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We describe an algorithm to control synchrony between two periodi-
cally firing neurons. The control scheme operates in real-time using a
dynamic clamp platform. This algorithm is a low-impact stimulation
method that brings the neurons toward the desired level of synchrony
over the course of several neuron firing periods. As a proof of principle,
we demonstrate the versatility of the algorithm using real-time conduc-
tance models and then show its performance with biological neurons
of hippocampal region CA1 and entorhinal cortex.

synchrony controller; deep brain stimulation; dynamic clamp; phase-
response curve; spike time controller

in this article we present a method of controlling a neuron
via dynamic clamp to drive the neuron to fire with prescribed
spike timing. The control is based on the functional relationship
between a stimulus pulse amplitude, applied at a fixed phase of
a periodically firing neuron, and the phase advance. This func-
tion can be inverted and used as a control function to determine
what amplitude stimulus is needed to achieve a particular spike
advance. This controller is made possible by a real-time dynamic
clamp platform. We demonstrate two applications: the first is to
make a neuron fire in a random, but preselected, pattern of inter-
spike intervals (ISI); the second is to make the neuron phase
lock to a periodic system (e.g., another periodically firing neu-
ron). The ability to control spike timing and synchrony may play
an important role in treatment of many neurological diseases.
This work is primarily motivated by the importance of neu-
ronal synchrony in Parkinson’s Disease, epilepsy, and essential
tremor where it is thought that synchronous neuronal activ-
ity is critical to the pathological activity (Benabid et al. 2009;
Fisher et al. 2010; Kühn et al. 2009). Moreover, this controller
may be useful in developing closed-loop stimulation protocols
for deep brain stimulation (DBS) to help synchronize or desyn-
chronize a population using DBS pulses. This algorithm could
also be used to control spike timing in a central pattern generator
to generate a motor pattern.

Previously, we have demonstrated that a proportional-integral
(PI) controller can be used to maintain a neuron at a stable
ISI by adjusting the constant current applied to the neuron
(Miranda and Netoff, in press). The results presented focus on
controlling the neuron around a changing ISI. The basis for the

Address for reprint requests and other correspondence: T. Stigen, Dept. of
Biomedical Engineering, Univ. of Minnesota, Minneapolis, MN 55455 (e-mail:
tstigen@umn.edu).

event-based control method proposed is novel and different from
the PI controller.

We first describe how the controller works. We then demon-
strate the controller for a model neuron, then in a biological
neuron. Next, we show how the controller can be extended to a
Leader-Follower control paradigm where a neuron (the follower)
is made to phase lock with another periodic system (the leader).
Finally, we investigate how noise, frequency difference between
the leader and follower, and the phase offset between them affects
the phase locking between the two.

METHODS

Biological Preparation

Long-Evans rats age postnatal day 14–21 were deeply anesthetized
using isoflurane. The brain was extracted and bathed in a chilled artifi-
cial cerebral spinal fluid (aCSF; composition in mM: 124 NaCl, 2KCl,
2MgSO4,1.25 NaH2PO4, 2 CaCl2, 26 NaHCO3, and 10 d-glucose at
pH 7.4, 295 mosM) (1). Transverse slices of the ventral horn of the hip-
pocampal region were sectioned 400 μm thick on a vibratome (Leica
Microsystems, Bannockburn, IL). Neurons were visualized using differ-
ential interference contrast optics (Olympus, Center Valley, PA). Whole
cell patch-clamp recordings were performed in the CA1 region of hip-
pocampus and medial entorhinal cortex (MEC) using both pyramidal
and stellate cells. Borosilicate capillary pipettes were pulled to 8 M�
and filled with intracellular recording fluid (ICF; composition in mM:
120 K-glucose, 10 HEPES, 1 EGTA, 20 KCl, 2 MgCl2, 2 Na2ATP,
and 0.25 Na3GTP at pH 7.3, 290 mosM). The neuron’s membrane
potential was amplified and low-pass filtered at 2.4 kHz (Axon 700B;
Molecular Devices, Sunnyvale, CA) and digitized on a real-time Linux
computer (NiDAQ 6259; National Instruments, Austin TX) . The data
was recorded using the RTXI system (described below). Only neu-
rons that required holding currents less than −300 pA to maintain a
resting potential of −65 mV were utilized. In addition, only periodi-
cally firing neurons were used because the control algorithm requires
a well-defined phase to determine when to apply the stimulus pulse.
All experiments were conducted as approved by the University of
Minnesota Institutional Animal Care and Use Committee.

