

K∑
k=1

Ik ×Wk ×∇
γ

(
M∑
j=1

[
nkj ln(γ̂∗j )

])
− I ×W ×∇

γ

NTk∑
i=1

[
τki

M∑
j=1

[γ̂∗j aj(Xk(tki))]

]
(17)
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where nkj is the total number of times reaction j fires in the kth trajectory. After differen-

tiation, we obtain a scalar version of (17) for each reaction j:

0 =
K∑
k=1

Ik ×Wk ×
nkj

γ̂∗j
− I ×W ×

NTk∑
i=1

[aj(Xk(tki))τki]

 , (18)

which leads to the following detailed closed-form expression for each reaction’s optimal

parameter estimate:

γ̂
(n)
j =

∑′

k

(
WdwSSA(J

(n−1)
k ; γ̂(n−1))× nkj

)
∑′

k

(
WdwSSA(J

(n−1)
k ; γ̂(n−1))×

∑NTk
i=1

[
aj(X

(n−1)
k (tki))τki

]) . (19)

For clarity, rare event indicators I{·} in (19) have been replaced by summations
∑′

k, where k

iterates only over trajectories reaching the rare event. We note that (19) represents one of M

uncoupled equations from the final step of the multilevel algorithm discussed above, where

γ̂(n) ≡ γ̂∗. In practice, we solve each of these equations at each step of the CE method until

the final parameter estimates are obtained; in this way, each step’s computation of estimates

relies upon the previous step’s values. For an intuitive explanation of why (19) works, we

note that the numerator represents a weighted sum of the total number of times reaction

j fires across the successful trajectories, while the denominator is a weighted sum of the

expected total number of times reaction j will fire across those same trajectories. Reactions

that are needed to fire more often than their average behavior to reach the rare event will

thus acquire a γ̂∗j greater than 1, while reactions needed to fire less often than average will

acquire a γ̂∗j less than 1.

IV. ALGORITHMS

Algorithm 1 (modeled after the wSSA in Ref.6) implements the dwSSA, which modifies

Kuwahara and Mura’s wSSA by using b0(X(t)) to generate both reaction indices and times

to the next reaction. It returns an estimate of the rare event probability p(x0, E ; t) for a

given set of dwSSA parameters γ.

Algorithm 1. The dwSSA.

1: mK ← 0

11



2: for k = 1 to K do

3: t← 0, x← x0, w ← 1

4: evaluate all aj(x) and bj(x); calculate a0(x) and b0(x)

5: while t ≤ tf do

6: if x ∈ E then

7: mK ← mK + w

8: break out of the while loop

9: end if

10: generate two unit-interval uniform random numbers r1 and r2

11: τ ← b0
−1(x) ln(1/r1)

12: j ← smallest integer satisfying
∑j

i=1 bi(x) ≥ r2b0(x)

13: w ← w × (γj)
−1 × exp{(b0(x)− a0(x))τ}

14: t← t+ τ , x← x + νj

15: update all aj(x) and bj(x); recalculate a0(x) and b0(x)

16: end while

17: end for

18: return p̂dwSSA(x0, E ; t) = mK/K

In the above, νj and tf represent the state change vector for reaction j and the simulation

end time, respectively. The computational complexity of Algorithm 1 is identical to that of

the wSSA with given biasing parameters.

Algorithm 2 implements the multilevel cross-entropy method for optimal dwSSA param-

eter estimation. It returns the vector of optimal parameter estimates γ̂∗.

Algorithm 2. Optimal dwSSA parameter estimation by multilevel cross-entropy method.

1: γ ← [1 1 · · · 1], i← −1

2: repeat

3: i← i+ 1

4: run Algorithm 1; mark the dρKe trajectories evolving farthest in the direction of E

5: Ei ← at most dρKe states closest to E reached by the marked trajectories (one per

trajectory)

12



6: γ ← result of (19) evaluated using Ei and trajectories from step 4

7: until Ei ⊆ E

8: return γ̂∗ = γ

As written, the computational complexity of Algorithm 2 is roughly n × the complexity

of the dwSSA, where n is the number of iterations needed for En ⊆ E . However, when taken

together, steps 4-6 of Algorithm 2 require the storage of K independent dwSSA trajectories.

For large K (≥ 107), this requirement becomes prohibitive. To circumvent this difficulty,

we typically run step 4 twice for all but the final iteration of the loop—once to identify

Ei in step 5, and a second time immediately afterwards (using the same random number

seed as for the first) to compute the current optimal parameter estimates γ. Using this

modified approach, we only have to store the dρKe states closest to E that are reached by

the marked trajectories. The practical complexity of Algorithm 2 is thus roughly (2n−1) ×

the complexity of the dwSSA.

