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Abstract: Michaelis—Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The
Michaelis—Menten approximation has been thoroughly studied in the context of traditional differential equation models. The
presence of small concentrations in biochemical systems, however, encourages the conversion to a discrete stochastic
representation. It is shown that the Michaelis—Menten approximation is applicable in discrete stochastic models and that the
validity conditions are the same as in the deterministic regime. The authors then compare the Michaelis—Menten
approximation to a procedure called the slow-scale stochastic simulation algorithm (ssSSA). The theory underlying the ssSSA
implies a formula that seems in some cases to be different from the well-known Michaelis—Menten formula. Here those
differences are examined, and some special cases of the stochastic formulas are confirmed using a first-passage time analysis.

This exercise serves to place the conventional Michaelis—Menten formula in a broader rigorous theoretical framework.

1 Introduction

Enzyme-catalysed reactions are ubiquitous in biochemical
systems. The enzyme—substrate reaction set

E+S — ESSE+P (1)
]

is a common model for such a system. Reactions R; and R,
describe the reversible binding of an enzyme E to a substrate
S. In reaction Rj the intermediate complex ES reacts to form £
and product P. The net result is the conversion of substrate to
product. Modellers frequently use Michaelis—Menten kinetics
to describe the rate of product formation in reaction set (1) [1,
2]. Michaelis—Menten kinetics effectively reduces the model
from the three reactions in (1) to a single reaction. The
Michaelis—Menten form is particularly convenient because
the parameters are often easier to measure experimentally than
the kinetic parameters c;.

The Michaelis—Menten formula does not capture the
dynamics of reactions (1) exactly. It is based on assumptions
that, it is hoped, are approximately valid. Michaelis—Menten
kinetics are derived from the ordinary differential equation
(ODE) representation of reaction set (1), and in a
deterministic setting, these assumptions have been well
studied. However, biochemical systems often feature
chemical species that are present in small populations where
stochastic effects can play an important role. This leads
many modellers to want to convert their ODE models into
discrete stochastic models. Converting an ODE model to a
stochastic model is straightforward if the ODEs describe
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elementary reactions, but there is no general, theoretically
rigorous method for converting Michaelis—Menten terms.

Gonze et al. [3] compared the output of a stochastic model
that used Michaelis—Menten terms and a corresponding
model decomposed into elementary reactions and found no
significant differences in simulation results. Rao and Arkin [4]
verified the equivalence of the deterministic and stochastic
Michaelis—Menten approximations under a restricted set of
initial conditions. Mastny ef al. [5] derived a closed-form
approximation similar to the Michaelis—Menten formula for
reaction set (1) that is applicable in a different region of
parameter space. We review and utilise the results of Rao and
Arkin and Mastny et al. in Section 3. Cao et al. [6, 7] applied
a method known as the slow-scale stochastic simulation
algorithm (ssSSA) to reaction set (1) which significantly
reduced the simulation time when ¢, > c3.

The ssSSA also functions as a form of model reduction,
similar to the Michaelis—Menten approximation. However,
the theory underlying the ssSSA implies a formula for the
enzyme—substrate reaction set (1) that seems in some cases
to be different from the traditional Michaelis—Menten rate.
Both approximations offer important benefits. But we need
to be aware, in any specific circumstance, of both the
benefits and drawbacks of describing the three reactions (1)
with a reduced model. A recent paper by some of the
present authors [8] thoroughly analysed model reduction in
a stochastic context for the simplified reaction set

c c3
S ?l_ S, — 8 (2)
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Some of the analysis of reaction set (2) can be applied to the
enzyme—substrate reaction set (1).

In this paper we consider reaction set (1) and the Michaelis—
Menten approximation from two perspectives. First, we address
the problem of converting an ODE model with Michaelis—
Menten terms to a stochastic model. Section 2 reviews the
traditional deterministic Michaelis—Menten approximation. In
Section 3 we justify the validity of using the Michaelis—
Menten approximation in a stochastic setting, and in Section 4
we discuss some potential pitfalls. In the second part of the
paper, Sections 5 and 6, we consider the Michaelis—Menten
and ssSSA procedures in the case where all three rate
constants in reaction set (1) are known. Differences between
the Michaelis—Menten and ssSSA approximations are
examined with a strong focus on simulation efficiency, and
some special cases of the stochastic formulas are confirmed
using a first-passage time analysis. This exercise serves to
place the conventional Michaelis—Menten formula in a
broader rigorous theoretical framework.

2 Michaelis—Menten kinetics in ODE models

Reaction set (1) leads to the ODE model

% = —¢;8 x E+ ,ES (3a)
((11_1;7 =—¢|S X E+(c, + ¢3)ES (3b)
% — S x E — (cy + ¢;)ES (3¢)
= i (3d)
S(0)=S,, E@0)=E, ES©0)=ES, P®0)=P,

where the species populations are typically represented in
units of concentration and the parameters ¢; are the
associated deterministic kinetic constants. To simplify the
exposition, we will use deterministic and stochastic rate
constants interchangeably; their meaning should be obvious
from the context (see Appendix).

When reaction set (1) is considered in isolation, one can
use the algebraic relations

E(t) + ES(t) = E; (4a)
P(t) = Py + S, — (S(t) + ES(1)) (4b)

to reduce (3) to a set of two ODEs [Note 1]. However, inclusion
of additional reactions or chemical species will add additional
terms and equations and may preclude this reduction.

The derivation of Michaelis—Menten kinetics is based on
the (deterministic) quasi-steady-state assumption (QSSA) [,
2]. By assuming that the intermediate complex ES is in
quasi-steady-state, we set dES/dt to zero and solve (3c) for
ES. Substituting the result into (3d) and utilising the
conservation relation (4a) leads to the Michaelis—Menten

Note 1: In some related literature relation (4a) is often equated to E,, which
holds under the initial condition £S(0) = 0. To avoid ambiguity, we will use E7
for the enzyme conservation relation (4a) and E|, for the initial value of E.