Dynamic Clamp

The dynamic clamp allows low-latency closed-loop experiments by
interfacing a data acquisition card (DAQ) to a patch-clamp ampli-
fier (Dorval et al. 2001). We use the Real-Time eXperiment Interface
(RTXI; rtxi.org), which is available online. RTXI operates on the Real-
Time Application Interface real-time Linux nanokernel (RTAI; rtai.org).
RTXI can be used with many different DAQ cards through the Comedi
project (comedi.org). The modules used in this project (as well as many
others) are freely available through the RTXI software repository. RTXI
can provide closed-loop control up to 100 kHz, and we did all experi-
ments at 5 kHz with latency of one time step = 0.2 ms and maximum
jitter of <0.01 ms.
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Fig. 1. Phase-dependent sensitivity. The phase-dependent sensitivity to stimulus
is measured by injecting a stimulus into the neuron at a random phase in its
period. A: plot of a neuron’s membrane potential (solid), unperturbed voltage
trace (shaded), and current pulses (offset). The stimulus is applied on every sixth
cycle to allow the neuron to return to its natural period and to avoid higher
order interactions from the neuron’s response. The current pulse causes a phase
advance of �θ . The response of this current pulse is shown in B as a circle.
B: spike advance plotted against stimulus phase showing that the peak advance
occurs at θ = 0.7 ≡ θc; stimulating at θc will yield the largest dynamic range.

Model Neuron

We use a conductance-based neuron model (Hodgkin
and Huxley 1952) called GACell. It is based on the model from
Golomb and Amitai (1997) and incorporates three potassium
(IKdr, IKA, IK,slow), two sodium (INa, INaP), and leak conductances
(IL, Iapp):

C
dV

dt
= −INa(V , h) − INaP(V ) − IKdr(V , n)

− IKA(V , b) − IK,slow(V , z) − IL(V ) + Iapp.

GACell is a model of a pyramidal neuron and is designed with the
parameters to allow for stable periodic firing. Noise in the model is
simulated by adding a scaled gaussian white noise to the applied cur-
rent. Noise current was applied at 5 kHz or 0.2 ms. The model was
integrated at 100 kHz using an fourth-order Runge-Kutta integrator
(Press et al. 2007). The lowest noise level (1×) is based on the coef-
ficient of variation statistic. In this case, we measured the coefficient of
variation (CV) of the ISI of a stable periodically firing CA1 pyramidal
neuron, giving CV = 0.075. By trial and error, we determined what
parameter values were needed in our white noise injection module to
recreate approximately the same CV with the GA neuron model. We
then repeated this process for 2×, 3×, and 4× multiples of the base
CV: 0.15, 0.3, and 0.45, respectively.

RESULTS

Single Cell Spike Time Control

Stimulus phase selection. The spike time control method pro-
posed is based on stimulating a periodically firing neuron at a
given phase with a pulse where the amplitude is selected to make
the neuron fire at a desired time.

Neurons exhibit a phase-dependent sensitivity to stimulus.
Selecting a stimulation phase that falls in an area of high sen-
sitivity will yield a larger range of control. We can locate the
optimal phase by stimulating the neuron at different phases and
measuring the spike advance. To avoid interactions between the
stimuli, the neuron is only stimulated every sixth cycle. In Fig. 1,
the spike advance is measured at different stimulus phases for the
model neuron (Gutkin et al. 2005). The stimulus waveform was
a square wave pulse with width 0.2 ms and amplitude 100 pA.
We define phase as a fraction of the natural period in the interval
θ ∈ (0, 1). It can be seen that the greatest advance occurs when
the stimulus is applied at θ = 0.7. It should also be noted that the
variance of the response early in the phase is higher than later
in the phase, meaning that stimulating later in the phase yields a
response that is more reliable (Beverlin et al. 2011). In general,
we find that the phase-response curves in pyramidal neurons in
hippocampus and entorhinal cortex tend to peak around a phase
of 0.6 and 0.7 phase as well (data not shown). Therefore, we
have chosen the stimulus phase θc = 0.7, which offers a balance
between response variance and higher dynamic range.