Overall, the computation of a rare event probability estimate p̂dwSSA(x0, E ; t) requires one

run of Algorithm 2 to produce γ̂∗ followed by one run of Algorithm 1 using those parameters

as input. This leads to a total complexity of 2n × the complexity of the dwSSA. As we

discuss in Section V, all the examples we tested required n ≤ 4. We note that in practice,

the number K of realizations used in Algorithm 2 is several orders of magnitude smaller

than what is typically used in the final run of Algorithm 1. Consequently, the time required

to estimate parameters using the multilevel cross-entropy method is a small fraction of the

total simulation time.

V. EXAMPLES

We now illustrate dwSSA performance on the following four examples: a pure birth pro-

cess, a birth-death process, an enzymatic futile cycle, and a yeast polarization model. We

estimate rare event probabilities for each example by first running four independent real-

izations of Algorithm 2 with K = 105. We compute the mean of the resulting parameter

estimates to arrive at a consensus γ̂∗. We then run four independent realizations of Algo-

rithm 1 with varying K, yielding distributions of estimates for the rare event probability.

Finally, using four independent ensembles of K = 107 trajectories each (4 × 107 total in-

dependent simulations), we compute the mean probability estimate as well as the estimate
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uncertainty (using methods described in Gillespie et al.6) to produce a 68% confidence in-

terval. When possible, we also analyze the examples using the wSSA parameterized with

the optimal values given in Ref.6 to compare the accuracy of the two methods.

A. Pure birth process

The only algorithmic difference between the original wSSA and the dwSSA is that the

latter biases the time to the next reaction τ as well as reaction selection (see (5) and (6)).

If the probability of an event is small because its occurrence requires certain reactions to

fire considerably more/less than their average number of firings, an importance sampling

approach that biases reaction selection but not τ (i.e. the wSSA) may not be sufficient.

Although the wSSA indirectly influences times to the next reaction through altered reaction

selection, the direct biasing of τ (i.e. using the dwSSA) can increase/decrease the average

number of reactions fired during a simulation to a much greater degree. The simplest

example illustrating this point is a pure birth process (homogeneous Poisson process): a

single reaction model where only the time to the next reaction can be weighted (
aj/a0

bj/b0
= 1

since a0 = aj and b0 = bj). The model is specified as follows:

∅ k→ S, k = 0.7

with x0 = [0]. For this and the following examples, we simplify our definition of a rare

event by limiting the states of interest E to those governed by only a single species S.

Specifically, we define a threshold species count θS above/below which the event occurs,

rewriting p(x0, E ; t) as p(x0, θ
S; t). For the pure birth process, we compute estimates of

p([0], 75; 50)—the probability that the population of S reaches 75 before time 50. The mean

population of S at t = 50 is 35, which is equivalent to an average of 35 reactions occurring

during a single simulation. Thus, to reach the rare event the system must produce more

than twice the average number of S molecules.

Table I summarizes the results of running Algorithm 2 with ρ = 0.01 on the pure birth

process. We see that the algorithm has converged to the original rare event threshold by

n = 3 steps, yielding an optimal parameter estimate γ̂∗ = [2.194]. We substituted this value

into Algorithm 1 and ran it independently four times each for K ∈ {104, 105, 106, 107, 108};

Figure 1 displays the results. Using the properties of the homogeneous Poisson process, we
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computed the exact value of p([0], 75; 50) (= 2.981× 10−9), which we display as a green line

in Figure 1. While the dwSSA estimates quickly converge to the true probability, we did not

observe a single rare event occurrence from wSSA simulations of equivalent K. Because the

wSSA is identical to the SSA applied to a one reaction system, both the SSA and the wSSA

are inefficient in simulating the above system. Finally, we computed the mean probability

estimate and uncertainty for the dwSSA with four independent runs of K = 107, yielding

an estimate that is identical to the exact probability:

p̂dwSSA([0], 75; 50) = 2.9808× 10−9 ± 0.0011× 10−9. (20)

Using the formula described in Ref.6, we would expect an SSA (equivalently, a wSSA)

estimate of similar accuracy to (20) to require over 1015 trajectories, which corresponds to

a dwSSA computational gain of >107.

Although the pure birth process is a somewhat extreme illustration of the advantage of

the dwSSA over the wSSA, we note that the same advantage will exist for more complex

models in which the average number of reactions occurring by time t is far larger/smaller

than the number needed to reach the rare event.