IET Syst. Biol., 2011, Vol. 5, Iss. 1, pp. 58-69
doi: 10.1049/iet-syb.2009.0057

www.ietdl.org

rate equation

dP ViwS
—_~ max 5
it K, +8 )

where Viax = c3E7 and K, = (2 + ¢3)/cy1. Viax 1S the
maximum rate of product formation under substrate
saturation (S > K.,) and K, is the substrate concentration at
which the product formation rate is Vp,.x/2. This result is
equivalent to assuming that the intermediate complex ES
remains approximately equal to E75/(K,, + S). One can also
view the Michaelis—Menten approximation as a model
reduction that eliminates species £ and ES and replaces the
full system (1) with the reduced model

52 p ()
with rate
Vmax
‘MM — Ki—i— S @)

Note that the rate cyp in (7) varies based on the current amount
of substrate in the system.

The Michaelis—Menten rate is an approximation. It is only
valid in a particular region of parameter space. Segel and
Slemrod [9] presented a detailed derivation of the Michaelis—
Menten formula (5) and used singular perturbation analysis to
establish the following validity criterion for the deterministic
Michaelis—Menten approximation

Er L85+ Ky (®)

When condition (8) holds, a separation exists between a fast
‘pre-steady state’ timescale and a slower ‘steady state’
timescale [9]. The solution of the Michaelis—Menten
approximation closely tracks the solution of (3) on the slow
timescale. Fig. 1 shows how closely the Michaelis—Menten
approximation captures the behaviour of the full deterministic
model when condition (8) is satisfied, except during the pre-
steady-state transient period. When condition (8) is more
strongly satisfied, the Michaelis—Menten rate becomes an
even better approximation.

3 Converting ODE models with Michaelis-
Menten terms to discrete stochastic models

Biochemical models often begin as a system of coupled
ODEs describing the rates of change in chemical
concentrations, as in (3a)—(3d). However, when some
chemical species are present in small concentrations, a
discrete stochastic representation is often more appropriate.
For the discrete stochastic model, molecular concentrations
are converted into populations and deterministic kinetic
parameters are converted to stochastic kinetic parameters
(see Appendix). The reaction rate equations are replaced
with propensity functions that describe the probability of a
reaction occurring in the next infinitesimal time interval.
When the rate equations in the ODE model describe only
elementary reactions, conversion to a stochastic model is
straightforward and can be done automatically by
introducing a volume parameter. However, when the ODE
model contains Michaelis—Menten rate expressions, the
appropriate conversion, or whether there is an appropriate
conversion, is unclear.
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Fig. 1 Deterministic trajectories of product concentration for the full model (solid curves) and the Michaelis—Menten approximation (dashed
curves) on different time scales for parameters Sy = 10, Egy= 1, ESy =Py =0, c; =1, c; = 10, c; = 1. We note that validity condition (8)

holds as 1 = Er < Sp+ K,, = 21

a On the timescale of substantial product formation, the trajectory of the full model and the Michaelis—Menten approximation match closely
b Fast timescale: the Michaelis—Menten approximation fails to capture the behaviour of the full model during the pre-steady-state period

It is not possible to simply “‘unpack’ the Michaelis—Menten
rate expression into the underlying elementary reactions. The
two parameters V., and K, are comprised of the four
unknown parameters E7, c¢;, ¢, and ¢z from the original
system (1). Additional knowledge of the values of these
four unknowns is required to fully determine all the
parameters of the elementary reactions.

Since the Michaelis—Menten approximation effectively
replaces reaction set (1) with the pseudo-unimolecular
reduced mechanism (6), it is natural to consider whether the
Michaelis—Menten rate can be converted directly to a
stochastic propensity in the same way that a deterministic
reaction rate can be converted to a propensity for a
unimolecular reaction. Rao and Arkin [4] used a stochastic
QSSA to show that in the limit of E;/Sy — 0, the rate of
product formation in a stochastic model approaches the
deterministic Michaelis—Menten rate. Therefore an SSA
simulation of the reduced mechanism (6) using effective
propensity function

[
max 9
K, +5 ©)

as(x) ~
will closely approximate the solution to the full stochastic
model of reaction set (1) if

E; LS, (10)
We note that the rate in (9) is essentially equal to the
deterministic Michaelis—Menten rate (5), differing only in
that the species populations are discrete molecule counts
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rather than concentrations and that K, is comprised of
stochastic kinetic rates (see Appendix). The QSSA in a
stochastic context is based on the assumption that the
distribution of ES molecules remains approximately
constant on the timescale of interest. Rao and Arkin [4]
suggest that validity conditions for applying the QSSA in
stochastic models may be the same as the conditions for
deterministic models, but the validity criterion (10) is
obviously different from (weaker than) the deterministic
condition (8).

Mastny et al. [5], using a procedure they call the stochastic
quasi-steady-state  approximation singular perturbation
analysis (sQSPA), show that the effective propensity
function in the reduced stochastic model is given by

VoS
_max— 11
e an

m

as(x) =~

when K, is ‘large’ and the intermediate complex is ‘small’.
Mastny et al. [5] do not provide a more specific validity
criterion for this result. However, analysis of their sQSPA
procedure suggests that the validity condition is

E;+ 5, <K, (12)
Careful consideration of the results of Rao and Arkin [4] and
those of Mastny et al. [5] leads to two important observations.
First, the stochastic Michaelis—Menten rate is the same as the
deterministic Michaelis—Menten rate (see Appendix). And,
second, the condition for wvalidity of the stochastic
Michaelis—Menten rate is the same as the deterministic
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case. To see that those conclusions are justified, first observe
that combining validity conditions (10) and (12) covers the
entire valid parameter range (8) of Segel and Slemrod [9].
That is, if condition (8) holds, then either condition (10)
holds or condition (12) holds (or both hold). When (10)
holds, Rao and Arkin [4] showed that the stochastic and
deterministic Michaelis—Menten rates are equivalent. When
condition (12) holds, rate (11) of Mastny et al [5] is
approximately equal to the Michaelis—Menten rate, because
the missing S in the denominator is very small compared to
K. Therefore we conclude that the deterministic validity
criterion (8) of Segel and Slemrod [9] is sufficient for
ensuring validity of the stochastic Michaelis—Menten
approximation. As in the deterministic case, the stochastic
Michaelis—Menten approximation fails to accurately capture
the behaviour of the system during the pre-steady-state
transient period. If a modeller wishes to study the behaviour
on the fast timescale, the Michaelis—Menten approximation
should be abandoned and replaced with the full model (1).

