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Agent-based models simulate simultaneous actions and interactions of multiple agents, in an attempt to
re-create and predict the appearance of complex phenomena. We propose to use global sensitivity
analysis as a tool for analyzing and evaluating agent-based models. A general approach for applying the
global sensitivity analysis to agent-based models is presented and tested on the example of a socio-
cultural agent-based model we developed earlier [45]. We identify the most significant parameters in the
model and uncover their contributions to the outputs of interest. Methodology of model reduction for
agent-based models is discussed and demonstrated for the aforementioned model.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

An agent-based simulation is a computational technique in
which behavior of individual agents or group of agents is encoded
by simple rules, and the outcomes are observed at the scale of
the system. Agent-based modeling is a widely used technique
in different areas such as computer science [1–3], economics [4–7],
biology [8], ecology [9], social phenomena [10–16]. The agent-
based model is basically a big Markov chain, which however is too
big for the standard analysis. The agent-based modelling is gaining
popularity in the context of risk analysis and reliability [17].

Sensitivity analysis for agent-based models provides under-
standing of the influence of the different input parameters and
their variations on the model outcomes. The objective of the
sensitivity analysis is to identify the most significant parameters
in the model and to quantify how the parameter uncertainty
influences the outcomes. To perform the sensitivity analysis, the
considered model is evaluated a specified number of times with
different values of the input parameters. Based on the results, a
reduced model with a smaller set of parameters can be produced.
Sensitivity analysis is important for understanding relationship
between input parameters and outputs, testing the robustness of
the output, and identifying errors in the model. Sensitivity analysis
strategies are well presented in [18]. The review on calibration,
validation, and sensitivity analysis and survey of sampling-based
ll rights reserved.
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methods for uncertainty and sensitivity analysis can be found in
[19,20]. Some sensitivity analysis techniques for agent-based
models have been discussed in [21–25].

In Ref. [21] an agent-based model of the spread of the com-
municable disease measles is considered. The authors demon-
strated that the dynamic spatial interactions within the population
lead to high numbers of exposed individuals who perform sta-
tionary activities in areas after they have finished commuting. The
univariate technique, when the model outcome is analyzed with
respect to the variation of one parameter at a time with the other
parameters of the system being constant, was used for the
sensitivity analysis. To analyze the impact of the parameters, the
model outputs (daily numbers of susceptible, exposed, infected,
recovered individuals) were visually compared. The results indi-
cated that the model is sensitive to the rate of infection parameter,
based on the population density, and the time spent in daily
activities.

In Ref. [22] the agent-based model called Agricultural Policy
Simulator, which shows the agricultural structural development
on the regional level, is studied. The authors selected five para-
meters and one output (average economic land rent per hectare in
the region) for analysis. The least squares method is used to fit the
data to the linear response surface function. The graphical analysis
(mean, scatter and block plots) is used to determine the most
important parameter which is the interest rate level followed by
the technological change and the managerial ability. The same
parameters are identified by applying the linear regression model
in which the output is regressed on factor level settings and two-
factor interactions.
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In Ref. [23] an agent-based model describing granuloma forma-
tion during M. tuberculosis infection is presented. The authors pick
12 of the 27 parameters of the model and study their effect on the
development and spread of infection. Latin hypercube sampling
method with 1000 samples and uniform distribution for all para-
meters was used. The sensitivity analysis was done by using partial
rank correlation coefficients on each parameter set. In such a way
sensitivity of each considered parameter was calculated at every
specified time moment. The analysis showed that the intracellular
growth rate of the bacteria is strongly and positively correlated with
the number of extracellular bacteria at early and late times of the
infection and negatively correlated at intermediate times.

In Ref. [24] an agent-based model of Leishmania major infec-
tion is considered. It is based on the work from [23]. The authors
select five parameters out of 25 parameters for the sensitivity
analysis, which is performed by using Gaussian processes to
approximate the computer code. The functional analysis of var-
iance (ANOVA), where the total functional variance of the Gaussian
process is decomposed into variance due to the main and inter-
action effects of the parameters, was used to find important
parameters at every specified time moment. It was shown that
the growth rate is the most important parameter for any time
point.