Determining spike advance. After selecting the stimulus
phase, θc, we characterize the phase advance as the stimulus
amplitude is varied. Figure 2A shows the voltage trace from a
neuron while being stimulated with a 0.2-ms current pulse, and
Fig. 2B shows the phase advance as a function of the stimu-
lus amplitude. To avoid interactions between the stimuli, the
neuron is only stimulated every sixth cycle. We will assume in
this controller that each stimulus does not have significant effect
on subsequent cycles, but it is possible to make a controller that
would account for these higher order effects (Talathi et al. 2009).
The spike advance as a function of current pulse amplitude has
a distinct sigmoidal shape. The upper limit (the maximum spike
advance) is bounded by causality, where the stimulus imme-
diately elicits a spike. The longest spike delay (negative spike
advance) has no well-defined limit, but the variance increases as
the interval gets longer with large negative current pulses. We fit
the data using a sigmoidal function of the form

�s(u) = A + B − A

1 + e
−u+C

D

≡ fs(u), (1)
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Fig. 2. Spike time advance curve. A: voltage trace of neuron (shaded) and current
stimulus pulses (solid) at phase = θc. B: spike advance plotted against amplitude
of current pulse. The phase advance as a function of stimulus pulse amplitude
has a sigmoidal shape. A negative phase advance corresponds to a delay in the
spike timing.
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Fig. 3. Model neuron spike time control. A: the spike advance curve and the
sigmoidal fit for a model neuron. White noise current is injected at a level com-
parable to that of a stable biological neuron. B: the time series of both the target
phase offset (circles) and the measured phase offset (dots) for a model neuron.
Shaded lines connect each pair for clarity. C: plot of the target phase offset
against the measured phase offset for the model neuron. The line has a slope of
unity and indicates exact control of spike timing.

where �s is the desired phase advance; A, B, C, and D are
constants; and u is the stimulus amplitude. A determines the
maximum delay, B determines the maximum advance, C deter-
mines the inflection point of the sigmoid, and D determines the
slope at the inflection point. The coefficients are determined by
fitting this equation to the measured data to give the least squared
error. We chose a sigmoid function for two reasons, first because
the data are well fit by this function, to a first approximation, and
second because the function is invertible. Although the sigmoid
may not fit perfectly at the extremes of stimulus amplitude, this
is generally outside of the working range of the controller. Most
important is that the function fits the data well around the origin;
we have found that even a linear function can serve well to model
the cell’s response if the stimulus range is limited enough.

For the control algorithm, we select a target �s and invert this
sigmoid to determine the necessary stimulus amplitude, using
the function

u = C − D · log

(
B − A

�s − A
− 1

)
≡ f −1

s (�s). (2)

The spike time advance curve fitting fs(u): (umin, umax) �→
(�smin, �smax), where, |�smin| corresponds to the maximum
possible spike time delay and �smax corresponds to the maxi-
mum possible spike time advance. We cannot control the spike
time advance beyond these values with a single stimulus per
period.

Model neuron. With the Golomb-Amatai neuron model, a PI
controller was used to drive the neuron to fire at 10 Hz. The phase
of the neuron is based on the target ISI of the PI controller. We
chose to stimulate the neuron at θc = 0.7. We stimulated the neu-
ron with current pulses of 0.2-ms width and amplitudes selected
uniformly at random from −1 to 1 nA, and the spike advances
were recorded and plotted against the stimulus amplitude, as
shown in Fig. 3A. Equation 1 was fit to the data to generate a
spike advance curve. The control function, which determines the
input amplitude necessary to make the neuron fire at a desired
time, was generated by inverting Eq. 1 to get Eq. 2. We then

performed a validation test, where we generated random desired
target phase advances in the range −0.3 to 0.3 and measured
the spike advance the controller achieved, as shown in Fig. 3, B
and C.

The correlation (R2) between the desired ISI and the mea-
sured ISI, shown in Fig. 3, A and B, was used as a statistical
measure of control efficacy. R2 = 1 if all the variability in the
neuron’s ISI can be explained by the desired ISI (i.e., under per-
fect control). For the model neuron driven with noise, R2 = 0.99,
indicating that 99% of the neuron’s variance could be attributed
to the control algorithm.

Biological neuron. Using the method described above, the
same process was performed using a pyramidal neuron in the
CA1 region of the hippocampus. An example from one sample
neuron is shown in Fig. 4. In this particular neuron, the current
pulse range used to generate the spike advance curve was −7.5
to 2.5 nA. The controller was then used to control the neuron
over a range of phase advances from −0.25 to 0.2. The current
range used for control in the real neuron was larger than that used
in the model for several reasons, including the resistance of the
neuron, the quality of the patch seal, and the neuron’s individual
dynamics. Therefore, the coefficients for the controller need to
be estimated for each neuron. The variance in the real neuron
compared to our model is larger. For this neuron, R2 = 0.87,
indicating that even in a real neuron the spike timing could be
perturbed reliably to make it fire in an arbitrary pattern. This
experiment was repeated in 42 neurons with R2 values ranging
from 0.6 to 0.95.

