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a b s t r a c t

A backward-in-time probabilistic method with spatial filter averaging is presented to solve
linear second-order partial differential equations of the parabolic type. An advantage of
this methodology is that while forward methods are subject to region with loss of density
of particles and hence loss of spatial resolution of the solution, the solution given by back-
ward methods is given on any desired grid. However, traditional backward time probabi-
listic method using Monte Carlo averaging are computationally expensive. We prove a
convergence result and present several examples. The method leads to important improve-
ment in computational efficiency and is expected to perform well to solve high dimen-
sional problems where a solution is needed on a large grid.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The strong interest in the study of second-order equations, and parabolic equations in particular, is motivated by their
importance in mechanics [30], heat conduction [19], probability theory [35], and other fields of mathematics and physics.
In microfluidics, for example, micron to nano-size particle transport is studied. Submicron-size particles have small diffusion
coefficient but not always small enough compared to the other forces in the system to be negligible. This leads to the need of
efficient numerical methods for advection–diffusion type equation with a high Péclet number.

Parabolic equations can be solved by finite-element analysis but although very accurate results are possible for diffusion
dominated problems, at high Péclet number, traditional grid-based methods can suffer from numerical dispersion or oscil-
latory and even unstable solutions [41]. While extremely fine mesh refinement is one possible solution, it is, in some cases,
not feasible due to excessive computational requirements. Thus, alternative numerical formulations are sought that would
allow accurate solutions with reasonable computational effort.

Some Eulerian approaches, for example optimal spatial methods or Petrov–Galerkin methods [2,11,4,32], were developed
to tackle convection dominated problems but those procedures can yield an upstream bias in the resulting approximation or
do not completely eliminate issues of localized oscillations.

Another class of approaches, the Eulerian–Lagrangian methods have shown a great potential. In those methods the advec-
tive component is treated by a characteristic tracking algorithm (a Lagrangian frame of reference), and the diffusive step is
treated separately using a more standard (Eulerian) spatial approximation. The principal drawbacks of many Eulerian–
Lagrangian methods are their failure to conserve mass [6,15] and the difficulty of formulating them for general boundary
conditions [1]. Moreover, the computational complexity of these classical techniques increases rapidly with increase in
the dimension of the space and becomes prohibitive for problems with three or more dimensions.
. All rights reserved.
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To avoid such problems, probabilistic particle methods have been frequently used. Stochastic methods have long been
used to solve problems in heat transport because of the ease with which these methods can be adapted to complex interfaces
[16]. They have also been applied to bulk-phase reaction diffusion systems and to the dispersion of tracers in a porous med-
ium and many other physics problem [7,28]. The most straightforward probabilistic method is the forward random-walk
method [21,26,14]. In forward random-walk method the concentration profile is represented by a set of moving particles,
which are advected according to the velocity field from some initial time, while the diffusive displacements of the particles
are sampled from a random distribution. The particle motion is hence described by a set of Stochastic Differential Equations
(SDEs). SDE models play a relevant role in many other application areas including biology, epidemiology, investment finance
and population dynamics, and this increased interest in implementing discretization and simulation methods for SDEs. There
has been a growth in the development and implementation of effective high-order algorithms in the last thirty years
[24,37,18,36,5,27,39,12,31]. Particle-tracking methods are stable, free of grid generation problems and easy to implement
and parallelize.

However, forward methods have a disadvantage in terms of computational efficiency when only the density in a small
region needs to be computed or if the density varies significantly from initial time to final time. Particles tend to move apart
from each other in some directions, thereby decreasing the overlap parameter and making a remesh necessary to maintain a
smooth scalar field. Under these circumstances, backward particle methods turn out to be a much better solution [22]. Back-
ward particle methods track particles from the point of interest backward in time [10,23,38,34]. The clear advantage of back-
ward particle methods is that particles are only needed in areas of interest as they do not suffer from the lack of coverage
issues of forward methods. No valuable computational time is lost in the rest of the space.

The computational cost of the probabilistic algorithms grows with the number of SDEs to be solved and hence only lin-
early with respect to the dimension n of the state space Rn, and are very useful in situations where the solution needs to be
computed only at a small number of points. A major drawback of a random walk method is its stochastic nature so that the
results include statistical errors proportional to N�

1
2 where N is the number of realizations of the random process in the sim-

ulation to evaluate the expected value. Multigrid [3] and multilevel Monte Carlo path simulation [12] methods have been
developed to reduce this computational cost. However a large number of independent realizations is still necessary to obtain
a reasonable solution accuracy. Here we aim to reduce that aspect of the problem.