In Ref. [25] an agent-based model of mosquitofish population
dynamics is considered. The model includes 30 parameters driving
the model expectancy and 11 parameters driving the model
variability. In order to estimate local sensitivity coefficients by
linear regressions, all parameters were varied simultaneously, at
random, around their prior values. Also, ANOVA was carried out
with complete factorial design for each output (two levels per
factor). It was shown that the most important parameter is the
effect of fish population biomass.

As seen from the above brief literature review, sensitivity
analysis techniques for agent-based models consist mainly of
visual analysis, one-parameter-at-a-time local techniques
(e.g. partial derivative), and techniques assuming linear or mono-
tonic relationships between model parameters and model outputs
(e.g. least squares linear fit, linear regression, Gaussian process,
partial rank correlation coefficient). None of the methods listed in
this paragraph are capable of providing sensitivity indices for non-
monotonic input-output dependencies typically observed in
agent-based models. Moreover, local sensitivity analysis involves
computation of the derivative of the model response with respect
to the input parameters and does not take into account interac-
tions between parameters. Other reasons against using local
sensitivity techniques can be found in Ref. [26].

On the other hand, global sensitivity analysis methods evaluate
the effect of a parameter while all other parameters are varied as
well and thus account for interactions between parameters. Global
sensitivity techniques can be applied to arbitrary nonlinear func-
tions. In order to avoid the “curse of dimensionality” of the factorial
analysis, global sensitivity indices are computed by sampling the
space of uncertain parameters. Computational complexity of
global variance sensitivity indices scales linearly with the number
of samples and the number of parameters [31]. Agent-based
models typically have many parameters and each model evalua-
tion can take minutes. Thus direct evaluation of global sensitivity
indices can be prohibitive.

In this paper we present a global sensitivity approach based on a
meta-model (surrogate model or response surface) corresponding
to a given agent-based model. Unlike techniques based on a linear
fit of model outputs with respect to model parameters, our meta-
model is an accurate support-vector regression based analytical
model representation, which preserves interactions between model
parameters. We discuss global variance-based and derivative-based
sensitivity indices. We demonstrate agent-based model sensitivity
analysis on an example of the civil violence/criminal activity agent-
based model. We also perform model reduction process for the
given high dimensional agent-based model.
2. Model analysis

Global sensitivity analysis [27] is a comprehensive approach to
the model analysis. Both variance-based and derivative-based
global sensitivity can be calculated. The input factors responsible
for model variability are identified and their contribution to
variability of model outputs is quantified.
2.1. Variance-based global sensitivity

Let f ðx1;…; xnÞ be a square integrable function defined in the
domain Rn. The inputs are treated as random variables and their
probability density functions represent the associated uncertainty.
The impact of the multiple input variables on the output can be
independent as well as cooperative, and the analysis of variance
(ANOVA) expresses the model output f ðxÞ as a finite hierarchical
cooperative function expansion in terms of its input variables. In
order to express the input–output relationship of complex models
with a large number of input variables, the mapping between the
input variables x1;…; xn and the output variables f ðxÞ ¼ f ðx1;…; xnÞ
in the domain Rn can be written in the following form [27]:

f ðxÞ ¼ f 0 þ∑
i
f iðxiÞ þ ∑

io j
f i;jðxi; xjÞ þ⋯þ f 1;2;…;nðx1; x2;…; xnÞ;

where f0 is the constant mean effect (zeroth order), function f iðxiÞ
is a first order term describing the effect of variable xi acting
independently upon the output f ðxÞ, function f i;jðxi; xjÞ is a second
order term describing the cooperative effects of variables xi and xj
upon the output f ðxÞ. The higher order terms reflect the coopera-
tive effects of increasing numbers of input variables acting
together to influence the output f ðxÞ. The last term f 1;2;…;nðx1;
x2;…; xnÞ contains any residual nth order cooperative contribution
of all input variables. All terms in ANOVA decomposition are
orthogonal to each other.

The total variance D is computed as follows:

D¼
Z

ðf ðxÞ−f 0Þ2ρðxÞ dx; ð1Þ

where ρðxÞ is the probability density of distribution of input
variables.