B. Birth-death process

Our second example is a birth-death process. This system consists of two reactions and

thus requires the estimation of two biasing parameters. The model description is as follows:

∅ k1→ S, k1 = 1

S
k2→ ∅, k2 = 0.025

with x0 = [40]. We note that this model is identical to the single species production-

degradation model in Refs.5 and6, with the unchanging S1 removed for simplicity. In the

above description, the kinetic constants and initial conditions are set such that the sys-

tem is in stochastic equilibrium. The rare event probability we examine is p(x0, θ
S; t) ≡

p([40], 80; 100). In Gillespie et al.6, the authors estimated the optimal parameters for the

wSSA as γ̂∗wSSA = [1.30 0.769], where the second parameter is simply the reciprocal of the

first. By adopting this reciprocal constraint originally introduced by Kuwahara and Mura5,
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Gillespie et al. reduced the parameter space to a single parameter; nevertheless, their se-

lection algorithm required a minimum of seven parameter evaluations, each consisting of

4 × 107 runs of the wSSA (2.8 × 108 runs total). Were the parameter space not reduced,

>1016 runs would have been required to estimate optimal parameters. In contrast, our mul-

tilevel cross-entropy approach coupled with the dwSSA did not require a parameter space

reduction, and we recovered optimal parameter estimates in 4× (2n− 1)× 105 = 1.2× 106

runs of the dwSSA (n = 2 steps in this example). Table II summarizes the results of running

Algorithm 2 with ρ = 0.01, which we averaged to obtain γ̂∗ = [1.454 0.686].

The wSSA and dwSSA optimal parameter estimates for the birth-death process are not

identical. The discrepancy is due to the added τ weighting employed by the dwSSA; however,

we note that the reciprocal relationship of the two parameters is roughly preserved. To test

the sensitivity of Algorithm 2 to the proportion of trajectories required to cross the rare

event threshold, we ran an additional four independent realizations with ρ = 0.1. The

results were very similar (γ̂∗ = [1.452 0.692]), suggesting that the cross-entropy approach is

not particularly sensitive to ρ.

Figure 2 displays the results of running four independent realizations of both the wSSA

and dwSSA on the birth-death process with varying K. Both methods’ estimates for

p([40], 80; 100) converge to the true probability (= 2.986× 10−7), obtained using the system

generator matrix (details in Ref.5) as the simulation ensemble size increases. We computed

the mean probability estimate and uncertainty for the dwSSA with four independent en-

sembles of K = 107, yielding:

p̂dwSSA([40], 80; 100) = 2.971× 10−7 ± 0.007× 10−7. (21)

Our multilevel cross-entropy approach to estimating optimal dwSSA parameters relies on

a close correspondence between cross entropy and estimator variance. To evaluate this corre-

spondence, we performed a sensitivity analysis of dwSSA estimator variance with respect to

γ; Figure 3 displays the results. Across the range of parameter values tested (we simulated

K = 108 dwSSA trajectories for each parameter combination), the variance ranged from

1.06× 10−11 (enclosed by the red rectangle) to 5.34× 10−7. The optimal parameter combi-

nation returned by Algorithm 2 achieved a variance of 3.32 × 10−11 (enclosed by the green

rectangle). The similarity of the minimum variance overall and the variance associated

with Algorithm 2 suggests that the assumption made by the cross-entropy method—i.e.,
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that minimum cross entropy closely approximates minimum variance—is justified. Thus,

we expect optimal parameter estimates derived from our proposed method to be those that

effectively minimize estimator variance.

C. Enzymatic futile cycle

Next we consider an enzymatic futile cycle, which appeared in Kuwahara and Mura5 and

was later revisited by Gillespie et al.6 The system is characterized by the following set of six

reactions:

R1 : S1 + S2
k1→ S3 k1 = 1

R2 : S3
k2→ S1 + S2 k2 = 1

R3 : S3
k3→ S1 + S5 k3 = 0.1

R4 : S4 + S5
k4→ S6 k4 = 1

R5 : S6
k5→ S4 + S5 k5 = 1

R6 : S6
k6→ S4 + S2 k6 = 0.1

with x0 =[1 50 0 1 50 0].