4 Some caveats

In the preceding section we discussed the apparent validity of
the stochastic Michaelis—Menten approximation. We now
take a step back and review some potential pitfalls of
converting a deterministic model to a stochastic model with
a particular emphasis on issues specific to models with
Michaelis—Menten terms.

The derivation of the Michaelis—Menten rate considered
reaction set (1) in isolation. Care must be taken when using
the Michaelis—Menten approximation if reaction set (1) is

embedded in a larger network of reactions. The
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approximation is accurate only on the slow timescale. If S
appears as a reactant in other fast reactions, the Michaelis—
Menten approximation should not be applied in either the
deterministic or stochastic case. Consider coupling reaction
set (1) with the additional reaction

S S x (13)

If rate ¢4 is large, the population of S will be decaying on a
fast timescale via reaction (13) and the Michaelis—Menten
approximation will not be valid, as seen in Figs. 2a and b.
If, on the other hand, ¢4 is small, then the Michaelis—
Menten approximation can be applied to (1) and coupled
with reaction (13) with minimal loss of accuracy (on the
slow timescale) as shown in Figs. 2c and d. But how does
one determine if the timescale of an additional reaction
channel such as (13) is sufficiently slow? The appropriate
comparison is that the characteristic timescale of the
additional reaction channels should be much slower than
the (fast) pre-steady-state timescale in the Michaelis—
Menten approximation. Segel and Slemrod [9] estimate the
pre-steady-state timescale as

1
tfast - cl(SO +Km) (14)
Evaluating (14) for the parameters given in Fig. 2, namely
S(): 10, E(): 1, ES():PO:O, Cc1 = 1, Cyr = 10, C3 = 1,
we obtain an estimate of fpg >~ 1/(1 x (104 11)) = 1/21.
Comparing that to the timescale of reaction (13), which
is >~ 1/(c4S), we deduce that the addition of reaction (13)
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Fig. 2 Effects of coupling reaction set (1) with reaction (13) when (13) is fast (a, b) and slow (c, d)

a and b Means of P and X for the full stochastic model and stochastic Michaelis—Menten approximation when reactions (1) and (13) are coupled with ¢4 large
So=10,Ey=1,ESy =Py =0,c; = 1,c; = 10, c3 = 1, ¢4 = 10). Since reaction (13) introduces important dynamics on a fast timescale, the Michaelis—Menten

approximation (which is valid on a slow timescale) is inaccurate

¢ and d When ¢, is sufficiently small [c4 = 1/20 in this case, with other parameters the same as in (@, b)], reaction (13) is slow and can be coupled with the

Michaelis—Menten approximation with minimal loss of accuracy

IET Syst. Biol., 2011, Vol. 5, Iss. 1, pp. 58-69
doi: 10.1049/iet-syb.2009.0057

61
© The Institution of Engineering and Technology 2011



www.ietdl.org

for the example in Fig. 2 will be valid if ¢4 <« 2. When that
separation of timescales does not hold, the Michaelis—
Menten approximation should not be used. It is important
to recognise that in practice the situation is often more
complicated than the example in Fig. 2. In most models
containing a Michaelis—Menten term, the precise value of
¢y is generally not known (as c¢; only appears as part of
composite variable K, in the Michaelis—Menten rate), thus
a direct evaluation of the timescale in (14) is not possible.
One could compare the propensities of the additional
reactions with the Michaelis—Menten rate, but that is a
comparison with the slow timescale of the Michaelis—
Menten approximation, not the fast pre-steady-state
timescale. When adding a reaction such as (13) to a model
with valid Michaelis—Menten terms, comparing the
propensity to the Michaelis—Menten rate provides a
conservative criterion for validity. That is, if the Michaelis—
Menten approximation was properly applied for reactions
(1), one can safely add a substrate-consuming reaction such
as (13) if it is slower than the Michaelis—Menten rate.
However, if the additional reaction is faster than the
Michaelis—Menten rate, the modeller is forced to estimate
the fast timescale by either making an assumption about the
magnitude of ¢; or by determining the value of ¢; via
biological experimentation. It is worth noting that if
Michaelis—Menten terms are coupled with additional
reactions appropriately in an ODE model, then direct
conversion to a stochastic model is valid.

In Section 2 it was stated that the Michaelis—Menten
approximation is essentially a model reduction that
eliminates species ES and E but that it implies the effective
population of species ES

E.S

ESeffective = Km:_ S (15)
ESfrective can be used to incorporate additional slow reaction
channels that consume ES or E (using ESctrective =
E7 — ESctiective), but this requires knowledge of the value of
Er. 1t also typically requires explicitly tracking the
evolution of E since reactions that create or consume ES or
E will modify the value of E7 (i.e. Ey may no longer be
constant). For example, the reaction

Cs

ES 5> v (16)

would have effective propensity csESefrective = CsEDS/
(Km+ S) and since ES is not tracked, the stoichiometry of
the reaction would be treated as if the reaction consumed an
S molecule and an E7 ‘molecule’

S+E,—Y (17)

In general, if E7 is known and the proper stoichiometries are
applied, coupling additional slow reaction channels with a
Michaelis—Menten approximation is possible. Equation (15)
also suggests a way to refine the propensities of other
reactions in which species S is a reactant. Since S molecules
that are bound to enzymes are not available as reactants in
other reactions, propensities that include species S can be
improved by substituting the effective unbound S population

S,

effective

=S5- ESeffective (18)

This value of Seective Was used in place of S for the propensity
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of reaction (13) in Fig. 2. However, a subtle implication of the
Michaelis—Menten approximation is that whenever validity
condition (8) holds, the mean of ES is very small compared
to the mean of S and, hence, S.fecive =~ S. Therefore this
correction leads to a small improvement in accuracy.