Partial variances are defined as follows:

Di1 ;…;is ¼
Z

f 2i1 ;…;is ðxi1 ;…; xis ÞρðxÞ dx:

The total partial variances Dtot
i for each parameter xi, i¼ 1;n,

can be obtained as

Dtot
i ¼∑

〈i〉
Di1 ;…;is ; 1≤s≤n;

where 〈i〉 means summation over all Di1 ;…;is that contain index i.
After the total partial variances are determined, the total

sensitivity indices can be calculated as follows:

Stoti ¼ Dtot
i

D
; 0≤Stoti ≤1: ð2Þ

By definition, the total partial variance Dtot
i for each parameter

xi is

Dtot
i ¼D−VarðEðf jx−iÞÞ≡EðVarðf jx−iÞÞ; ð3Þ

where f jx−i is a function of xi with all other parameters fixed.



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

LEOs−to−actives ratio

C
iti

ze
n’

s 
pe

rc
ei

ve
d 

ris
k

Fig. 1. Citizen's perceived risk function.
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For independent parameters, Eq. (3) can be rewritten in the
following way [28,30]:

Dtot
i ¼ 1

2

Z Z
½f ðxÞ−f ðx1;…; xi−1; x′i; xiþ1;…; xnÞ�2ρðx′iÞ dx′iρðxÞ dx:

ð4Þ
It is easy to see that direct application of Eqs. (1)–(4) requires

ðnþ 1ÞN model evaluations to compute the total sensitivity indices
for all input parameters, where n is the number of parameters and
N is the number of samples needed to compute each integral.

2.2. Derivative-based global sensitivity

Derivative sensitivity indices Ntot
i in norm L2 for each parameter

xi, i¼ 1;n, can be calculated as follows:

Ntot
i ¼ αis2i

D

Z
∂f ðxÞ
∂xi

�
2

ρðxÞ dx;
"

ð5Þ

where D is given by Eq. (1), variance s2i ¼ 1
2

R ðxi−x′iÞ2ρðxiÞ
dxiρðx′iÞ dx′i, and αi is a constant for each distribution ρðxiÞ. For
example, αi ¼ 1 for normal distribution, αi ¼ 12=π2 for uniform
distribution, αi ¼ 4 for exponential distribution. Derivative sensi-
tivity indices Ntot

i are upper bounds of the corresponding variance-
based sensitivity indices Dtot

i : Dtot
i ≤Ntot

i (see Ref. [28]).
L1-norm derivative sensitivity indices can be calculated as

follows:

Ltoti ¼
ffiffiffiffiffiffiffiffiffi
αis2i
D

s Z ��� ∂f ðxÞ
∂xi

���ρðxÞ dx: ð6Þ

As in the case of variance-based sensitivity indices, one has to
perform ðnþ 1ÞN model evaluations when directly applying Eq. (5) or
(6) to compute the derivative-based sensitivity indices.

2.3. Meta-model-based estimation of global sensitivity indices

Advanced agent-based models have tens to thousands para-
meters (large n). Thus, the number of required model evaluations
ðnþ 1ÞN is usually prohibitively large for global sensitivity analy-
sis. We have developed software GoSUM (Global Optimization,
Sensitivity and Uncertainty in Models) [47] that makes the number
of model evaluations independent on n. This makes GoSUM a
perfect tool for analysis of agent-based models with large running
times and large number of parameters.

The appropriate number of samples is created, for which an
agent-based model is executed, then it is learnt (a meta-model is
created) by using support vector regression (SVR) with Gaussian
kernels. The global sensitivity indices are still calculated for each
variable, but the required samples are extracted from the meta-
model, which is many orders of magnitude faster than the original
agent-based model. In the case of independent parameters,
techniques described in Ref. [29] are used to estimate variance
sensitivity indices. In the case of correlated parameters, we use Eq.
(3) directly. Global derivative sensitivity indices are computed
using Eqs. (5) and (6).

Meta-models are nowadays often used to model computation-
ally intensive problems from various areas such as aerospace,
electronics, automotive industry, chemistry, finance. The basic
approach is to construct the simplified model that is computa-
tionally efficient and can accurately predict the characteristics of a
product. There are a lot of metamodeling techniques: the response
surface methodology [32,33], Kriging model [34], neural networks
[35], radial basis functions [36], multivariate adaptive regression
splines [37], inductive learning [38]. In the case of highly nonlinear
models the regression version of support vector machines is applied
[39–41]. The support vector regression based meta-models are used
in various applications such as automobile, ship and aircraft design,
crashworthiness design and many others [42–44].
3. Global sensitivity analysis of a socio-cultural agent-based
model

In this section we demonstrate the global sensitivity analysis
techniques on the example of the civil violence/criminal activity
agent-based model developed by the present authors in Ref. [45].
The coarse-grained version of the model can be found in Ref. [46].
There are two kinds of agents in the model: citizens and law
enforcement officers (LEO's). Citizens are members of the popula-
tion and LEO's are the forces of the authority. All events transpire
on a lattice with periodic boundaries. All citizens move once per
day, and LEO's move several times per day.