The method presented in this paper aims at increasing computational efficiency of the backward random-walk method by
using a combination of usual averaging over realizations and spatial averaging where a spatial filter function, for example a
Gaussian filter, is used as a point spread function by convolution. We will show that the expected convergence error is of

order O e2 þ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2M þ 1Þn

p
þ Dtp

� �
where e is the spatial filter width, M is given by M ¼ e=Dx with Dx the grid size, N is

the number of independent simulations started on the full grid, Dt is the size of the time step and p P 1, (p depends on
the order of accuracy of the method chosen to solve the SDE system). We also show that this backward spatial filtering
method greatly decreases computational time to numerically calculate uðx; tÞ on a grid of points compared to the traditional
Monte-Carlo Averaging methods. This method is also very easy to implement and can be combined with other computational
cost reducing methods, multigrid methods [33], stratified sampling [13], multilevel methods [12], for example. Combining
those methods with the Backward Spatial Filtering method could reduce the number of independent simulations, N, and the
spatial filter width, e, needed to achieve a desired accuracy. In this paper, we will focus on the advantage of the spatial fil-
tering method to reduce computational cost independently of the method chosen to solve the SDE system.

The paper is organized as follows. In Section 2, we introduce the unsteady linear parabolic problem of interest. In Sec-
tion 3, we describe the numerical scheme. First we present the probabilistic solution of this problem. Then we propose
the spatial filtering method. Finally, the convergence rates are analyzed in detail and the theoretical performances of four
filters are discussed. In Section 4, numerical experiments are presented and analyzed. In Section 5, we compare the compu-
tational efficiency of the spatial filtering to the one from the Monte Carlo method.

2. Statement of problem

We are interested in the numerical approximation of a density field, uðx; tÞ : H ! R, representing a solution of a boundary
value problem for a linear second-order partial differential equation of the parabolic type:
@u
@t
þ
Xn

i¼1

biðx; tÞ
@u
@xi
þ cðx; tÞuþ f ðx; tÞ ¼

Xn

i;j¼1

aijðx; tÞ
@2u
@xi@xj

: ð1Þ
By Rn we denote the Euclidean space of dimension n. An arbitrary point of an ðnþ 1Þ-dimensional space Rnþ1 ¼ Rn � R is
denoted ðx; tÞ where the point x has coordinates ðx1; . . . ; xnÞ. Let T <1;H will denote a bounded domain in Rnþ1 lying be-
tween the planes t ¼ 0 and t ¼ T; H ¼ fx 2 D � Rn; 0 6 t 6 T < þ1g where D is a compact domain of Rn. The functions
aij; bi; c, and f are real and bounded on H; aij ¼ aji and

Pn
i;j¼1aijðx; tÞaiaj > 0 for

Pn
i¼1a2

i > 0. The surface that consists of bound-
ary points of D will be denoted by dD and the direction of the outer normal to the surface dD by m.

On the boundary of the domain D, the density uðx; tÞ satisfies the condition:
@u
@m
þ bðx; tÞuðx; tÞ ¼ kðx; tÞ; ð2Þ
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where the functions b and k are real, with finite values.
We shall investigate the solution of the Cauchy problem for (1)–(2) with initial time condition:
uðx; t ¼ 0Þ ¼ uðxÞ; ð3Þ
where uðxÞ is a given real function.
In what follows, we assume that the coefficients in (1)–(3) satisfy the conditions such that the solution uðx; tÞ exists, is

unique and belongs to W2;pðDÞ8t > 0, (see for examples [17]) with:
W2;pðDÞ :¼ f 2 LpðDÞ; @af ¼ @jajf
@xa1

1 . . . xan
n
2 LpðDÞ; 8a 2 Nn; jaj 6 2

( )
:� �
We provide W2;pðDÞ with the norm kfkW2;pðDÞ :¼
P
jaj62

@jaj f
@x

a1
1 ���x

an
n

��� ���
LpðDÞ

.

We present a probabilistic method to solve this unsteady linear parabolic problem that uses a backward random walk
scheme and a combination of usual Monte Carlo averaging and spatial filtering.

3. Numerical approximation of the solution

A stochastic process in the time interval ½0;1Þ is defined as a family of random variables XxðtÞ; t P 0;x 2 X, on a mea-
surable space ðX;F ;PÞ. Let Ex½X� be the expected value of a stochastic value X with respect to the realizations x 2 X. Let
WxðtÞ ¼ ðW1

xðtÞ; � � � ;W
n
xðtÞÞ be the collection of n independent one-dimensional Wiener processes. This means that if

t P 0, for i ¼ 1; . . . ;n;Wi
xðtÞ;x 2 X is a continuous, with variance one, mean zero Gaussian process such that

Ex½WðsÞWðtÞ� ¼ minðs; tÞ.