Leader-Follower Control

With the ability to control spike timing, we extended the con-
troller to create phase locking between two periodically firing
neurons (or a periodic neuron and any other periodic system).
One neuron is the leader, which is periodically firing and is
uncontrolled, and the other neuron is the follower, which may
have a slightly different period from the leader and is control-
lable. Our objective is to control the spike time of the follower to

Fig. 4. Biological neuron spike time control. A: the spike advance curve and
the fit control function for a CA1 pyramidal neuron. The intrinsic noise of a
biological neuron may be different from our white noise model. B: the time
series of both the target phase offset (circles) and the measured phase offset
(dots) for a biological neuron. Shaded lines indicate the controller error and
connect the actual spike time to the target spike time. C: plot of the target phase
offset against the measured phase offset for the biological neuron. The solid line
has unit slope and represents perfect control of spike timing.
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Fig. 5. Leader-Follower control algorithm. The follower phase, θs, is shown as
the solid line with spike events as × markers. The leader phase, θm, is shown
as the dashed line with + markers. The target follower spike times (leader spike
times offset by �tD) are shown by ◦ markers. The dotted line is the time the
stimulus pulse is applied, here θc = 0.75. In this example, the follower spikes
converge to the desired phase offset (relative to the leader spikes) after 2 periods
of control, and then the controller simply adjusts the period of the follower each
time to match that of the leader.

achieve a desired spike time difference or phase offset from the
leader’s while firing at a commensurate frequency as the leader.

Leader and follower as oscillators. The leader and follower
neurons are considered as periodic oscillators where the phase
linearly advances from 0 to 1 over the period. The target phase
difference is identified as the control goal. Phase for each cell is
definied by the target spike time difference divided by the target
ISI obtained by the PI controller. When the follower reaches
the stimulus phase θc, the spike time advance curve is used to
correct the difference between the neuron’s unperturbed next
spike time and the target spike time, as shown in Fig. 5. Because
of limitations on stimulus strength, it may not be possible to
advance or delay the neuron to the target with one stimulus.
Recall that there is a minimum �smin and maximum �smax spike
advance for a finite current amplitude range. If the neuron cannot
be stimulated in a single cycle to achieve the target phase offset,
then we may need multiple cycles to achieve the target offset. The
Leader-Follower controller determines whether the maximum
advance or delay will bring the neuron closer to the target phase
and then applies that stimulus. The details of this algorithm are
in the appendix.

In Fig. 6, two scenarios of the Leader-Follower control are
illustrated: controlling from anti-phase to in-phase (A) and
in-phase to anti-phase (B). In both cases, the controller applies
current pulses that rapidly bring the two neurons to the desired
phase offset, and then the controller continues to apply small
current pulses to maintain the phase locking on subsequent
cycles. Once the controller is activated, the desired phase offset
is achieved in one or two cycles. However, if the difference in
the natural frequencies is greater than the acceptable range of
the controller, then control will be intermittent and there will be
considerable phase slipping.

Model Neuron. We first applied the Leader-Follower con-
troller to a model neuron (Golomb-Amatai model) with baseline
(1×, CV = 0.075) noise. Both leader and follower neurons had
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Fig. 6. Leader-Follower control in action. A: a time series of the leader follower
algorithm controlling 2 model neurons to a target phase offset of 0, so that they
are in phase. Leader neuron is solid, follower neuron is shaded, and the control
is solid. B: a time series of the Leader-Follower algorithm controlling 2 model
neurons to a target phase offset of 0.5, or so that they are in anti-phase. The
algorithm can control to any arbitrary phase offset desired.

a period of 100 ms, and the target phase offset was 0.5 (anti-
phase). The phase offset between the leader and follower was
recorded for 3,000 spikes. Figure 7 shows the histogram of the
phase offset for a single 3,000-spike trial. The average spike
time difference was μ = 50.89 ms with a standard deviation of
σ = 2.85 ms. Figure 7, inset, is a polar plot of the histogram
in polar coordinates. As a measure of the controller’s efficacy,
we treat each phase offset as a unit vector in polar coordinates,
e2πθi where the angle is determined by the phase difference θi on
spike i, and j = √−1. The average phase difference is measured
as the normalized sum of the unit vectors θ̂ = 1