This mechanism was described by Samoilov et al. and is widely used in such diverse

regulatory processes as membrane transport and GTPase cycles10. As with the birth-death

process, the above model is in stochastic equilibrium. The rare event probability of interest

is p(x0, θ
S5 ; t) ≡ p([1 50 0 1 50 0], 25; 100). Gillespie et al.6 estimated the optimal wSSA

parameters as γ̂∗wSSA = [1 1 0.35 1 1 2.857], where the sixth parameter is the reciprocal of

the third and the remaining parameters are fixed at 1. These constraints were introduced by

Kuwahara and Mura5, and like the birth-death process, they reduce the effective parameter

space to a single parameter. In light of this reduction, Gillespie et al.’s parameter selection

algorithm required a minimum of seven parameter evaluations, each consisting of 4 × 105

wSSA runs (2.8 × 106 total). However, the above parameter space simplification requires

considerable insight into the behavior of the enzymatic futile cycle. Specifically, we note

that the obvious choice of reactions to perturb via the wSSA would be R3, R4, and R5,

since they directly modify the population of S5. In contrast, Kuwahara and Mura (and
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Gillespie et al.) chose to perturb only R3 and R6. Results from numerical experiments

we have conducted suggest that perturbing any reactions other than R3 and R6 returns a

rare event probability estimate with considerably lower accuracy (not shown). Without this

insight, a näıve application of Gillespie et al.’s parameter selection algorithm would have

required >1038 runs.

In contrast, our approach required no prior insight and we recovered optimal param-

eter estimates in 1.2 × 106 runs of the dwSSA (n = 2 steps). Table III summarizes

the results of running Algorithm 2 with ρ = 0.01, which we averaged to obtain γ̂∗ =

[1.000 1.003 0.320 1.003 0.993 3.008]. We note that the third parameter of γ̂∗ is approxi-

mately the reciprocal of the sixth parameter and the remaining parameters are very close to

1. Thus, our multilevel cross-entropy approach recovered the optimal parameter constraints

automatically.

Figure 4 displays the results of four independent runs of the wSSA and dwSSA (using

their respective optimal parameter estimates) on the futile cycle with varying K. Both

methods converge to the true probability (= 1.738 × 10−7), obtained using the system

generator matrix5. Computation of the mean probability estimate and uncertainty for the

dwSSA with four independent ensembles of K = 107 gave a result that is identical to the

true probability:

p̂dwSSA([1 50 0 1 50 0], 25; 100) = 1.7381× 10−7 ± 0.0004× 10−7. (22)

D. Yeast polarization

For our final example, we modified a model of the pheromone-induced G-protein cycle in

Saccharomyces cerevisiae so that it does not start in nor reach stochastic equilibrium within

a 20s simulation time. The original model is described in Drawert et al.11 Our modified

system consists of seven species x = [R L RL G Ga Gbg Gd] and is characterized by the

following eight reactions:
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R1 : ∅ k1→ R k1 = 0.0038

R2 : R
k2→ ∅ k2 = 4.00× 10−4

R3 : L+R
k3→ RL+ L k3 = 0.042

R4 : RL
k4→ R k4 = 0.010

R5 : RL+G
k5→ Ga +Gbg k5 = 0.011

R6 : Ga
k6→ Gd k6 = 0.100

R7 : Gd +Gbg
k7→ G k7 = 1.05× 103

R8 : ∅ k8→ RL k8 = 3.21

with x0 = [50 2 0 50 0 0 0]. We examine the event probability p(x0, θ
Gbg ; t) ≡ p([50 2 0 50 0 0 0], 50; 20).

This event has not been previously characterized, so we began by simulating the system

with the unweighted SSA. Using four ensembles of K = 107, we computed the mean event

probability estimate p̂SSA = 1.125 × 10−6. The event in question is not exceptionally rare;

however, the mean uncertainty associated with the estimate leads to a large 68% confidence

interval ([0.9573, 1.293]×10−6) and illustrates the high intrinsic stochasticity of the system.

To reduce the uncertainty of the estimate, we ran four independent realizations of Algorithm

2 (K = 105) with ρ = 0.01. These runs were exceedingly slow to converge (n > 10) due

to the high system stochasticity. To speed up convergence, we re-ran Algorithm 2 using

ρ = 0.005. Table IV displays the results, in which all runs converged with n = 3.

In contrast to the previous three examples, several of the optimal parameter estimates

showed high variability across the independent realizations (see γ̂∗1 , γ̂
∗
2 , γ̂

∗
4). To better char-

acterize this variability, we ran an additional 100 independent realizations of Algorithm 2.

Figure 5 shows the results, in which we see that γ̂∗1 and γ̂∗2 display extremely high variability,

ranging from values near 0 to > 4. The remaining six parameters exhibit relatively consis-

tent estimates, with {γ̂∗3 , γ̂∗5 , γ̂∗8} each >1, γ̂∗6 <1, and {γ̂∗4 , γ̂∗7} ∼ 1. It is worth noting that

the two parameters whose values are consistently farthest from 1 (γ6 and γ8) correspond to

two reactions which do not directly influence the species in the rare event description (Gbg).