3.1. Probabilistic solution of PDE

The solution of problem (1)–(3) has the probabilistic representation [9]:
uðx; tÞ ¼ Ex½uðXxð0; t; xÞÞYxð0; t; x;1Þ þ Zxð0; t; x;1;0Þ�; ð4Þ
where Xxðs; t; xÞ;Yxðs; t; x; yÞ; Zxðs; t; x; y; zÞð Þ; 0 6 s 6 t 6 T, is the solution backward in time of the Cauchy problem of the
following system of SDE:
dXx ¼ �bðXx; sÞdsþ rðXx; sÞdWxðsÞ; Xxðt; t; xÞ ¼ x;

dYx ¼ �cðXx; sÞYxds; Yxðt; t; x; yÞ ¼ y;

dZx ¼ �f ðXx; sÞYxds; Zxðt; t; x; y; zÞ ¼ z:

8><
>: ð5Þ
Here ðx; tÞ 2 Rnþ1;Xx 2 D is a n-dimensional vector, Yx and Zx are scalars, bðx; tÞ is the n-dimensional vector compounded
from the coefficients biðx; tÞ, and the matrix rðx; tÞ of dimension n� n is derived from:
rðx; tÞrTðx; tÞ ¼ aðx; tÞ:
A typical problem that features a nonuniform advection field will lead to algebraic or exponential separation of nearby
particles in time. The solution for uðx; tÞ is defined only at the location x where the trajectories end at time t. This leads
to issues of lack of coverage of the domain of interest when calculating uðx; tÞ using methods based on forward time. The
backward method presented here does not suffer from lack of coverage since the spatial location x at time t is chosen
and the SDE is solved backward in time from time t to the initial time t ¼ 0. The location of the trajectories at t ¼ 0 is only
used to evaluate the contribution of the initial condition, uðXxð0; t; xÞÞ, to the solution. The solution of uðx; tÞ is hence well
defined at each point x chosen to represent the domain of interest.

3.2. Spatial Filtering method

Traditionally the expected value, (4), that gives the local solution uðx; tÞ is evaluated by applying the Monte-Carlo tech-
nique to N independent paths of ðXxðkÞðs; t; xÞ; YxðkÞðs; t; x;1Þ; ZxðkÞðs; t; x;1;0ÞÞ; k ¼ 1; . . . ;N, solution of the SDE system in (5)
by computing the average of the functional:
WxðkÞ
x;t :¼ uðXxðkÞð0; t; xÞÞYxðkÞð0; t; x;1Þ þ ZxðkÞð0; t; x;1;0Þ ð6Þ
using:
�uNðx; tÞ :¼ 1
N

XN

k¼1

½WxðkÞ
x;t �:
By the law of large numbers, �uNðx; tÞ gives us an approximate value of uðx; tÞ. The quality of approximation depends only on
the choice of N. This average converges generally as N�1=2. Multigrid and multilevel ideas have been used to improve the
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convergence rate of estimations of the expected value of a functional arising from a SDE system [12]. The total number of
simulation needed with a traditional Monte Carlo method to solve the system (1)–(3) can rapidly become large as it is equal to
the number of points on the grid multiplied by the number of independent realizations to obtain convergence of the averaging.

Here we propose to compute uðx; tÞ using backward in time paths starting at ðx; tÞ and starting at its spatial neighbouring
points as well. We take neighbouring points into account by calculating the convolution of uðx; tÞ with a spatial filter of
width e; Fe.

A spatial filter is defined as a function, F : Rn ! Rþ, such that:
The essential support of F is ½�1; 1�n;

FðxÞP 0; 8x 2 Rn;R
Rn FðxÞdx ¼ 1;R
Rn jxj2FðxÞdx ¼ K <1;

Fðx1; . . . ; xi; . . . ; xnÞ ¼ Fðx1; . . . ;�xi; . . . ; xnÞ; 8x 2 Rn; i ¼ 1; . . . ;n:

8>>>>>><
>>>>>>:
Then we define a spatial filter of width e; Fe, for all e > 0:
FeðxÞ ¼
1
en F

x
e

� �
: ð7Þ
Let lj be the jth moment of a function F : Rn ! R:
ljðFÞ :¼
Z

Rn

Xn

i¼1

xj
i

 !
FðxÞdx; j 2 N:
Then we have:
The essential support of Fe is ½�e; e�n;

l0ðFeÞ ¼ 1;

l1ðFeÞ ¼ 0;

l2ðFeÞ ¼ e2l2ðFÞ:

8>>><
>>>: ð8Þ
We define
ueðx; tÞ :¼ FeðxÞ�uðx; tÞ;

¼
Z

Rn
Feðy� xÞuðy; tÞdy;

¼
Z

Rn
Feðy� xÞEx½Wx

y;t�dy:
The spatial filter Fe, (7), has essential support ½�e; e�n. A neighbourhood of x 2 Rn of width e > 0 will be denoted by
Ix;e ¼ ðx1 � e; x1 þ eÞ � � � � � ðxn � e; xn þ eÞ. Let k ¼ ðk1; . . . ; knÞ be a vector of indices with M P 0; ki ¼ �M; . . . ;M and
i ¼ 1; . . . ;n. The domain Ix;e is partitioned in a grid Ig

x;e with points located at coordinates
yk ¼ ðx1 þ k1Dx; . . . ; xi þ kiDx; . . . ; xn þ knDxÞ with Dx ¼ e=M.