N

∑
i e2πθi . To
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Fig. 7. Leader-Follower control in model neuron. This histogram shows the dis-
tribution of phase offset between the leader and follower spike timing. This
is a model neuron with 1× noise injection. The targeted phase offset is indi-
cated by the dashed line. The inset image is a normalization of this distribution
in polar form. The arrow indicates the desired phase offset. In this example,
μ = 50.89 ms, σ = 2.85 ms, and E = 0.98.
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Fig. 8. Leader-Follower control in biological neuron. This histogram shows the
distribution of phase offset between the leader and follower spike timing. The
leader is a model neuron, and the follower is a pyramidal neuron from CA1.
The targeted phase offset is indicated by the dashed line. The inset image is a
normalization of this distribution in polar form. The arrow indicates the desired
phase offset. In this example, μ = 52.21 ms, σ = 14.24 ms, and E = 0.69.

determine the efficacy, E, of the controller, we calculate the vec-
tor correlation between the average phase and the target phase.
This is the dot product between the average phase and the target
phase E = θ̂ · e2πθd , where θd is the target phase (indicated as
a dark solid arrow in the polar plot). Empirically, we say that
there is poor control if the correlation in the range of 0 to 0.5,
moderate control in the range 0.5 to 0.75, and high control if it
is greater than 0.75. For the model neuron the vector correlation
is 0.98, indicating high control.

Biological neuron. We tested the Leader-Follower control
using pyramidal neurons in the CA1 region of hippocampus.
Recording from living neurons presents challenges that often
limit the ability to maintain long-term stable recordings, such as
dramatic changes in cell behavior, fatigue, and death. The leader
neuron is a periodically firing model neuron, and the follower
is the patch-clamped neuron. Both leader and follower had a
period of 100 ms. The target phase offset was 0.5, corresponding
to anti-phase locking. We recorded the phase offset between
the leader and follower over 2,267 spikes, and the histogram of
the data is shown in Fig. 8. The phase offset distribution has a
mean μ = 52.21 ms and standard deviation of σ = 14.24 ms.
In the real neuron, the control was moderate (E = 0.69) due
to the high coefficient of variation with respect to the model
neuron.

Algorithm Performance

Using the model neuron, we tested the robustness of the con-
troller as we varied different experimental parameters. We tested
the effect of noise amplitude in both leader and follower, the
effect of the target phase offset, and the effect of frequency
mismatch between the leader and follower.

Effect of noise. In Fig. 9, we illustrate the effect of noise in
both the leader and follower on the efficacy of control. The
effect of noise on the performance of the controller was mea-
sured in two configurations: periodic leader with noisy follower,

and noisy leader with noisy follower. For the noisy leader with
noisy follower configuration, independent noise was applied to
each. Results from these simulations were compared with those
from a sham configuration, where no current was applied to
the follower. In all configurations, the leader and follower have
ISI = 100 ms. The target phase offset was set at 0.25 for all
configurations. We recorded the phase offset for 10,000 spike
events for each configuration. The controller efficacy is mea-
sured by vector correlation as described above. For each of the
sham configurations, the efficacy is 0, as one would expect. For
the periodic leader with noisy follower configuration with noise
ranging from 1× to 4×, the efficacy decreased as noise increased,
and vector correlations were 0.98, 0.89, 0.68, and 0.39, respec-
tively. For the noisy leader with noisy follower configuration,
the efficacy was lower, with vector correlations 0.96, 0.79, 0.53,
and 0.28, respectively. It is to be expected that increasing noise
decreases control efficacy, since the ISI has a larger variance,
which makes it more difficult for the controller to accurately
predict future control intervals.

Effect of phase offset. In Fig. 10, we illustrate the phase offset
independence of this algorithm with noise with a periodic leader
and noisy follower. Both leader and follower had a period of
100 ms. We measured the efficacy of the controller over a range of
phase offset values from 0 to 0.95 for 3,000 spikes. These values
cover intermediate values between in-phase (0 and 1) and anti-
phase (0.5) solutions. These values were chosen to demonstrate
that there is no bias of the controller to the desired phase offset.
The efficacy did not significantly change with relation to the
spike time offset, but the average vector correlation decreased
with noise, ranging from 1× to 4× noise as 0.98, 0.82, 0.61,
and 0.23 (results were not significantly different from control
around phase 0.25 as described above, with differences attributed
to shorter simulations).