In [8] some of the present authors showed that a
model reduction that replaces a more complex reaction
set with a single reaction can be accurate only if the
time to the product-forming reaction in the full
model is approximately exponentially distributed [8].
Consider reaction set (1) with parameters

So=100,Ey=E;=1,¢,=10"2,¢,=0,c,=1 (19)

Validity condition (8) strongly holds as 1=Er<K
So + K, = 200. But by inspection the expected time to the
first product-forming reaction is the sum of two
exponential distributions with equal means of one. The
sum of two exponentials with equal means is a case of the
well-known gamma distribution. The mean and variance
are w=2 and o® =2, respectively. The Michaelis—
Menten approximation would replace the full system with a
single reaction with propensity V. S/(Ky, 4+ S) = 1/2. The
time to the first product forming reaction is then
exponentially distributed with w=2 and o® =4. The
Michaelis—Menten approximation captures the mean, but
the variance is doubled. As the simulation of (19)
progresses and the substrate is consumed, the time to
the next product formation in the full system gets closer
to being exponentially distributed and the accuracy of
the Michaelis—Menten approximation improves. Fig. 3
compares the full model to the Michaelis—Menten
approximation for parameter set (19). Over the full
simulation, the variance of the Michaelis—Menten model
appears only slightly larger than in the full model as
shown in Fig. 3a, but Fig. 35 demonstrates the severity of
the error in the variance and shows that the error persists
beyond the fast pre-steady-state timescale. It is important to
be aware of this possible overestimate of the variance. We
discuss accuracy issues further in Section 6.

5 ssSSA as an alternative to Michaelis-
Menten when all parameters are known

One important benefit of the Michaelis—Menten
approximation is that it requires only two parameters, Viax
and K,,, which are often easier to obtain experimentally
than are accurate estimates of Er, ¢;, ¢, and ¢3. However,
when a full description of all parameters in reaction set (1)
is available, this consideration is no longer an issue.
Another benefit of the Michaelis—Menten approximation is
the reduced complexity of the model achieved by removing
two species and two reactions. Considering that models are
manipulated and simulated using computer software, this
advantage is also of limited benefit except when the
reduction leads to a substantial increase in simulation
efficiency.

5.1 Simulation efficiency

Stochastic models are simulated using the well-known SSA
[10, 11]. The SSA produces exact trajectories of a model,
but since it simulates every reaction event and an ensemble
of trajectories is required for reliable statistics, the SSA is
computationally expensive.
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Fig. 3 Means (heavy lines) and means + standard deviation (light lines) of product formation for 10 000 realisations of the full model (solid
curves) and the Michaelis—Menten approximation (dashed curves) for Sy = 100, Er=Ey= 1, ¢; = 1072, ¢, = 0, ¢c; = 1. Validity condition
(8) holds as 1 = Er K Sp+ K, = 200. Since c, = 0, the SSA had to simulate exactly two reaction events for each substrate to product
conversion compared to one for the Michaelis—Menten approximation

a On the scale of total substrate to product conversion, the means are practically indistinguishable but the standard deviation of the Michaelis—Menten
approximation is slightly greater than the true standard deviation

b Early mismatch in the standard deviation of the Michaelis—Menten approximation persists over a longer time interval than the pre-steady-state transient in the
mean

Replacing reactions (1) with a single reaction reduced reactions (1) would be so modest that it would likely not
system such as (6) means that a product molecule would be offset the benefit that comes from directly simulating
formed at each reaction event. It turns out that such a reactions (1) with the SSA, namely, that the behaviours of
reduction will lead to a significant speedup only when all species are exactly rendered.

C >y (20) 5.2 ssSSA approach

This result was derived using a different model [8] but the A stochastic alternative to the SSA for reactions (1) which is
reasoning is also applicable to reaction set (1). Since an specifically tailored for condition (20) is the ssSSA [6, 7].
ES molecule has probability cs/(c; + ¢3) of producing a P We now summarise the ssSSA procedure presented in [6, 7]
molecule when it decays, then on average, (c; + ¢3)/c3 ES for simulation of reactions (1) under condition (20). The
molecules must be created, and then annihilated, in order to ssSSA essentially eliminates the two ‘fast’ reactions R; and
produce one P molecule. Therefore on average R,

2ey +e3)/e3 = Mgy, 21 E+S —é ES (22)

reaction events have to be simulated by the SSA in order to
convert one S molecule into a P molecule via reactions (1).
The value of n,, represents the expected simulation
speedup of replacing reactions (1) with a single reaction

and simulates only the ‘slow’ product-forming reaction Rj.
However, instead of using the R; propensity function
a3(x) = zES, the ssSSA uses the effective R; propensity

reduced system. Thus, only if ¢, > ¢ will such a reduction function

lead to substantial computational savings. In contrast, if —

¢, < c3, the SSA will have to simulate an average of about a3(x) = c3(ES(o0)) (23)
two reaction events in order to convert an S molecule into a .

P molecule via reactions (1). And if ¢, >~ c3, the SSA will where (ES(o0)) is the mean of the steady-state distribution of
need to simulate an average of about four reaction events to the enzyme—substrate complex evolving under only the two
accomplish that conversion. Unless condition (20) holds, fast reactions R, and R,, given the state x = (E, S, ES, P).
the gain in simulation speed that would result from What assures us that this is a legitimate tactic is the
applying the SSA to any single reaction reduction of so-called slow-scale approximation lemma [6]. The
IET Syst. Biol., 2011, Vol. 5, Iss. 1, pp. 58-69 63
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slow-scale approximation lemma states that when a system
has a stable virtual fast process with a relaxation time that
is fast compared to the slow reactions, the propensity
functions of the slow reactions can be well approximated by
replacing the actual populations of the fast species with the
mean values of the steady-state distribution of the virtual
fast process [6]. When ¢, > c3, reactions R; and R, reach a
stable equilibrium distribution on a scale that is fast
compared to reaction R;. Therefore condition (20) is
sufficient for the validity of that lemma (and hence the
ssSSA) for reaction set (1) [7]. We note that this condition
differs from, and thus corrects, a condition given in [7].
In [7], it was stated that the ssSSA validity condition ¢, >> ¢3
could be refined [7, (26)]. This refinement was incorrect
because it was comparing a single-walker timescale with a
many-walker timescale to estimate the separation between the
relaxation time of the virtual fast process and the expected
time to the next slow reaction. We note that model reductions
of reaction set (1) are possible under a wider range of
conditions, but unless ¢, 3> ¢3 one can efficiently generate
exact trajectories of all species using the SSA.