Let WxðykÞ
yk ;t

be defined by (6) using the exact solution of the SDE system in (5) where for each yk 2 Ig
x;e an independent path

xðykÞ is generated. Similarly, let WxðykÞ
yk ;t;Dt be the approximate value of WxðykÞ

yk ;t
using the numerical solution given by a weak SDE

solver of order p P 1 with a time step Dt. We define:
~uM
e ðx; tÞ :¼

X
yk2Ig

x;e

Feðyk � xÞWxðykÞ
yk ;t

Dxn;

~uM
e ðx; t;DtÞ :¼

X
yk2Ig

x;e

Feðyk � xÞWxðykÞ
yk ;t;DtDxn;

ð9Þ
as the approximations of uðx; tÞ by a Backward Spatial Filtering method of width e.
We now investigate how the solution uðx; tÞ of (1)–(3) is approximated by ~uM

e ðx; tÞ, (9). We will show how ~uM
e ðx; tÞ con-

verges toward uðx; tÞ when M !1 and e! 0.

3.3. Convergence study

We state theoretical results concerning the theoretical error of our approximations and the rates of convergence of this
method.

Theorem 1 (Convergence theorem of Backward Probabilistic Method With Spatial Filtering). For large enough M and small
enough e, the error of the approximate solution ~uM

e ðx; t; DtÞ is given by:
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kuðx; tÞ � ~uM
e ðx; t;DtÞkLp ¼ O e2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2M þ 1Þn
p þ Dtp

 !
; ð10Þ
except for an event of low probability ep, (11), where e is the spatial filter width, M is given by M ¼ e
Dx with Dx the grid size, Dt is the

size of the time step of SDE solver and p P 1.
Proof. The approximation error can be broken into three terms, a spatial filtering term cf , a sampling term cs and a time
splitting term ct .
kuðx; tÞ � ~uM
e ðx; t;DtÞkLp ¼ kuðx; tÞ � ueðx; tÞkLp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cf

þkueðx; tÞ � ~uM
e ðx; tÞkLp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cs

þ jj~uM
e ðx; tÞ � ~uM

e ðx; t;DtÞjjLp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ct

:

Assuming the SDE solver is of weak order p with p P 1, there exists C > 0 such that:
jWxðykÞ
yk ;t
�WxðykÞ

yk ;t;Dtj 6 CDtp:
Then the time splitting error is:
ct ¼ OðDtpÞ:
Lemma 2. If f 2W2;pðRnÞ and Fe is a spatial filter as defined in (8), then:
kFe�f � fkLpðRnÞ 6
1
2
e2l2ðFÞkfkW2;pðRnÞ:
Proof. Let f 2W2;pðRnÞ, using Taylor expansion with integral remainder, we have:
f ðx� yÞ ¼ f ðxÞ þ
Xn

i¼1

yi
@f ðxÞ
@xi

þ
Z 1

0
ð1� tÞ

Xn

i;j¼1

yiyj
@2f ðx� tyÞ
@xi@xj

dt:
Then
Fe�f ðxÞ ¼
Z

Rn
f ðx� yÞFeðyÞdy ¼

Z
Rn

f ðxÞFeðyÞdyþ
Z

Rn

Xn

i¼1

yi
@f ðxÞ
@xi

FeðyÞdyþ
Z

Rn

Z 1

0
ð1� tÞ

Xn

i;j¼1

yiyj
@2f ðx� tyÞ
@xi@xj

FeðyÞdt dy:
Using the properties of the spatial filter Fe, we have:
Z
Rn

f ðxÞFeðyÞdy ¼ f ðxÞ;
and
 Z
Rn

Xn

i¼1

yi
@f ðxÞ
@xi

FeðyÞdy ¼
Xn

i¼1

@f ðxÞ
@xi

Z
Rn

yiFeðyÞdy ¼ 0:
Then
Fe�f ðxÞ ¼ f ðxÞ þ
Z

Rn

Z 1

0
ð1� tÞ

Xn

i;j¼1

yiyj
@2f ðx� tyÞ
@xi@xj

FeðyÞdtdy:
Let ~FeðyÞ ¼ 1
tnþ2 FeðytÞ and introduce the change of variable z ¼ ty:
l2ðFeÞ ¼
Z