Effect of ISI mismatching. In Fig. 11, we illustrate the effect
of mismatched ISIs on the algorithm. We varied the period of
the noiseless leader neuron from 70 to 130 ms while fixing the
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Fig. 9. Effect of noise on Leader-Follower control in model neuron. Shown are
histograms of the phase offset between the leader and follower spike timing
under 1×, 2×, 3×, and 4× noise levels. Each plot shows the distribution with
the control running as a sham with no current applied to the follower (shaded)
and in an operational state (solid). The target phase offset is indicated with a
vertical line.
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Fig. 10. Effect of target phase offset on control in model neuron. Shown is a
plot of the vector correlation of the phase offset distribution vs. the target phase
offset. The vector correlation at each target phase offset was measured in a model
neuron with 4 noise levels.

period of the follower neuron at 100 ms. The controller max-
imum advance and delay allowed was 30 ms. The controller
was rather robust until the phase offset approached the maxi-
mum of range of the controller, and then it dropped off sharply.
With higher noise values, the range of control is decreased.
We observed phase locking again when the ratio between the
leader and follower approached rational ratios, but the behavior
was complex and beyond the scope of this report. It is interest-
ing to note that these curves are asymmetric and become more
asymmetric as noise increases. This is because phase slipping
does not occur as frequently when the leader period is shorter.
Since the algorithm is triggered on the follower spike event,
when the leader period is shorter, the next leader spike event is
normally within the control range. This is not the case when the
leader period is longer.

DISCUSSION

In this report, we have demonstrated a method by which a neu-
ron can be controlled around any arbitrary pattern of admissible
ISIs. This controller works by stimulating a periodically firing
neuron at a selected phase. A model of the neuron’s dynamics is
generated by fitting a sigmoidal function to the phase advance
vs. amplitude data. The control function is then calculated by
inverting this function to calculate the necessary stimulus ampli-
tude to achieve a spike at the desired time. In practice, this
controller could control nearly 90% of the variance in a hip-
pocampal CA1 pyramidal neuron in vitro. The algorithm was
extended to phase lock two neurons at an arbitrary phase offset.
In spike timing control and phase locking experiments, controller
performance was robust to high levels of noise. In the phase
locking experiments, the controller could maintain phase lock-
ing even with large differences in the natural frequency of the
neurons being controlled.

Spike timing control works best when the neuron’s response
to the stimulus is reliable and the variance of the ISIs is low.
The more accurately the spike times are known and the more
reproducible the spike advance is, then the more accurately the
controller can achieve the target spike time offsets. Control is

best in neurons with a greater dynamic range-to-noise ratio. If a
neuron’s dynamic range is small, the spike advance can be lost
in the noise. In terms of cell viability, a high current-to-spike
advance gain is beneficial. Generally, cells with a high gain will
be able to stay under control longer before they fail. This might
be mitigated by using charge balanced stimulus waveforms.

The control will work better when the spike advance data is
well fit by a sigmoid of the form in Eq. 1. For small perturbations,
we have used a linear fit to the spike advance as a controller
with a great deal of success. When larger perturbations are used,
nonlinearities in the response begin to emerge. In this report,
we have proposed a sigmoidal function to fit the data, but any
invertible function fit to the data could be used to correct for
these nonlinearities. In general, because neurons are noisy, even
a rough fit to the spike advance curve provides sufficient accuracy
for control.

In nearly all neurons, the range of spike time delay is much
larger than the range of spike time advance. This is due to the
selection of the stimulation phase toward the end of the neuron’s
period, but less trivially, it is because the delay is not bounded
by causality. Spike time delay in a neuron is limited only by
the maximum current that can be safely injected into the cell.
Therefore, we found that for control cases where the mean ISI
lengthening is tolerable, the control algorithm can control a much
larger dynamical range than when the delays need to be balanced
by advances to keep the mean ISI the same as the unperturbed
case.

We found that the coefficients of the controller derived from
the spike time advance curve were remarkably similar across
neurons. This may indicate that the controller optimized for one
neuron in a population may work, perhaps suboptimally, for
most neurons in the population. If this is the case, it is possi-
ble that this controller may be used to control a population of
neurons.

In the Leader-Follower algorithm, the stimulus can be applied
every cycle, which can lead to significant, but temporary, changes
in the average ISI of the follower. In cases when we had a
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Fig. 11. Effect of interspike interval (ISI) mismatch on control in model neuron.
Shown is a plot of the vector correlation of the phase offset distribution with the
target phase offset versus the follower neuron ISI. The leader period was fixed
at 100 ms, and the follower period was varied between 70 and 130 ms.
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2080 CONTROLLING SPIKE TIMING AND SYNCHRONY

controller maintaining the follower’s ISI using a PI controller,
this could result in competition between the two controllers,
resulting in decreased controller performance. Balancing the
parameters of the PI controller to correct for slow drift in
the ISI but not to respond to transient changes caused by the
Leader-Follower controller corrects for this problem.