3.1. Description of the agent-based model and main results

Each citizen is assigned hardship H drawn from the uniform
distribution Uð0;1Þ. The hardship is heterogeneous across citizens
and is fixed for each citizen. The perceived legitimacy L of the law
enforcement authority is equal across citizens and can be between
0 and 1. The hardship and the legitimacy are used to define
citizen's grievance E¼Hð1−LÞ. Some citizens are more willing to
pursue criminal activity than others, this is encoded by the risk
aversion K. Each individual's risk aversion is drawn from Uð0;1Þ
and is fixed for each citizen. The citizen's vision v is a circle of
radius v that comprises lattice positions that the citizen is able to
inspect. The vision is equal across citizens. The citizen's perceived
net risk N is defined as follows: N¼KP, where P is a function of
the ratio of LEO's to active citizens. If for a law-abiding citizen the
difference E−N exceeds T, where T is some threshold, then
the citizen becomes criminally active. If, for an active citizen, the
difference E−N exceeds T, then the citizen stays active. Otherwise,
he/she becomes law-abiding. In summary, the citizen's rule for
being active or quiescent is the following: If E−N4T be active;
otherwise, be quiescent.

The citizen's perceived risk function P is defined as

PðC=AÞ ¼ 1−expð−k′ðC=AÞÞ ∑
15

i ¼ 0

ðk′ðC=AÞÞi
i!

; ð7Þ

where A is the number of active citizens (including self) within
citizen's vision, C is the number of LEO's within citizen's vision,
constant k′¼ 62:6716 is found from the condition that Pð1=4Þ ¼ 0:5
(see Fig. 1).

The perceived risk is in fact zero up to a threshold value, after
which it increases monotonically, thus giving it a sigmoidal shape.
The sigmoidal shape encodes a level of irrational behavior by citizens,
where the real risk of being incarcerated is being diminished by the



J

A

Q
JT=0

arrest E-N≥T

E-N<T 

Fig. 3. The active citizen (A) can retain its active state, go to jail (J) if the LEO arrests
him/her, or become quiescent (Q) if the difference between the citizen's grievance E
and the citizen's perceived net risk N is smaller than the specified threshold.
The quiescent citizen (Q) can retain its quiescent state or become active (A) if the
difference between the citizen's grievance E and the citizen's perceived net risk N is
bigger or equal to the specified threshold. The jailed citizen (J) becomes quiescent
(Q) when its jail term (JT) is over.
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proportion of others in the same situation. The law enforcement
operates through the rule that a LEO agent arrests the nearest active
citizen. This rule leads to dynamics in which local crime hotspots
attract police action, thus reflecting the modern problem-oriented
policing law enforcement strategies. For more information on roots
of the model in criminology theory see [45].

In general, citizens are less likely to engage in violence as the
local ratio between number of LEO's and active citizens increases
due to a fear of being identified and incarcerated. The citizen state
(active or quiescent) can be regarded as a function of threshold T.
Fig. 2 shows the structure of population depending on threshold.
In particular, in the case when T41−L, all citizens are always
quiescent regardless of the lattice situation; we call these citizens
“never active” and denote their fraction in the population as G. In
the case when To−1, all citizens are “always active”, and we
denote their fraction in the population as R. When −1oTo0, G¼0
and all citizens are either “always active” or “conditionally active”
(active or quiescent depending on the lattice situation). The case
when 0oTo1−L, is the most realistic one with all three groups of
population present. In practice the threshold T and legitimacy L for
the model run can be found using statistical data on fractions of R
and G in the population

T ¼ 2R
1−G

; ð8Þ

L¼ 1−
2R

Gð1−GÞ : ð9Þ

LEO's seek out and arrest active citizens. The LEO's vision w is a
circle of radius w that comprises lattice positions that the LEO is
able to inspect. It is equal across LEO's. The LEO's rule is the
following: Inspect all sites within w and arrest the nearest active
citizen. Jail terms for arrested actives are assigned randomly from
Fig. 2. Citizen state as a function of threshold. Green – fraction of citizens who are never
who use arrest probability to decide their state. (For interpretation of the references to
Uð0; JmaxÞ, where Jmax is the maximum jail term. Citizens and LEO's
move on the lattice by using the following movement rule: Pick a
random neighboring location on the lattice (from Moore neighbor-
hood: 8 adjacent cells), if that location is unoccupied –move there,
if the location is occupied – stay put.