Rn
x2FeðxÞdx ¼ 1

tnþ2

Z
Rn

z2Fe
z
t

� �
dz ¼

Z
Rn

x2~FeðzÞdz ¼ l2ð~FeÞ:
Then,
Z
Rn

Xn

i;j¼1

yiyj
@2f ðx� tyÞ
@xi@xj

FeðyÞdy ¼
Xn

i;j¼1

Z
Rn

@2f
@xi@xj

ðx� zÞzizj
~FeðzÞdz ¼

Xn

i;j¼1;i–j

2
@2f
@xixj

�ðxixj
~FeÞ þ

Xn

i¼1

@2f
@x2

i

�ðx2
i
~FeÞ:
Thus, we have:
Z
Rn

yT D2f ðx� tyÞyFeðyÞdy
����

����
Lp
6 2

Xn

i;j¼1;i–j

@2f
@xixj

�ðxixj
~FeÞ

�����
�����

Lp

þ
Xn

i¼1

@2f
@x2

i

�ðx2
i
~FeÞ

�����
�����

Lp

:
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Using the fact that jjf �gjjLp 6 jjf jjLp jjgjjL1 and that 8i; j ¼ 1; . . . ;n; i – j; kxixj
~FekL1 ¼ 0 by the symmetry property of FeðxÞ, we

get:
 Z
Rn

yT D2f ðx� tyÞyFeðyÞdy
����

����
Lp
6

Xn

i¼1

@2f
@x2

i

�����
�����

Lp

kx2
i
~FekL1 :
Hence,
kFe�f � fkLp 6

Xn

i¼1

Z 1

0
ð1� tÞ @

2f
@x2

i

�����
�����

Lp

kx2
i
~FekL1 dt 6

1
2

Xn

i¼1

@2f
@x2

i

�����
�����

Lp

kx2
i
~FekL1 :
For each i ¼ 1; . . . ;n:
kx2
i
~FekL1 6

Xn

i¼1

kx2
i
~FekL1 ¼ l2ð~FeÞ ¼ l2ðFeÞ:
And,
kFe�f � fkLp 6
1
2
l2ðFeÞkfkW2;p 6

1
2
e2l2ðFÞkfkW2;p : �
Corollary 3. The error between the convolution of uðx; tÞ solution of (1)–(3) with FeðxÞ and uðx; tÞ is proportional to e2, where e is
the spatial filter width.
Proof. The spatial filtering error, cf , can be estimated using Lemma 2 which gives us the estimation:
cf 6
1
2
e2l2ðFÞjjujjW2;n 6 Kf e2: �
Now we study the sampling error:
cs ¼ jjueðx; tÞ � ~uM
e ðx; tÞjjLp :
Using a simple one-to one correspondence between elements of X and a given solution of the SDE (5), each xðyÞ in X cor-
responds to one realization of the random walks starting at y 2 Rn, we get:
p

cs ¼
Z

Rn
Feðy� xÞEx½Wx

y;t�dy�
X

yk2Ig
x;e

Feðyk � xÞWxðykÞ
yk ;t

Dxn

������
������

������
������

Lp

¼
Z

Rn
Feðy� xÞEx½Wx

y;t �dy�
X

yk2Ig
x;e

Feðyk � xÞExðykÞ½W
xðykÞ
yk ;t
�Dxn

������
������

������
������

L

þ
X

yk2Ig
x;e

Feðyk � xÞ ExðykÞ½W
x
yk ;t
� �WxðykÞ

yk ;t

� �
Dxn

������
������

������
������

Lp

:¼ Aþ B:
The expression A is the discretization error of the integral:
A :¼
Z

Rn
Feðy� xÞEx½Wx

y;t �dy�
X

yk2Ig
x;e

Feðyk � xÞExðykÞ½W
xðykÞ
yk ;t
�Dxn

������
������

������
������
Lp

¼
Z

Rn
Feðy� xÞuðy; tÞdy�

X
yk2Ig

x;e

Feðyk � xÞuðyk; tÞ�Dxn

������
������

������
������
Lp

:

An estimation of A comes from the formula for the error of the trapezoidal rule for numerical integration for a function
f 2 C2½a; b�, [8]. In 1D,
Z b

a
f ðxÞdx� h

1
2

f ðaÞ þ f ðaþ hÞ þ � � � þ f ðaþ ðM � 1ÞhÞ þ 1
2

f ðbÞ
� 	�����

����� ¼ ðb� aÞ3

12M2 f 00ðnÞj j;
with a < n < b.
Since Fe has compact support ½�e; e�n, we use the multidimensional version of the above formula and obtain:
A ¼ OðeDx2Þ:

B :¼
X

yk2Ig
x;e

Feðyk � xÞ Ex½Wx
yk ;t
� �WxðykÞ

yk ;t

� �
Dxn

������
������

Lp

:
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The Law of Large Numbers implies that
P

yk2Ig
x;e

Feðyk � xÞEx½WxðykÞ
yk ;t
�Dxn �

P
yk2Ig

x;e
Feðyk � xÞWxðykÞ

yk ;t
Dxn ! 0 a.s. with a rate of con-

vergence proportional to one over the square root of the number of points in the sum, i.e. 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Mþ1Þn
p .