This framework can be extended to more complicated variants
of this problem. Multiple instances of this control system could
be implemented with any number of follower neurons, each with
their own phase offset. By setting each follower i’s phase offset
�tD,i = 0, we can control to synchrony, or by setting �tD,i =
(i − 1)/Tm, we can desynchronize them.

The algorithm assumes independence of stimuli, and this may
not be strictly true. Stimulation on two consecutive periods may
introduce some small higher order responses. In general, ignor-
ing these effects will introduce errors, but they are small relative
to the inherent noise of the neuron. However, it is possible to take
these effects into account and in theory improve the controller
(Talathi et al. 2009).

This work is a proof of principle. This control algorithm may
have applications in treating neurological diseases characterized
by pathological synchronization, such as Parkinson’s Diseases,
epilepsy, and essential tremor. The controller could be used
to divide a synchronous population into subgroups to disrupt
pathological synchrony of the network, in an approach similar
to coordinated resetting (Tass et al. 2009) or phase desynchro-
nization (Danzl et al. 2009). This algorithm may be used in a
closed-loop DBS to determine the subthreshold stimulus based
on the physiological response to “gently” perturb the neuron
toward the target phase offset. This may increase efficacy and
reduce power consumption.

APPENDIX

We present the details of the Leader-Follower spike timing control
algorithm. Both the leader and follower neurons are modeled as simple
oscillators. The leader, having a natural frequency ωm (in Hz) and initial
phase θm,0, can be described by

Leader neuron θ̇m = ωm, θm(0) = θm,0,

and the follower having a natural frequency ωs, and initial phase θs,0,
can be described by

Follower neuron θ̇s = ωs + Z(θc, u)u, θs(0) = 0.

Before we describe the algorithm itself, we discuss the fundamental
limitations on the relationship between the natural periods of the leader
and the follower neurons. These limitations are due to the fact that the
control magnitude is finite and bounded, and the limitations apply to any
such algorithm, not just the one presented in this report. The variables
�smax and |�smin| are the maximum spike time advance and delay
under the maximum control magnitudes umax and umin. These values
are critical because they determine the maximum possible discrepancy
between the period of the leader and the follower, which must satisfy

Ts − �smax ≤ Tm ≤ Ts + |�smin|, (3)

where Tm = 1/ωm is the natural period of the leader neuron and Ts =
1/ωs is the natural period of the follower neuron. The challenge is the
fact that we cannot achieve any desired advance, only advances within
the interval (�smin, �smax).

Preprocessing

Before the control is activated, the control system calculates some
quantities that will be used in the online algorithm. The first is i∗m, which
is the maximum number of follower control iterations necessary to hit
a desired spike timing:

i∗m =
⌈

Tm

�smax + |�smin|
⌉

(4)

where 
·� is the round-up operator. The rationale behind this claim is that
each target spike time will be Tm time units away from the next, and each
time the control is activated (at t = t0, the spike of the follower neuron),
the control can adjust the timing of the next spike to be anywhere in the
time interval (t0+Ts−�smax, t0+Ts+|�smin|). So in n control periods,
we can adjust the timing of the nth follower spike to be anywhere in the
interval (t0 +nTs −n�smax, t0 +nTs +n|�smin|). For sufficiently large
n ≤ i∗m, n(�smax + |�smin|) ≥ Tm, which means the control window
is larger than the period of the target spikes, a situation that guarantees
success in hitting a single target spike. As stated before, once synchrony
to a single target spike is achieved, we then take the difference of the
interspike intervals Ts − Tm as our desired spike advance and maintain
this phase offset indefinitely.

Event-Based Algorithm

At each event (follower spike), we need to determine whether to
command the maximum advance, maximum delay, or some intermedi-
ate spike advance. This task is accomplished by two nested algorithms:
event_control, which is the high-level driver; and spike_advance,
which is called to calculate the desired spike time advance each control
period. We assume that our implementation-level control system tracks
current time in the variable t and the most recent spike time of the leader
neuron in the variable tlast .

Algorithm 1 event_control(t, tlast)
1: t0 = t
2: θm(t0) = (t0−tlast )

Tm
3: �s = spike_advance(t0, θm(t0))
4: u = f −1

s (�s)
5: apply pulse with amplitude u at time t0 + θcTs

Explanation: Algorithm 1 event_control

The control system is triggered when the follower neuron spikes.
At this instant, we sample the current time, t, and the time of the last
recorded leader neuron spike, tlast .

Line 1: Assign the current value of t to the variable t0. This will serve
as a time offset for future calculations.