In such a way, citizens can be active in criminal and/or violent
activity, stay quiescent, or be jailed (see Fig. 3).

The procedure of a run is as follows. A citizen or a LEO is
selected at random. The probability of selecting a LEO is higher
according to the number of moves a LEO can make per day. If the
selected person is a non-jailed citizen, then he/she moves accord-
ing to the movement rule; if the citizen is in jail, then the days at
jail are calculated and if the number of days at jail is equal to
the assigned jail term the released citizen is put on a random
unoccupied site on the lattice. After that the state of the citizen is
calculated depending on the current lattice situation. If the
selected person is a LEO, then he/she inspects all sites within
the vision, arrests the nearest active citizen (if any) and jumps to
the last location of the arrested citizen. The jailed citizens are
active, red – fraction of citizens who are always active, yellow – fraction of citizens
color in this figure caption, the reader is referred to the web version of this paper.)



Table 2
Model outputs.

Output
number

Output name

1 Number of actives not in jail per 1000 citizens
2 Number of violent outbursts per year
3 Peak number of active citizens per 1000 citizens
4 Rate of violence per 1000 citizens
5 Number of times an always active citizen is arrested
6 Number of times a conditionally active citizen is arrested
7 Probability of not being arrested for an always active citizen
8 Probability of not being arrested for a conditionally active

citizen
9 Probability of not being arrested for a never active citizen
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placed outside the lattice. Then the LEO moves under the move-
ment rule. The model iterates this procedure until the simulation
time is reached.

In [45] it was shown that the proportion of law enforcement
officers required to maintain a steady low level of criminal activity
increases with the size of the population of the city. The nature of
violence changes from global outbursts of criminal/violent activity
in small cities to spatio-temporally distributed decentralized out-
bursts of activity in large cities, indicating that in order to maintain
peace, bigger cities need larger ratio of law enforcement officers
than smaller cities. It was also deduced that the number of criminal/
violent events per 1,000 inhabitants of a city shows non-monotonic
behavior with size of the population. The existence of tipping points
for communities of all sizes in the model was observed: reducing the
number of law enforcement officers below a critical level can rapidly
increase the incidence of criminal/violent activity. These trends are in
complete agreement with the FBI data [45].
3.2. Uncertainty analysis and global sensitivity analysis

In the following we analyze the global sensitivity of the agent-
based model described in this section. Eight input parameters and
nine outputs of the model were considered. Lattice size, citizen
vision, LEO vision, LEO speed (number of times a LEO moves per
day), maximum jail term, LEO density, always actives ratio, and
never actives ratio are input parameters in the model (see Table 1).
Number of actives not in jail per 1000 citizens, number of violent
outbursts per year, peak number of active citizens per 1000
citizens, rate of violence per 1000 citizens, number of times an
always active citizen is arrested, number of times a conditionally
active citizen is arrested, probability of not being arrested for an
always active citizen, probability of not being arrested for a
conditionally active citizen, and probability of not being arrested
for a never active citizen are considered to be outputs of the model
(see Table 2). The probability of not being arrested for a citizen is
defined by the value of the citizen's perceived risk function P given
by Eq. (7).