In fact,

Lemma 4 (Bennett’s inequality). Let Yk, be independent bounded random variables with mean zero, variances r2
k and jYkj 6 C.

Let S ¼
P

kYk;V P
P

ir2
k . Then for all m > 0,
PrfjSjP mg 6 2exp �1
2
m2V�1BðCmV�1Þ

� 	
;

where BðkÞ ¼ 2k�2½ð1þ kÞlnð1þ kÞ � k�; k > 0.
See proof of Lemma 4 in [25], Appendix B.
Let Yk ¼ Feðyk � xÞ Ex½WxðykÞ

yk ;t
� �WxðykÞ

yk ;t

h i
Dxn. We have E½Yk� ¼ 0 and
Ykj j 6 K1
1
en max
jxj61

FðxÞ e
M

� �n

¼ K1max
x

FðxÞ 1
Mn ¼ C:
Similarly,
X
yk2Ig

x;e

Var Yk½ � 6 K2
2ð2M þ 1Þn max

x
FðxÞ 1

Mn


 �2

¼ V ;
where K1 and K2 are bounds on the values and the variance of Ex½WxðykÞ
yk ;t
� �WxðykÞ

yk ;t
and depend only on T, and bounds of

aijðx; tÞ; biðx; tÞ; cðx; tÞ and f ðx; tÞ.
Let K be a positive constant and M large enough such that m ¼ KK2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Mþ1Þn
p and CmV�1 can be considered small. Then,
Pr jSjP KK2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M þ 1Þn

p
" #

6 2 1þO CmV�1
� �� �

exp �1
2
m2V�1


 �
:

We have:
1
2
m2V�1 ¼ K2

2maxxFðxÞð2þ 1=MÞ2n :
Let
ep :¼ 2exp � K2

2maxxFðxÞð2þ 1=MÞ2n

 !
: ð11Þ
The constant K can be chosen such that K P maxxFðxÞ2n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2=epÞ

p
then,
jSj 6 KK2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M þ 1Þn

p ;
except for an event of probability less or of the order of ep. The value of the constant K to obtain a desired ep depends only on
the filter choice and on n, the dimension of the Eucledian space of coordinates x.

Thus:
E½cs� ¼ O
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2M þ 1Þn
p

 !
;

with high probability. h

Theorem 5 (Convergence theorem of Backward Probabilistic Method With combination of Spatial Filtering and Monte Carlo
averaging). For large enough M and small enough e, the error of the approximate solution

PN
i¼1�uM

e ðx; t;DtÞ is given by:
uðx; tÞ �
XN

i¼1

�uM
e ðx; t;DtÞ

�����
�����

Lp

¼ O e2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2M þ 1Þn

p þ Dtp

 !
;

except for an event of low probability ep, (11), where e is the spatial filter width, M is given by M ¼ e
Dxwith Dx the grid size, N is the

number of independent simulations, x, started on the full grid and Dt is the size of the time step and p P 1.
Proof. The proof of this theorem is similar to proof of Theorem 1. h
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The tuning parameters to control accuracy of the Backward Spatial Filtering method are hence e, the width of the spatial
filter, Dx ¼ e=M, the grid step size, Dt, the time step used to solve the SDE system and N the number of random independent
simulations on the grid.
3.4. Comparison of filters

We compare the performances of four different filters, a Gaussian filter, a Triangular filter, a Square filter and a Cos2 filter
(see Fig. 1(a)). The method presented here is not restricted to these four filters. In certain cases, other spatial filters such as
Savitzky–Golay smoothing filters [29] could be better suited.