The mean of ES(o0) that appears in (23) can be computed
as follows. Let E7and S7 denote the total numbers of enzyme
units and substrate units in state x, that is

E4+ES=E; and S+ES=S; (24)
Note that both E; and S; are conserved under the two fast
reactions R; and R,. The steady-state master equation for
reactions (22) in isolation yields the moment relation
(¢, E(00)S(00)) = (czES(OO)) and with (24) this becomes

(c1(Er — ES(o0))(S; — ES(00))) = (,ES(0))  (25)
Upon expanding the left side and replacmg the term (ES (0))

with the statistically equivalent (ES(OO)) + var{ES(OO)} we

obtain a simple quadratic equation for (ES(OO)) whose
solution is

<E§(°°)> = % { (ET +S8r+ Z—j)

2
—\/ (E, S+ 2—2) —4(ETST + var{ﬁ(oo)})
1

(26)

Formula (26) is exact but it involves the variance of E\S(OO).
Since the standard deviation of ES(o0) is typically on the
order of \/(ES(c0)), then var{ES(c0)} will usually be on the
order of (ES(c0)). And since ES is bounded above by
min(E7, S7), which in turn is usually much smaller than
E Sy, it will usually be perm1551ble to drop the variance

term in (26) and approximate (ES(OO)) ~ ES, where ES is
given by (26) with var{ES()} =0

1 2
ES=3 (ET+ST+C—2)—\/(ET+ST+C—2) — 4E,S,
S S

27)

The result of this approximation is that a;(x) in (23) gets
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approximated by

2
c c c
53(x):?3 (ET+ST+C_2>_\/<ET+ST+C_2) —4ESy
1 I

(28)

Approximation (28) can in some cases be improved by using
in (26) a better estimate of var{ £S(c0)} than zero. Analysis of
(26) reveals that the variance term can be significant only if
Er and Sy are both small. Under these conditions, it
is possible to improve the accuracy of the ssSSA by using
a recurrence relation derived in [7] to exactly calculate the

E\S’(OO) state probabilities. The mean of E\S’(oo) can then
be computed and used directly in (23) to determine the
effective propensity a;(x). In general, the algorithm for the
recursion calculation requires a loop from min(E7, S7) down
to zero, but that becomes a fast calculation when E; and Sy
are both small. In an ensemble simulation, values calculated
via the recursion relation can be stored in a table for
immediate lookup in subsequent realisations. In practice,
formula (28) provides sufficient accuracy if the population
of either E7 or S is around 10 or more. However, if E; and
S7 are both small the recursion calculation can yield
significant gains in accuracy as shown in Fig. 4. Even with
small molecular populations, if ¢, > ¢3 the ssSSA will still
produce substantial gains in simulation speed over the exact
SSA (see Section 5.1).

As with the Michaelis—Menten approximation (see Section
3), care must be taken when using the ssSSA if reaction set (1)
is embedded in a larger network of reactions. The addition of
slow reaction channels does not pose a problem and can be
implemented using a procedure similar to that described in
Section 3 for the Michaelis—Menten approximation (see [7]
for details). However, the addition of fast reaction channels
typically requires repartitioning the system into different
fast and slow subsets [7]. The new ‘virtual fast process’
might be considerably more complicated than the two-
reaction set (22).

6 Verifying accuracy using first-passage
time analysis

The slow-scale SSA and the stochastic Michaelis—Menten
formula both approximate the rate at which reaction Rj is
firing, and hence the rate at which product molecules are
being formed. We should therefore expect a close
connection between the ssSSA’s formula (28) for a;(x) and
the Michaelis—Menten rate (5). But at first inspection, (28)
seems to bear little resemblance to (5). The ssSSA and
Michaelis—Menten approximations are valid in different
regions of parameter space, as depicted in Fig. 5. It is
hoped that the two approximations agree when both
conditions E7 < Sy + K, and ¢, > c¢3 are satisfied, as in
the intersecting region in Fig. 5.

Evaluating the ssSSA rate (28) under condition (10)
considered by Rao and Arkin [4], namely Sy > E7, with
So = S7 gives

ds() = 2 {(ST +(eafe) =Sy + (cafer) - 4ETST}

_14ETST>}
2(Sp + (cy/e))
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Fig. 4 SSA mean (a) and standard deviation (b) of reaction set (1) against the ssSSA formula (28) and the improved ssSSA formula achieved
by exactly solving for the mean of ES(0) under conditions So = 3, Er=Ey= 3, ¢c; =100, c; =100, c3 =1

The recursion formula is beneficial only for very small populations. When the value of Sz or E7 is around 10 or larger, the simple ssSSA formula (28) usually

provides sufficient accuracy

! ET<<SO+Km

Fig.5 [lllustration of the validity regions for the ssSSA (c; > c3)
and Michaelis—Menten (Er < Sp+ K,,) approximations for
reaction set (1)

The two approximations are essentially equivalent in the (shaded)
overlapping region. Only when ¢, >> ¢; will either approximation lead to
significant simulation efficiency gains over an exact SSA simulation of the
full model

whence

ErSy

a3(0) = Sy +(ey/cy)

(ST >> ET, C2 >> C}) (29)

Under ¢, > c¢3, we have cy/c; = (co + ¢3)/c; = Ky, thus we
see that the ssSSA result (28) does indeed agree with the
Michaelis—Menten formula (5) when S, > E7. However,
(28) does not appear to be easily reducible to the
Michaelis—Menten formula in the remainder of the
overlapping region between the ssSSA condition (20) and
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the wvalidity region (8) of Segel and Slemrod [9].
Interestingly, (28) can also be simplified in the case
So = S7 K E7; indeed, since (28) is symmetric in E7 and
S, its approximate form in that case can be inferred simply
by interchanging those two variables in (29)

ErSy

a5 = Er +(cy/cy)

Sy <Ep, ;> c) (30)

In what follows, we corroborate the stochastic Michaelis—
Menten formula and the ssSSA rate (28) by presenting
independent derivations of some special cases including the
limiting forms (29) and (30).