Line 2: Estimate the phase of the leader neuron based on its last
recorded spike time.

Line 3: Call the spike_advance algorithm to determine the optimal
follower spike time advance to command.

Line 4: Calculate the current amplitude needed for the stimulus to
cause the desired spike advance.

Line 5: Apply the stimulus pulse when we expect the follower
neuron’s phase to be at the optimal stimulus point, θc.

Explanation: Algorithm 2 spike_advance

This algorithm is called from the event_control algorithm and is
used to compute the desired spike advance. This function would be
trivial if we could command any arbitrary spike advance. Since we are
restricted in our choice of spike advance to the range (�smin, �smax),
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Algorithm 2 spike_advance(t0, θm(t0))
1: initialize i = 1, term = 0

2: Tt =
{

tt = t0 + [1 − θm(t0)]Tm + �tD + kTm,
k ∈ Z≥0 | t0 < tt < t0 + i∗mTs

}

3: IC = (t0 + Ts − �smax, t0 + Ts + |�smin|)
4: if Tt ∩ IC �= ∅ then
5: �s = Ts − (min{Tt ∩ IC} − t0)
6: else
7: i++
8: while term == 0 do
9: IA = (t0 + iTs − i�smax, t0 + iTs)

10: ID = (t0 + iTs, t0 + iTs + i|�smin|)
11: if Tt ∩ IA �= ∅ then
12: �s = �smax, term = 1
13: else if Tt ∩ ID �= ∅ then
14: �s = �smin, term = 1
15: else
16: i++
17: end if
18: end while
19: end if
20: return �s

we must take care in deciding what to do if we cannot reach the first
desired spike time in one round of control.

The dynamic information passed to this function includes the current
follower spike time offset, t0, and the estimated phase of the leader,
θm(t0).

Line 1: Initialize an integer counter, i, and a boolean flag, term.
Line 2: Calculate a set of target spike times, Tt . These are based

on when the leader neuron will spike next and what the desired time
interval is between the leader and follower spikes, �tD. The set is trun-
cated using our estimate of the maximum possible control periods, i∗m,
necessary to reach any Tm-periodic spike train, as calculated in Eq. 4.

Line 3: Calculate our first interval of control, IC . This represents the
amount we can change the next follower spike time by applying up to
the maximum advance or delay in this control period.

Line 4: Check to see if a target spike time lies within the first interval
of control. If not, this will return ∅ (the null or empty set).

Line 5: If the intersection of the set of target spike times, Tt , and the
first interval of control, IC , is nonempty, choose the first target spike
time in the intersection set and compute the necessary spike advance to
apply this control period. At this point, the Line 4 if statement is done;
proceed to Line 20.

Line 6: If the intersection of Tt and IC is empty, we cannot achieve
our control objective in one control period. We must now enter into an
iterative portion of the algorithm that will decide whether to apply the
maximum spike advance �smax or maximum spike delay �smin.

Line 7: Increment the counter, i. This counter tracks how many (hypo-
thetical) control periods must be used to result in enough cumulative
spike advance or delay for a follower spike to coincide with a leader
spike.

Line 8: This while loop runs until we have found how many periods
of successive maximal advances or delays are necessary to achieve our
objective, codified by setting the terminal flag, term, to 1 (true). This
while loop is guaranteed to terminate within i∗m iterations.

Line 9: Compute the ith advance control interval. This represents the
interval of control that can be achieved in i control periods by applying
the maximum advance, �smax, each time.

Line 10: Compute the ith delay control interval. This represents the
interval of control that can be achieved in i control periods by applying
the maximum delay, �smin, each time.

Line 11: Check to see if any target spike times lie within this ith
interval of maximally advancing control, IA.

Line 12: If the intersection of the set of target spike times and the
ith interval of maximally advancing of control is nonempty, this means
that by continuing to apply to maximum spike advance, �smax, we can
eventually achieve our control objective. Set �s = �smax and switch
the boolean termination flag, term, to 1 (this will get us out of the while
loop).

Line 13: Check to see if any target spike times lie within this ith
interval of maximally delaying control, ID.

Line 14: If the intersection of the set of target spike times and the
ith interval of maximally delaying of control is nonempty, this means
that by continuing to apply to maximum spike delay, �smin, we can
eventually achieve our control objective. Set �s = �smin and switch
the boolean termination flag, term, to 1 (this will get us out of the while
loop).

Lines 15 and 16: If both interval intersection checks return the null
set, increment the counter i by one and return to Line 8.

Line 20: The algorithm will return the desired spike advance �s to
the event_control algorithm that called it.
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