Since the model is stochastic (agents can move randomly),
there is intrinsic uncertainty in the model outputs even when all
model parameters are fixed. First, we performed uncertainty
analysis in the case of fixed model parameters. The agent-based
model was run 5040 times for the duration of 5000 model days
with 40,000 agents on the lattice. The parameters of the model are
as follows: lattice size¼240; citizen vision¼14; LEO vision¼14;
LEO speed¼4; maximum jail term¼120; LEO density (LEOs per
cell)¼0.01; always actives ratio¼0.025; never actives ratio¼0.5.
Average number of times a citizen is arrested and the probability
of not being arrested for a citizen are presented in Fig. 4. As it can
be clearly seen the sections in this figure repeat those from Fig. 2
in the case 0oTo1−L. The plot of the number of times a citizen is
arrested is self-explanatory. Never active citizens are not arrested
and always active citizens are arrested often. The more active is
Table 1
Model input parameters

Input parameter
number

Input parameter
name

1 Lattice size
2 Citizen vision
3 LEO vision
4 LEO speed
5 Maximum jail term
6 LEO density
7 Always actives ratio
8 Never actives ratio
the citizen, the higher probability he/she has of being arrested. The
plot of the probability of not being arrested for a citizen shows that
the probability of not being arrested for an always active citizen is
high, what can be explained by the fact that an always active
citizen is almost always in jail.

In the following 10% uncertainty in the model parameters was
introduced. The 5040 samples within the space of parameters
were generated by using the GoSUM software [47]. GoSUM soft-
ware is a tool for producing sampling points, evaluating global
uncertainty in the model outputs and global contributions of a
large number of uncertain parameters to the model outputs.
The model parameters were distributed uniformly in the following
ranges: lattice size: [216; 264]; citizen vision: [12; 16]; LEO vision:
[12; 16]; LEO speed: [2; 6]; maximum jail term: [108; 132]; LEO
density: [0.009; 0.011]; always actives ratio: [0.0225; 0.0275];
never actives ratio: [0.45; 0.55]. For each sample the model was
run for the duration of 5000 model days with 40,000 agents on
the lattice. In this case the number of uncertain parameters is
only increased by 8 comparing to the initial model, where the
number of uncertain parameters is of order of 2 � agents�
ðmodel daysþ 1Þ. For each agent for every model day we
approximately need two random numbers, one of which is used
for the random order of selecting an agent and the other one is
used for the random positioning of the agent in the Moore
neighborhood. Average number of times a citizen is arrested and
the probability of not being arrested for a citizen in this case are
presented in Fig. 5.

As seen from Figs. 4 and 5, when the model parameters are
uncertain, the number of times a “conditionally active” citizen is
arrested is lower than in the case with no uncertainty. The number
of times an “always active” citizen and a “never active” citizen are
arrested are the same in both cases. The probability of not being
arrested for an “always active” citizen is as high as in the case with
no uncertainty, and the probability of not being arrested for a
“conditionally active” citizen and a “never active” citizen is lower
than in the case with no uncertainty.

In Fig. 6 we compare the distribution of model outputs with
(10%) and without uncertainty in model parameters. The histo-
grams of all 9 outputs of the model in the case of 10% uncertainty
are plotted in green and the fitting curves for histograms in the
case with no uncertainty are plotted in red. As it can be seen from
the figure, the red line is located around the mean value of the
output in the model with 10% uncertainty in parameters. Because
of some combinations of parameters which produce no outbursts
of activity during the whole time of the simulation or the constant
outburst of activity, there are many zero output values. Relatively
small uncertainty in the input parameters produces large
output uncertainty. The values of mean and standard deviation
(uncertainty) in units of mean are indicated on the top of the
histogram for each output. The only output with small uncertainty
is the number of times an always active citizen is arrested.



Fig. 4. Average number of times a citizen is arrested (left panel) and the probability of not being arrested for a citizen (right panel) in the model with fixed parameters.
Each pixel in these plots corresponds to one citizen.

Fig. 5. Average number of times a citizen is arrested (left panel) and the probability of not being arrested for a citizen (right panel) in the model with 10% uncertainty in
parameters. Each pixel in these plots corresponds to one citizen.
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The bi-modality can be seen from the figure as well. This
demonstrates the fact that a small change in parameters can cause
significant changes in the model outputs. The scenario with
periodic outbursts can be changed to the ones with no outbursts
of activity or the constant outburst of activity.

By using the GoSUM software [47], the global sensitivity
analysis of all model outputs for all parameters was performed.
Global derivative sensitivity in L2 norm is presented in Fig. 7,
global derivative sensitivity in L1 norm is presented in Fig. 8, and
global variance sensitivity is presented in Fig. 9.