The assertion of the slow-scale approximation lemma, that
under condition (20) reaction R; occurs according to the
propensity function a;(x), is mathematically equivalent to
asserting that the time to the next R; reaction is an
exponential random variable with mean 1/a;(x) [8, Section
2 and Appendix A]. Similarly, the stochastic Michaelis—
Menten formula effectively approximates the next Rj
reaction as an exponential random variable with mean
(K + S)/VinaxS, the inverse of the Michaelis—Menten
rate. Accuracy of the stochastic Michaelis—Menten
approximation and the ssSSA can in principle be tested by
making a first-passage time type of analysis, but there are
some subtleties in doing that properly.

The signature effect of an R3 event is the reduction by 1 of
the total number of substrate units (free and bound). Therefore
given that the system is currently in state x = (£, S, ES, P),
the time T'(x) to the next R; reaction can be most generally
defined as the time required for the system, evolving
according to reactions (1), to first exit the state space region
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Q)X |S7 = S + ES). This first-exit problem appears to be
quite difficult to solve in general. But it can be solved
approximately in some cases, provided we are clever in
what we take to be the ‘random walker’.

6.1 Generic first-passage time result

We summarise here a generic result in Markov process theory
that will be useful in our analysis. For a derivation of this
result, see [8, Appendix B]. Suppose a ‘random walker’
executes the following transitions among three ‘states’, Sy,
S2 and S3

S, == 8,5, 31)
5]

Here c; is a constant, and c;d gives the probability that the
walker, if currently in the state at the tail of the arrow, will
jump to the state at the head of the arrow in the next
infinitesimal time interval dz. For this random walker, the
following result has been proved [8]: If there are currently
x; walkers in state S; and x, walkers in state S,, and if all
these walkers move independently, then the time 7(x{, x,)
until the first of the walkers reaches state S; is a random
variable with probability density function

P(t; x;, %)) = x1c3P(2, 11, 0)(P(1, |1, 0) + P(2, t|1, O))xl_1
x (P(1, ]2, 0) + P(2, 1|2, 0))*
+x2C3P(2, t|29 0)(P(1a t|1: 0) +P(29 tllv 0)))61
x (P(1, 1|2, 0) + P(2, 1|2, 0))>""
(32)

Here, P(n, t|a, 0) is the probability that a walker, in state S, at
time 0, will be in state S, at time ¢, and it is given explicitly by

1
P, 11, 0) = =g [l - A)e M = (e — A e
LA
(33a)
P2,11,0) = @ C_ ())‘j)(f‘ A_)A‘) [e ™ —e™7  (33b)
pASASS -
P(1, 12, 0) = ﬁ [ — e M1 (33c)
+ —
1
P@,112,0) = =5 [ - A)e M = (e = Ape ]
+ —
(33d)
where

1
A, = 2[(01 +c+c) £ \/(cl +ote) - 40103:| (34

This result (32) is exact, but does not describe an
exponential distribution. However, under condition (20), it
can be shown [8] from (34) that A, ~c;+c, and
A_ >~ cie3/(cg + ¢3) € Ay, and that (32) then approximates
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to the exponential form

P(t: x,, %)) ~ <Clc3(xl +xZ))e—(c]C3(x]+x2)/(cl+c‘2))t’

¢+
(c >yt > (e + Cz)_l) (35)
Similarly, when
C3 > Cl (36)

it can be shown [8] that (32) approximates to

P(f; X, xz) ~ (Clc3(x1 +x2)> e—(clc3(x1+x2)/(cz+c3))t,
C+ o

(3> s t> (e +c3)h) 37)

6.2 First-passage time analysis of reactions (1)

If we focus on the individual enzyme units, both the free ones
E and the bound ones ES, we can define T(x) to be the time
required for the first of those enzyme units to participate in the
production of a product molecule via reaction R;. Each
individual enzyme unit will be performing the random walk

F -2 53 (38)

]

where F' is the free-enzyme state, B the bound-enzyme state
and 3 the state of an enzyme that has just assisted the
conversion of some substrate unit into a product molecule.
Two obstacles prevent (38) from being an instance of the
generic random walk (31): First, the R reaction probability
rate ¢;S in (38) depends on the constantly changing number
of free substrate units S, and hence is not a constant.
Second, the individual enzyme wunits do not evolve
independently of each other; because, owing to (24), the
dependence of the R; reaction rate on the number of free
substrate units means that the fate of any enzyme unit
depends on the number of enzyme—substrate complexes ES,
and that in turn depends on the bound—unbound status of
all the enzyme units.

But both of these obstacles go away, at least to a good
approximation, in the special case S7 > E7. Because then,
since S must always be in the interval [S7 — E7, S7], where
the lower limit corresponds to all the enzyme units being
bound and the upper limit corresponds to all the enzyme
units being free, we will have to a very good approximation
S~ S7. Then each enzyme unit will be performing the
random walk

F 2 B3 (B, <8y (39)

]

Here, all the reaction probability rates are constants (up to the
moment of the first conversion), and the individual enzyme
units will be executing this random walk independently of
each other. Now we can apply the results for the random
walk (31) to the random walk (39) simply by making the
replacements

c; —> c|Sr,

x—>E, x,—ES (40)

With these replacements, (32) becomes the probability
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density function for the time 7'(x) to the next R3 reaction in
state x. It shows that in general 7(x) is not exponentially
distributed, and moreover will depend on how many of the
enzyme units are free and how many are bound. But the
restricted approximate result (35) shows that in the case
¢y >> c3 the probability density function of T'(x) reduces to
the exponential form