Thus, our method discovers a weighting strategy that is not obvious, but is nonetheless

critical for delivering a low variance probability estimate.
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We hypothesize that the reason for the high variability of the first two parameter estimates

is the lack of sensitivity of p̂dwSSA to their values. If true, this hypothesis suggests that we

could assign any combination of values within [0, 4] to γ1 and γ2 with little effect on the

resulting probability estimate. We performed this experiment by simulating the dwSSA

(K = 107) four times each for 16 total combinations of values for the two parameters.

We also performed an identical experiment perturbing γ6 and γ8, whose original parameter

estimates were very consistent. Figure 6 displays the results. As expected, perturbing γ1

and γ2 had almost no effect on the value of p̂dwSSA, whereas any perturbation of γ6 and

γ8 away from their optimal estimates consistently had a negative effect on the precision of

p̂dwSSA. These observations suggest that our multilevel cross-entropy approach coupled with

the dwSSA can identify optimal parameter estimates and simultaneously provide insight

into the sensitivity of the rare event probability estimate to each parameter.

Using the optimal parameter estimates from Table IV, we computed the mean for each

parameter to obtain γ̂∗ = [0.839 1.120 1.099 1.238 1.111 0.646 1.010 1.211]. We used

these estimates to run four independent realizations of the dwSSA for varying K, yielding

the results shown in Figure 7. As before, the values of p̂dwSSA converge with increasing

K, although we do not have an analytical form for the exact probability in this example.

Figure 7 does not display results from the wSSA, as the method outlined by Gillespie et

al.6 would certainly be intractable without prior system insight for an eight reaction model.

Finally, we computed the mean probability estimate and uncertainty for the dwSSA with

four independent ensembles of K = 107, yielding:

p̂dwSSA([50 2 0 50 0 0 0], 50; 20) = 1.13× 10−6 ± 0.03× 10−6. (23)

We note that the uncertainty associated with the dwSSA estimate (23) is over five times

smaller than the uncertainty of the original SSA estimate. Using the formula described

in Ref.6, we would expect an SSA estimate of similar accuracy to (23) to require over 109

trajectories, which corresponds to a dwSSA computational gain of >25. In terms of running

time, on a desktop computer with a single 3 GHz processor, use of the dwSSA reduces an

SSA run of ∼14 days to ∼13 hours.

To apply our method to a rare event probability whose estimation is substantially be-

yond the capabilities of the SSA or wSSA, we modified the original problem as follows:

p(x0, θ
Gbg ; t) ≡ p([50 2 0 50 0 0 0], 40; 5). As before, we ran four independent realizations
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of Algorithm 2 (K = 105) with ρ = 0.01. Table V displays the results, where all runs

converged with n = 4. Using these optimal parameter estimates, we computed the mean

for each parameter to obtain γ̂∗ = [0.771 1.705 1.722 0.562 1.682 0.247 0.975 2.066]. When

compared to the original optimal parameter estimates, aside from parameters whose optimal

values tightly spanned 1 (γ4 and γ7), the optimal parameter values for the modified system

exhibit deviations from 1 that are identical in direction but larger in magnitude. As we were

attempting to use our multilevel cross-entropy approach to estimate a smaller rare event

probability (i.e. one whose estimation would require greater system biasing), this trend was

expected.

We used the above mean optimal parameter estimates to run four independent dwSSA

realizations for varying K, yielding the results shown in Figure 8. Again, the values of

p̂dwSSA converge with increasing K. Upon computing the mean probability and uncertainty

for the dwSSA with four independent ensembles of K = 107, we obtain:

p̂dwSSA([50 2 0 50 0 0 0], 40; 5) = 1.11× 10−11 ± 0.04× 10−11. (24)

Although use of the SSA to analyze such a rare event is infeasible, we can use the same

technique as above to calculate the computational gain conferred by using the cross-entropy

approach coupled with the dwSSA. The result suggests that an SSA estimate of similar accu-

racy to (24) would require over 1013 trajectories, corresponding to a dwSSA computational

gain of >1.7× 106. For this modified example, use of the dwSSA reduces a projected SSA

run time of ∼600 years to ∼3 hours.

VI. CONCLUSIONS

This paper describes two main research contributions. First, it presents a novel mod-

ification of the wSSA—the dwSSA—that weights both reaction selection and time to the

next reaction. Second, it shows how an information-theoretic technique, the cross-entropy

method, can be used together with the dwSSA to provide an automated mechanism for

learning low variance reaction biasing parameters. Importantly, the mathematical proper-

ties of the dwSSA combined with the cross-entropy method enable an analytical form for

optimal parameter estimates which would not be possible with the wSSA. This attribute

of the dwSSA attaches substantial value to its novelty, as the practical power of the cross-
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entropy method is wholly unavailable to users of the wSSA. The multilevel cross-entropy

method requires a single user-defined parameter, ρ, which determines the proportion of tra-

jectories in which the rare event must occur before computing parameter estimates. We

have found that results are not very sensitive to the choice of ρ, and in some cases a smaller

value for ρ can accelerate convergence of the algorithm.