Both global variance and derivative sensitivities identify LEO
vision (input parameter 3) as the most important parameter for all
outputs except the output of number of times an always active
citizen is arrested. The biggest influence of the LEO vision is on the
number of violent outbursts per year (output 2) and the peak
number of active citizens per 1000 citizens (output 3) as well as



Fig. 7. Heat map of global derivative sensitivity in norm L2.

Fig. 8. Heat map of global derivative sensitivity in norm L1.

Fig. 9. Heat map of global variance sensitivity.
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Fig. 10. Differentiation between the high rate of violence (red) and the low rate of
violence (blue) depending on LEO vision and citizen vision. Green line corresponds
to relative LEO vision¼15.35. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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the number of times a conditionally active citizen is arrested
(output 6). LEO density (input parameter 6), lattice size (input
parameter 1) and citizen vision (input parameter 2) are also
important parameters as can be clearly seen from the global
derivative sensitivity in norm L1 heat map in Fig. 8. Typically,
L2 norm global derivative sensitivity indices and global variance
sensitivity indices are similar. On the other hand, L1 norm global
derivative sensitivity indices allow us to identify all parameters
responsible for function variability, even those parameters with
small contribution to the total variance.

3.3. Rate of violence and model reduction

In this subsection we perform model reduction and deduce
important relationships between model parameters for our exam-
ple agent-based model. Model reduction is the process of decreas-
ing the number of model parameters by taking off the least
important ones. In such a way the decision making process for a
high-dimensional model can become low-dimensional. Note that
parameters' importance depends on their range of variation.
A parameter can be very important when varied in a wide range.
However, if the range of variation is known to be small, the
parameter may not be important compared to other parameters in
the model.
In the following we introduce the notion of the rate of violence
as an average number of citizens active at the end of a day or jailed
during the day per 1000 citizens. We study the dependence of rate
of violence on model parameters. We consider that rate of violence
to be high if there are more than 2 active citizens per day per 1000
citizens and we consider that rate of violence to be low if there are
less or equal than 2 active citizens per day per 1,000 citizens.
We deduce relationships between the parameters of the agent-
based model which are required in order to have low rate of
violence.

First, by using the results of the simulation with 10% uncertainty
in parameters, we investigate the dependence of rate of violence on
all pairs of parameters. We detect that the strong differentiation
between the high rate of violence and the low rate of violence is
observed depending on the values of LEO vision and citizen
vision. In Fig. 10 the red area shows high rate of violence (outbursts
of activity) and the blue area represents low rate of violence
(stable situation). To account for this differentiation, we introduce
the notion of relative LEO vision: Relative LEO vision¼
3nLEO vision−2nCitizen vision, which is parallel to the green
line in Fig. 10. In such a way, we do the coordinate transformation
from citizen vision and LEO vision to citizen vision and relative LEO
vision. The fixed value of the relative LEO vision at about 15.35
separates the high rate of violence and the low rate of violence.

When the relative LEO vision is fixed, LEO density is the most
important parameter that discriminates between stable and
unstable situations on the lattice [45]. We showed that there is a
critical value of LEO density, or a tipping point, below which the
situation becomes unstable [45]. In the following we are going to
find a mathematical expression for the critical LEO density. In
order to estimate the critical LEO density as a function of other
model parameters, we consider a very wide range for all model
parameters to see how the model depends on the input para-
meters not only around nominal value but in the wide range. We
also introduce the relative LEO vision parameter in the model. In
such a way we consider the following parameter ranges: lattice
size: [210; 350]; citizen vision: [5; 20]; relative LEO vision: [5; 20];
LEO speed: [2; 8]; maximum jail term: [50; 300]; LEO density:
[0.005; 0.02]; always actives ratio: [0.01; 0.04]; never actives ratio:
[0.3; 0.6]. The LEO vision is calculated as follows: LEO vision¼
ðRelative LEO vision þ2nCitizen visionÞ=3. The number
of realizations of this model is 10,000 with the duration of each
realization of 5000 model days and 40,000 agents on the lattice.
As above, we consider the dependence of rate of violence on all
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pairs of parameters. The strong differentiation between the high
rate of violence and the low rate of violence was observed
depending on the values of citizen vision and LEO density (see
Fig. 11, where the red area shows high rate of violence and the blue
area represents low rate of violence). In such a way, the following
relationship for the optimal LEO density per area to have a stable
situation was deduced: LEO Density¼ 0:005þ 0:75=ðCitizen
Vision2Þ, which is presented by green curve in Fig. 11. In terms of
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Fig. 11. Differentiation between the high rate of violence (red) and the low rate of
violence (blue) depending on citizen vision and LEO density. Green curve corre-
sponds to LEO Density¼ 0:005þ 0:75=ðCitizen Vision2Þ. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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Fig. 12. Differentiation between the high rate of violence (red) and the low rate of violenc
LEOs per citizen and number of citizens. (For interpretation of the references to color in
the number of visible neighbors Nv, the number of LEOs per citizen
needed to maintain the same rate of violence can be approximately
calculated as follows: LEOs per citizen¼ 0:01þ 0:75nπ=Nv. Thus,
the more informed are the citizens, the less LEOs is needed to
maintain peace.