S E+ES
Py ~ <c1 r¢3(E + ))e—(clSTc3(E+ES)/(clST+c2))t @1)
oSy + ¢

With (24) and some simple algebraic rearrangements, this
result can be written as

3 SrEr

—(e387E7/(Sr+(ea /)t
e (42)
Sr+ (Cz/cl)>

o=
which is valid under the conditions

Er LSp >, t>(eSp+c) (43)
Equation (42) implies that, if the system is currently in state x,
then under conditions (43), the probability that reaction
R; will occur in the next ‘infinitesimal’ time

dt > (c;Sr+ ) s

M)d 44
(ST+(02/01) ! “9

This is precisely the assertion of (29) for the case Er < St.
Noting again that (c/c1) ~ K, when ¢, > c3, this also
provides an independent proof of the agreement and
correctness of the ssSSA and the result of Rao and Arkin
[4] in the overlapping validity regions ((c; > ¢3) N (S >
E7)). Fig. 6 shows an example corroborating the assertion
that the Michaelis—Menten and ssSSA approximations are
accurate in their overlapping validity regions. In that
example 100 = ¢, >> ¢z = 1, so both approximations led to

500

450 -

400

350
0
z
3
i 300 -
(=]
E
5 250+
=1
o
<]
a 200+

150

100 -

50 —— Stochastic mean (full model) 1

= = = Stochastic Michaelis-Menten
- = = slow-scale S5A
0 L 1 1 I I
0 20 40 60 80 100 120

time

Fig. 6 Exact SSA, Michaelis—Menten approximation and ssSSA
approximation mean values of product formed in reaction set (1)
‘fOVS(): 500, ET:E(): 10, c; = 1, Cr = 100, C3 = 1

When ¢, > ¢3 and S, > E7 the Michaelis—Menten approximation and the
ssSSA are essentially equivalent and the simulation results are
indistinguishable from the exact solution. In this example, both

approximations led to simulations that ran about 200 times faster than the
full model
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simulation speedups of about 200 times over the full SSA
simulation of reaction set (1) as predicted by 7,y in (21).

To obtain a result for the opposite case S7 < E7, we must
focus our attention on the individual substrate units instead of
the individual enzyme units. We thus consider each substrate
unit to be independently executing the random walk

97 c3
F — B—3 (45)

)

where F is now the free-substrate state, B the bound-substrate
state and 3 the state in which the substrate unit has just been
converted into a product molecule. Repeating the above
analysis with the roles of the enzyme and substrate units
interchanged, we obtain a result analogous to (42), namely

Px(t) ~ (ﬂ) e_(c3ETST/(ET+(02/Cl)))Z‘ (46)
Er +(cy/cy)

which holds when

S KEp ;e 13> (Er+c) 47)
The exponential form (46) validates the prediction (30) of
the slow-scale approximation lemma in the case Sy < Er.
Fig. 7 compares the ssSSA to the Michaelis—Menten
approximation when condition (47) holds, but the
Michaelis—Menten validity condition (8) does not hold.

We now consider the random walk (45) for the case

Er, Sy <K, (48)

We can use the intuition underlying the results of Mastny
et al. [5] to argue that under conditions (48), ES ‘usually
samples zero’. That is, whenever an £ and S bind to form
ES, the ES molecule quickly either decays back to £ and
or produces a product. Therefore we can regard £ and S as
approximately independent and utilise the generic first-
passage time result. The condition K, large implies

Product molecules

— — - Stochastic Michaelis—Menten
- = = slow-scale SSA
T T

14 —— Stochastic mean (full model) ’»

o 1 2 8 4 5 6 7 8 9§ 10
time
Fig. 7 Exact SSA, Michaelis—Menten approximation and ssSSA
mean values of reaction set (1) for Sy= 10, Er= Ey= 100,
C1:], C2:]00, C3:]
Under these conditions, the ssSSA is valid (100 = ¢, >> ¢;3 = 1) whereas the
Michaelis—Menten approximation is not (100 = Ey >~ Sy + K;,, = 111). The

ssSSA had to simulate exactly ten reactions per realisation compared to an
average of about 2000 reactions for the SSA simulations of the full model
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¢+ e3> c;. Since Ep is small, we can also write
¢y +c¢3 > c1Er. We can then further categorise condition
(48) into subcases based on the magnitude of c; relative
to c ]E T

c3 > cEy (49a)
KL Er (0> ) (49b)
;=B (=c>c) (49¢)

Considering, for example, condition (49a), we can use (37) to
approximate (32) as

Px(t) ~ (M) ei(ClETC3S/(Cz+C3))I‘ (50)
o

Writing the pdf (50) as a propensity function and rearranging,
we have

o ErS _ VinaxS 51)
(e +¢3)/¢ Ky

az(x)

We recognise (51) as result (11) of Mastny et al. [5] Again,
since K, > S, this is approximately the Michaelis—Menten
rate. Similar approximations can be made for conditions
(49b) and (49c¢) by using (35). This serves as an independent
proof of result (11) of Mastny et al. [5] under condition (48).
It also shows that the ssSSA formula and the Michaelis—
Menten approximation agree in the intersection of the
ssSSA’s validity region (20) and condition (48).

The exponential forms of (42) and (46) validate predictions
(29) and (30) of the ssSSA. The first-passage time analysis
provides independent verification of the stochastic QSSA of
Rao and Arkin [4] and the sQSPA of Mastny et al. [5] in at
least some portions of their respective validity regions,
including the regions overlapping with the ssSSA. But first-
passage time analysis cannot confirm the accuracy of the
So > E7 validity condition of Rao and Arkin [4] in general,
because of the gamma distribution that arises under the
condition (19) example given in Section 4.

7 Summary and conclusions

In this paper, we have shown that the Michaelis—Menten
approximation is applicable in stochastic simulation under
the same validity conditions as in the deterministic case,
namely the Segel and Slemrod [9] condition E7 < Sy + K.
This was justified by a careful analysis and application of
previous results by Rao and Arkin [4] and Mastny et al. [5].
Thus, the conversion of an ODE model with Michaelis—
Menten terms to a stochastic model can be achieved by
converting the Michaelis—Menten rate directly to a
propensity function. However, we did show that under some
conditions the stochastic Michaelis—Menten approximation
could lead to an estimate of the variance that is larger than
the true variance of the underlying full model.