A Square filter is defined by:
Fig. 1.
(a) Con
version
8x 2 Rn;
FðxÞ ¼ 1

2n ; if 8i jxij 6 1;
FðxÞ ¼ 0; otherwise:

(
ð12Þ
A Triangular filter is defined by:
8x 2 Rn;
FðxÞ ¼

Yn

i¼1

1� jxijð Þ; if 8i jxij 6 1;

FðxÞ ¼ 0; otherwise:

8><
>: ð13Þ
A Gaussian filter is defined by:
8x 2 Rn;
FðxÞ ¼

Yn

i¼1

3ffiffiffiffi
2p
p
� �

e�
ð3xiÞ

2

2 ; if 8i jxij 6 1;

FðxÞ ¼ 0; otherwise:

8><
>: ð14Þ
A Cos2 filter is defined by:
8x 2 Rn;
FðxÞ ¼

Yn

i¼1

cos2 pjxi j
2

� �
; if 8i jxij 6 1;

FðxÞ ¼ 0; otherwise:

8><
>: ð15Þ
A convolution filter is essentially a weighted average to estimate the value at a point conditioned by the value of its neigh-
bours. Since the solution uðx; tÞ 2W2;pðDÞ then uðx; tÞ is smooth, but the probabilistic method results in Wx

x;tðkÞ being a very
noisy signal unless Monte-Carlo averaging is applied. A justification for the choice of spatial filters presented above is their
frequency response. The frequency response of a convolution filter, i.e. its effect on different spatial frequencies, can be seen
by taking the Fourier Transform of the filter (see Fig. 1(b)). We wish to uncover the low frequency solution from the simu-
lation data, Wx

x;tðkÞ. All four filters presented above, (12)–(15), attenuate high frequencies more than low frequencies and are
called low-pass filters (see Fig. 1(b)). A narrow main peak in the frequency response is desirable. The Square filter is the best
in this sense but it exhibits the most oscillations in its frequency response. The Triangular filter has a better oscillation atten-
uation. The Gaussian and Cos2 filters on the other hand show no oscillations. Indeed the Gaussian and Cos2 filter have a good
balance between side oscillation attenuation and main peak width. So by choosing an appropriately sized Gaussian or Cos2

filter we can be fairly confident about what range of spatial frequencies are still present in the solution after filtering, which
is not the case of the Square filter.
The 4 types of filters: in blue a continuous Gaussian filter, (14), in green a Triangular filter, (13), in red a Square filter, (12), in black a Cos2 filter, (15).
tinuous representation. (b) Frequency Response. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
of this article.)
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4. Numerical investigation: illustrative numerical experiments

We can test the implementation of the methods, using problems for which precise numerical solutions can be indepen-
dently calculated. In the following examples we will use the Stochastic Runge–Kutta method described in [27] to solve the
SDE systems.

4.1. 1D example

To illustrate our new method with spatial filtering we will show results first for a 1D test example, a 1D Fokker–Planck
equation:
@

@t
uðx; tÞ þ @

@x
ðvðxÞuðx; tÞÞ ¼ D

@2

@x2 uðx; tÞ ð16Þ
in H ¼ ½�1;1� � ½0; Tf �; Tf > 0, with advective velocity vðxÞ:
vðxÞ ¼ � sinðpxÞ; ð17Þ
with uniform initial condition uðx; tÞ ¼ 1; 8x 2 ½�1;1� and periodic boundary conditions.
Advection–diffusion equations are a special case of the linear parabolic Eq. (1). As described above for the general case,

uðx; tÞ can be calculated using the SDEs:
dXx ¼ �vðXx; sÞdsþ rdWxðsÞ; Xxðt; t; xÞ ¼ x;

dYx ¼ � @
@x vðXx; sÞYxds; Yxðt; t; x; yÞ ¼ y;

(
ð18Þ
where r ¼
ffiffiffiffi
D
p

.
Then,
uðx; tÞ ¼ Ex½uðXxð0; t; xÞÞYxð0; t; x;1Þ� ¼ Ex uðXxð0; t; xÞÞexp �
Z t

0

@

@x
vðXxð0; t; xÞÞdt


 �� 	
: ð19Þ
If D = 0, the solution is given exactly by integration along the trajectories:
uðx; tÞ ¼ uðXð0; t; xÞÞexp �
Z t

0

@

@x
vðXð0; t; xÞÞdt


 �
: ð20Þ
With and without diffusion, Eqs. (19) and (20) tell us that the particle density at a point x depends on where the particles
at that point come from and also on their trajectories backward in time. If, on average, they spent most of their time trav-
elling in regions wherer � v > 0, i.e. regions of particle depletion, then uðx; tÞ decreases with time. If, on average, they spent
most of their time travelling in regions where r � v < 0, i.e. regions of particle focusing, then uðx; tÞ increases with time.

On ½�1;1�, the velocity field, v ¼ �sinðpxÞ, has three fixed points, one stable, x ¼ 0, and the two others unstable, x ¼ �1,
see Fig. 2(a). Also shown in Fig. 2 are the regions of particle depletion or focusing for our example. If there is no diffusion, all
particles subject to this velocity field will go to x ¼ 0. When diffusion is present, particles will move away from the stable
fixed point through Brownian motion and spend some time in regions of particle depletion which lowers the particle density
at the stable fixed point from that in the non diffuse case.