To demonstrate the performance of our method, we tested it on four different biochem-

ical systems ranging in size from one to eight reactions. In each example, the multilevel

cross-entropy method coupled with the dwSSA provided optimal parameter estimates at a

fraction of the simulation cost required by the wSSA. These parameter estimates, when used

in the dwSSA, delivered rare event probability estimates of equivalent accuracy to existing

methods. Each example tested provided unique insight into the properties of our proposed

method. Results from the pure birth process illustrated the usefulness of the dwSSA on

a class of rare events in which the number of reaction firings needed to satisfy the rare

event deviate considerably from the average. For this class of problems, the wSSA is to-

tally ineffective, as it is effectively identical to the SSA. Analysis of the birth-death process

demonstrated that parameter estimates minimizing cross entropy closely correspond to pa-

rameters that minimize estimator variance. Previous results using the wSSA to study the

enzymatic futile cycle showed that considerable insight was required to properly choose bi-

asing parameters. In contrast, the multilevel cross-entropy method coupled with the dwSSA

automatically selects low variance parameters that preserve constraints present in wSSA

optimal parameters. Finally, successful characterization of the yeast polarization example

demonstrated the utility of our method applied to a realistic biochemical system, where

the try-and-test procedure required by the wSSA6 would be computationally infeasible. In

addition, results from this example illustrated how the cross-entropy method can provide

insight into the sensitivity of the rare event probability estimate to each biasing parameter.

As researchers continue to model larger and more comprehensive systems, methods re-

quiring exhaustive parameter searches to estimate rare event probabilities quickly become

inadequate. Given that the wSSA is the current state of the art for importance sampling with

the SSA, this represents a major limitation. In response to this limitation, the contributions

made in this work provide an automated approach whose complexity scales linearly with

system size, enabling efficient estimation of rare event probabilities for large systems that

could not previously be interrogated. Furthermore, by incorporating information-theoretic
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principles, our approach provides a framework for the development of more sophisticated

influencing schemes that should further improve estimation accuracy. Future work will focus

on this task.
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TABLE I. Results of the multilevel cross-entropy algorithm applied to the pure birth process. The

first column denotes the iteration number, the second column labels which of four independent

realizations are displayed, the third column specifies the intermediate rare event threshold, and the

fourth column presents the intermediate optimal parameter estimate. By the third step, at least

dρKe of the dwSSA simulated trajectories have reached the original rare event threshold.

Step (i) Trial No. θSi
ˆγ(i)

1

1 49 [1.480]

2 49 [1.483]

3 49 [1.484]

4 49 [1.482]

2

1 69 [2.029]

2 69 [2.026]

3 69 [2.028]

4 69 [2.025]

3

1 75 [2.194]

2 75 [2.194]

3 75 [2.194]

4 75 [2.194]
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FIG. 1. Convergence plot of rare event probability estimate (p̂) vs simulation ensemble size (K)

for the pure birth process. Each boxplot displays (moving outwardly) the mean, ±1 standard

deviation, and minimum and maximum of four independent dwSSA ensembles for a given K. We

parameterized the dwSSA with γ̂∗ = [2.194], determined by calculating the mean of four indepen-

dent realizations of Algorithm 2 (K = 105). The horizontal green line indicates the analytically

determined rare event probability (p). As K increases, the dwSSA estimates converge to the true

probability. Results for the wSSA are not shown, as it is algorithmically identical to the unweighted

SSA for this model and does not result in the observation of any rare event occurrences.
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TABLE II. Results of the multilevel cross-entropy algorithm applied to the birth-death process.

The column identities match those of Table I. In this example, only two steps were required for

dρKe of the dwSSA trajectories to reach the original rare event threshold.

Step (i) Trial No. θSi
ˆγ(i)

1

1 61 [1.255 0.805]

2 61 [1.260 0.800]

3 61 [1.256 0.800]

4 61 [1.252 0.801]

2

1 80 [1.452 0.693]

2 80 [1.458 0.685]

3 80 [1.452 0.685]

4 80 [1.454 0.679]

TABLE III. Results of the multilevel cross-entropy algorithm applied to the futile cycle model.