One important benefit of the Michaelis—Menten formula is that
the two parameters V.« and K, are often easier to determine
experimentally than the rate constants ¢; in (1). When all the
parameters in reaction set (1) are known, the SSA gives exact
trajectories for all species. Because the SSA can be
computationally expensive, simulation efficiency concerns can
encourage the use of approximate methods. But any gain in
efficiency is justified only if the loss of accuracy is not too
great. We showed that condition ¢, > c; is the only case where

68
© The Institution of Engineering and Technology 2011

a model reduction can provide a substantial speedup over the
SSA. In that case, the ssSSA procedure provides an efficient
and accurate approximation. An advantage of the ssSSA is that
it is valid for reaction set (1) whenever condition ¢, > c3
holds, independent of the values of £, S and ¢;.

Finally, our first-passage time analysis provides another
method of assessing accuracy in model reductions such as
the Michaelis—Menten approximation. When the rate of
product formation can be described by an approximately
exponential distribution, a single reaction model reduction
may be possible. Using appropriate choices of the ‘random
walker’, this analysis provided independent validation of
the results of Rao and Arkin [4], Mastny et al. [5] and the
ssSSA [6, 7] for the enzyme—substrate reaction set (1) in
portions of their respective validity regions. While not able
to provide a unified proof under all conditions, our first-
passage time analysis helps to put the Michaelis—Menten
approximation into a broader theoretical framework.

8 Acknowledgments

The authors thank Yang Cao, Sotiria Lampoudi, and Min Roh
for helpful discussions. The authors gratefully acknowledge
financial support as follows: K.S. and L.P. were supported
by Grant No. ROIEB007511 from the National Institute of
Biomedical Imaging and Bioengineering, Pfizer Inc., DOE
Contract No. DE-FG02-04ER25621, NSF Contract No.
IGERT DGO02-21715, and the Institute for Collaborative
Biotechnologies through Grant No. DFR3A-8-447850-23002
from the US Army Research Office. K.S. was also supported
by a National Science Foundation Graduate Research
Fellowship. D.G. was supported by the California Institute of
Technology through Consulting Agreement No. 102-
1080890 pursuant to Grant No. RO1IGMO078992 from the
National Institute of General Medical Sciences, and through
Contract No. 82-1083250 pursuant to Grant No.
RO1EBO007511 from the National Institute of Biomedical
Imaging and Bioengineering, and also from the University of
California at Santa Barbara under Consulting Agreement No.
054281A20 pursuant to funding from the National Institutes
of Health.

9 References

1 Nelson, D.L., Cox, M.M.: ‘Lehninger principles of biochemistry’
(Freeman, 2005, 4th edn.)

2 Michaelis, L., Menten, M.L.: ‘Die kinetik der invertinwirkung’,
Biochem. Z., 1913, 49, pp. 333-369

3 Gonze, D., Halloy, J., Goldbeter, A.: ‘Deterministic versus stochastic
models for circadian rhythms’, J. Biol. Phys., 2002, 28, pp. 637—653

4 Rao, C.V., Arkin, A.: ‘Stochastic chemical kinetics and the quasi-
steady-state assumption: application to the Gillespie algorithm’,
J. Chem. Phys., 2003, 118, pp. 4999-5010

5 Mastny, E.A., Haseltine, E.L., Rawlings, J.B.: “Two classes of quasi-
steady-state model reductions for stochastic kinetics’, J. Chem. Phys.,
2007, 127, article id 094106

6 Cao, Y., Gillespie, D.T., Petzold, L.R.: ‘The slow-scale stochastic
simulation algorithm’, J. Chem. Phys., 2005, 122, article id 014116

7 Cao, Y. Gillespie, D.T., Petzold, L.R.: ‘Accelerated stochastic
simulation of the stiff enzyme—substrate reaction’, J. Chem. Phys.,
2005, 123, article id 144917

8 Gillespie, D.T., Cao, Y., Sanft, K.R., Petzold, L.R.: ‘The subtle business
of model reduction for stochastic chemical kinetics’, J. Chem. Phys.,
2009, 130, article id 064103

9 Segel, L.A., Slemrod, M.: ‘The quasi-steady-state assumption: a case
study in perturbation’, SIAM Rev., 1989, 31, pp. 446—477

10 Gillespie, D.T.: ‘Exact stochastic simulation of coupled chemical
reactions’, J. Phys. Chem., 1977, 81, pp. 2340—2361

11 Gillespie, D.T.: ‘Stochastic simulation of chemical kinetics’, Annu. Rev.
Phys. Chem., 2007, 58, pp. 35-55

IET Syst. Biol., 2011, Vol. 5, Iss. 1, pp. 58-69
doi: 10.1049/iet-syb.2009.0057



10 Appendix

10.1 Deterministic and stochastic kinetic constants

Deterministic and stochastic kinetic constants are often denoted
k; and c;, respectively, to distinguish their types. Unimolecular
kinetic constants typically have units t ' in both deterministic
and stochastic models. However, bimolecular kinetic constants
typically have units M~ 't~ ! in deterministic models against
units of molecules 't~ in stochastic models. Converting a
deterministic bimolecular kinetic constant k into a stochastic
kinetic constant ¢ requires a system volume parameter ():
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¢ = k/(NQ)), where N is Avogadro’s constant. Also, note that
the stochastic reaction rate is different from the kinetic
constant (which is sometimes referred to as the kinetic rate).
The reaction rate is described by the propensity function. The
propensity function is equal to the kinetic constant multiplied
by the population counts of the reactant species [10, 11].
Therefore the reaction rate (propensity) in the stochastic
Michaelis—Menten approximation is Vp,,S/(Ky, + S), which
implies an effective unimolecular kinetic ‘constant’
MM = Vina/ (K + S) with the single reactant species S. The
kinetic parameter ¢y has units t~! consistent with a
unimolecular rate constant.
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