In real life, many of the model parameters are tightly controlled
and could be considered less important than city-dependent
parameters like citizen density, number of citizens, and number
of LEOs per citizen. In the following we are going to find the critical
number of LEOs as a function of population size and density. We fix
LEO vision, citizen vision, LEO speed, maximum jail term, always
actives ratio, never actives ratio and vary citizen density, number of
citizens, and number of LEOs per citizen. We consider the following
ranges of parameters: citizens density: [0.2; 0.8]; number of citizens:
[1000; 400000] in log scale; LEOs per citizen: [0.015; 0.025]. Other
parameters are fixed as follows: LEO vision¼12.5; citizen
vision¼12.5; LEO speed¼5; maximum jail term¼175; always actives
ratio¼0.025; never actives ratio¼0.45. Lattice size is calculated as:
LD¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Citizens=Citizens density

p
. LEO density¼ LEOs per

citizennCitizens density. The number of realizations of this
model is 10,000 with the duration of each realization of 1000 model
days. Comparing the high rate of violence and the low rate of violence,
we observe almost no dependence on citizen density and logarithmic
dependence on population size (see Fig. 12). Thus, in order to keep
stability in a city, the number of LEOs per citizen should increase with
logarithm of population.

Another quantity of interest in our agent-based model is the
waiting time between outbursts of activity. By the waiting time
between outbursts of activity we define the time (in model
days) between the peak of one outburst and the peak of the next
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outburst. We differentiate between a scenario with no outbursts of
activity, a scenario with waiting time between outbursts more or
equal 87.5 model days and a scenario with waiting time between
outbursts less than 87.5 model days (see Fig. 13). Similarly to the
case of the rate of violence, almost no dependence on citizen
density is found for the waiting time. The dependence of the
waiting time between outbursts on the number of LEOs per citizen
and on the population size is also similar to those for the rate of
violence. In Fig. 13 the blue area shows no outbursts, the orange
area corresponds to periodic outbursts and the red area shows
immediate outbursts. As seen, the correct proportion of LEOs is
very important for cities with over a million citizens. In such cities,
incorrect number of LEOs per citizen would result in an immediate
outburst of activity.
4. Conclusions

Global sensitivity analysis was found to be an important tool
for analyzing and evaluating agent-based models. We proposed a
meta-model-based technique to evaluate various global sensitivity
indices for all parameters in the model. Our technique requires
only N expensive agent-based model evaluations, where N is
almost independent of the number of parameters in the problem
and is chosen to provide the requested accuracy of the fit. Support
vector regression based meta models preserve all interactions
between model parameters and are applicable for non-monotonic
and nonlinear model outputs.

We identified the most significant and non-significant para-
meters in the example socio-cultural agent-based model. By using
both global variance and global derivative sensitivities, we found
that LEO vision is the most important parameter for all outputs of
the model (except the output of number of times an always active
citizen is arrested). We observed that the biggest influence of the
LEO vision is on the number of violent outbursts per year and
the peak number of active citizens per 1000 citizens as well as the
number of times a conditionally active citizen is arrested. These
findings are in good agreement with the reality [45].

We also provided examples of the model reduction process,
which allowed us to investigate the dependence of high and low
rate of violence and outbursts waiting time on the model para-
meters. We found that less LEOs are needed when all citizens are
well-informed (have more neighbors). It was also shown that in
order to keep stability in a city, the number of LEOs per citizen
should increase approximately as logarithm of population. Finally,
the correct number of LEOs was found to be critical to keep the
violence rate low for very large cities.
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