The column identities match those of Tables I-II. In this example, two steps were required for

dρKe of the dwSSA trajectories to reach the original rare event threshold.

Step (i) Trial No. θS5
i

ˆγ(i)

1

1 38 [0.999 1.000 0.492 0.996 0.999 1.914]

2 38 [0.998 1.000 0.502 0.995 0.995 1.932]

3 38 [0.997 1.001 0.487 1.001 1.001 1.920]

4 38 [1.001 0.994 0.505 1.007 1.000 1.930]

2

1 25 [0.998 1.001 0.321 1.004 0.995 3.007]

2 25 [1.003 1.004 0.321 1.004 0.993 3.004]

3 25 [0.997 1.002 0.320 1.005 0.992 3.012]

4 25 [1.001 1.005 0.317 1.002 0.994 3.009]
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FIG. 2. Convergence plot of rare event probability estimate (p̂) vs simulation ensemble size (K)

for the birth-death process. Boxplots are constructed as in Figure 1, summarizing results of four

independent wSSA or dwSSA simulation ensembles for each value of K. We parameterized the

dwSSA with the mean of four realizations of Algorithm 2, yielding γ̂∗ = [1.454 0.686]. The wSSA

was parameterized with the optimal values discovered in Ref.6: γ̂∗wSSA = [1.30 0.769]. As before,

the green line denotes the exact rare event probability. With increasing K, both the wSSA and

dwSSA estimates converge to the true probability.
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FIG. 3. Sensitivity of rare event probability estimator variance to dwSSA parameter values γ1 and

γ2 for the birth-death process. Each rectangle displays the dwSSA estimator variance when run

with K = 108 using the corresponding values of γ1 and γ2. Pseudocolor represents variance mag-

nitude, with dark red denoting the highest variance and dark blue the lowest (best performance).

Parameter combinations conferring variance ≥ 7× 10−10 were colored with the darkest red shade;

the maximum observed was 5.34× 10−7. Variance of the unweighted system (≡ SSA) is depicted

by the yellow rectangle. The green rectangle outline depicts the optimal parameter combination

identified using Algorithm 2, while the red rectangle outline corresponds to the minimum vari-

ance observed for all combinations tested. The discrepancy between the two is likely due to the

imperfect correspondence between minimum variance and minimum cross entropy.
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FIG. 4. Convergence plot of rare event probability estimate (p̂) vs simulation ensemble size

(K) for the futile cycle model. Boxplots are constructed as in Figures 1 and 2, summarizing

results of four independent wSSA or dwSSA simulation ensembles for each value of K. As be-

fore, we parameterized the dwSSA with the mean of four realizations of Algorithm 2, yielding

γ = [1.000 1.003 0.320 1.003 0.993 3.008]. The wSSA was parameterized with the optimal values

discovered in Ref.6: γ = [1 1 0.350 1 1 2.857]. The green line denotes the exact rare event proba-

bility. With increasing K, both the wSSA and dwSSA estimates converge to the true probability.

30



TABLE IV. Results of the multilevel cross-entropy algorithm applied to the yeast polarization

model. The column identities match those of Tables I-III. In this example, three steps were

required for dρKe of the dwSSA trajectories to reach the original rare event threshold.

Step (i) Trial No. θ
Gbg

i
ˆγ(i)

1

1 45 [1.223 0.872 1.066 0.924 1.057 0.764 1.007 1.182]

2 45 [1.218 0.988 1.060 0.917 1.064 0.760 0.998 1.188]

3 45 [1.069 0.900 1.056 0.906 1.064 0.756 0.998 1.179]

4 45 [0.923 0.963 1.077 0.917 1.064 0.755 1.005 1.178]

2

1 49 [0.954 0.533 1.071 0.933 1.099 0.660 1.010 1.272]

2 49 [1.372 0.865 1.090 0.943 1.128 0.671 0.977 1.258]

3 49 [1.600 0.824 1.065 0.817 1.093 0.671 1.012 1.250]

4 49 [0.783 0.754 1.091 0.944 1.114 0.650 1.002 1.234]

3

1 50 [0.444 0.225 1.073 2.101 1.115 0.657 1.000 1.069]

2 50 [0.583 0.875 1.069 0.950 1.132 0.629 1.043 1.286]

3 50 [0.378 0.342 1.065 0.909 1.070 0.623 0.933 1.280]

4 50 [1.951 3.037 1.191 0.991 1.128 0.675 1.065 1.207]
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FIG. 5. Variability of optimal parameter estimates for the yeast polarization model. Boxplots

summarize parameter estimates for the eight model reactions from 104 independent realizations of

Algorithm 2 (K = 105). Unlike Figures 1, 2, and 4, box whiskers extend to the mean ±2 standard

deviations. More extreme values are displayed as individual points. Parameters γ3 − γ8 exhibit

relatively consistent estimates, whereas γ1 and γ2 vary widely across the different realizations.
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FIG. 6. (a) Sensitivity of rare event probability estimate to dwSSA parameter values γ1 and γ2

for the yeast polarization model. We tested 16 combinations of γ1 and γ2 values spanning the

ranges observed in Figure 5 along with the optimal combination discussed in Figure 7 (boxplot

marked with *). Boxplots summarize results of four independent dwSSA ensembles (K = 107)

using the indicated values of γ1 and γ2 along with the optimal values of γ3 − γ8 detailed in Figure

7. The green line denotes the estimate of p achieved with 108 realizations of the dwSSA. Varying

γ1 and γ2 has little effect on the resulting values of p̂dwSSA, presumably due to the insensitivity

of the rare event to these two parameters. (b) A similar plot in which we modify values of γ6 and

γ8 in the same manner as in (a). This time, varying of parameters leads to a profound increase

in p̂dwSSA variability, with most parameter combinations yielding zero observations of the rare

event. These results provide an explanation for the differences in parameter estimate precision

seen in Figure 5: the multilevel cross-entropy method provides optimal parameter estimates with

a precision commensurate to the sensitivity of p̂dwSSA to their values.
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FIG. 7. Convergence plot of rare event probability estimate (p̂) vs simulation ensemble size (K)

for the yeast polarization model. Boxplots are constructed as in Figures 1, 2, and 4, sum-

marizing results of four independent dwSSA simulation ensembles for each value of K. We

parameterized the dwSSA with the mean of four realizations of Algorithm 2, yielding γ̂∗ =

[0.839 1.120 1.099 1.238 1.111 0.646 1.010 1.211]. As K increases, the dwSSA estimates approach

p̂dwSSA = 1.131× 10−6; the true rare event probability is unknown. Results for the wSSA are not

shown, as the computational cost for determining its optimal parameter values is prohibitive.
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TABLE V. Results of the multilevel cross-entropy algorithm applied to the modified yeast polar-

ization model. The column identities match those of Tables I-IV. In this example, four steps were

required for dρKe of the dwSSA trajectories to reach the original rare event threshold.

Step (i) Trial No. θ
Gbg

i
ˆγ(i)

1

1 24 [1.022 0.885 1.298 0.779 1.263 0.562 1.010 1.353]

2 24 [1.158 0.904 1.285 0.744 1.255 0.565 0.979 1.365]

3 24 [1.063 1.013 1.286 0.836 1.258 0.568 0.984 1.361]

4 24 [1.083 0.988 1.297 0.798 1.257 0.560 1.025 1.354]

2

1 32 [0.675 0.983 1.567 0.657 1.450 0.384 0.955 1.676]

2 32 [0.436 0.692 1.560 0.666 1.445 0.400 1.021 1.673]

3 32 [1.130 0.454 1.529 0.653 1.431 0.394 0.993 1.693]

4 32 [1.409 1.467 1.530 0.594 1.427 0.427 1.024 1.700]

3

1 37 [0.298 0.640 1.677 0.292 1.591 0.337 0.897 1.877]

2 37 [0.874 1.129 1.772 0.694 1.589 0.305 0.862 1.928]

3 37 [1.140 0.666 1.722 0.648 1.601 0.303 1.016 1.930]

4 37 [1.308 0.661 1.665 0.427 1.537 0.260 1.083 1.948]

4

1 40 [0.059 0.299 1.636 0.824 1.767 0.230 0.908 1.928]

2 40 [1.123 4.309 1.774 0.528 1.630 0.254 1.154 2.129]

3 40 [1.154 1.364 1.704 0.326 1.629 0.245 0.757 2.097]

4 40 [0.746 0.846 1.775 0.571 1.703 0.259 1.083 2.110]
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FIG. 8. Convergence plot of rare event probability estimate (p̂) vs simulation ensemble size (K)

for the modified yeast polarization model. Boxplots are constructed as in Figures 1, 2, 4, and

7, summarizing results of four independent dwSSA simulation ensembles for each value of K.

We parameterized the dwSSA with the mean of four realizations of Algorithm 2, yielding γ̂∗ =

[0.771 1.705 1.722 0.562 1.682 0.247 0.975 2.066]. As K increases, the dwSSA estimates approach

p̂dwSSA = 1.059× 10−11; the true rare event probability is unknown. Results for the wSSA are not

shown, as the computational cost for determining its optimal parameter values is prohibitive.
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