For this test case, we know the analytical solution of the steady state. We have:
lim
t!1

uðx; tÞ ¼ u1ðxÞ ¼
1

I0ð1=ðpDÞÞ expðcosðpxÞ=ðpDÞÞ; ð21Þ
where ImðxÞ is the modified Bessel function of the first kind. Fig. 2(b) shows the steady state solution for several diffusion
coefficients. For small values of D, the solution is well approximated by a zero mean Gaussian on the real line. When
D! 0, the solution converges to a Dirac delta distribution centred at x ¼ 0.

We now study how the approximation error behaves when the grid and the timestep of the SDE solver are fixed (Dx and
Dt fixed) but varying the filter width e used for filtering and hence the number of points M used as e ¼ MDx. To solve the SDE
system (18), we use a 4 stage Stochastic Runge Kutta Method with weak order 2 and order 3 for the deterministic part in-
spired from [27]. Theorem 1 tells us that the error is:
juðx; tÞ � ~uM
� ðx; tÞj2 6

e2

2
l2ðFÞjjujjW2;2 þ Ksffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M þ 1
p þ KtDt2:
The filtering error is bounded by Kf e2l2ðFÞ where Kf is independent of the choice of filter F. In order to compare the four
spatial filters presented above in a fair manner, we choose a width e for each filter such that the value of e2l2ðFÞ is the same
for all four filters. The value of l2ðFÞ for the four spatial filters is given in Table 1. When the spatial grid is fixed, the sampling
error is bounded by a function of the form 1=

ffiffiffi
e
p

. As l2ðFeÞ ¼ e2l2ðFÞ is set to be the same for all four filters but e is different



Table 1
Second moment of the four spatial filters in Rn .

Square filter Triangular filter Gaussian filter Cos2 filter

l2ðFÞ n
3

n
6 	 n nðp2�6Þ

3p2

Fig. 2. (a) Study of the advective velocity vðxÞ ¼ � sinðpxÞ and its divergence @v
@x. (b) Concentration at t !1 for different values of diffusion coefficient D

when the advection velocity is vðxÞ ¼ � sinðpxÞ.
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for each filter, we study the error term as a function of ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFeÞ

p
¼ e

ffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFÞ

p
which behaves like e since l2ðFÞ only de-

pends on the choice of filter.
We compare solutions given by our new method to the analytical solution of the steady state in (21) and to the solution

given by a commercial finite element software at finite time. When the diffusion coefficient in our test case is more than
0.002, (the Péclet number is less than 1000), then this simple one dimensional advection–diffusion equation can be easily
and very accurately solved by any commercial finite element software. In Fig. 3(a) we show the state of simulation at time
t ¼ 1 with D ¼ 0:2 for our 1D example. The values WxðykÞ

yk ;t
for yk ¼ ½�1 : 5e� 3 : 1� are shown together with the finite element

solution at t ¼ 1 and the steady state solution. For each point yk, independent Brownian motion is used to solve the SDE sys-
tem and hence the value WxðykÞ

yk ;t
show their stochastic nature. Traditional Monte Carlo averaging over multiple stochastic sim-

ulations would result in convergence to the finite element solution of the PDE which is seen in black in the figure. But, it is
hard to predict from the noisy WxðykÞ

yk ;t
the shape of the solution after only one set of realizations. In Fig. 3(b) and (c), the fil-

tered approximate solution ~uðt; xÞ is plotted in green line for a Gaussian filter, in red and line a Triangular filter and in blue
line a Square filter, and in black line for Cos2 filter at t ¼ 1 and t ¼ 0:5 with ls ¼ 0:05 for each filter. The zoom around x ¼ 0 in
Fig. 3(c), permits to see that after Gaussian, Triangular and Cos2 filtering, the solution is very smooth whereas the Square
filtered solution, although giving the correct shape, is still noisy. This is indicated by the study of the FFT of the four different
filters shown in Fig. 1(b). Notice how the Square filter does not uniformly dampen higher frequencies and hence is expected
to keep a fair amount of high-frequency content.

To examine how error changes with e, we plot the L2 norm of error versus the square root of the second moment of the
four filters for D ¼ 0:05 on a Log–Log scale in Fig. 4. The curves are very similar for the four filters. For small ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFeÞ

p
,

which is equivalent to small e, the L2 norm of the error decays rapidly and can be shown to scale as 1=
ffiffiffiffiffils
p

. Theorem 1 tells us

it should decay with a 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 1
p

¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e=Dxþ 1

p
rule. For small e, we can Taylor expand this expression and show that this

error is of order
ffiffiffiffiffiffi
Dx
p

=ls which gives the observed 1=ls decay for fixed Dx. For large ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFeÞ

p
i.e. large e it increases as e2

as predicted in Theorem 1.
We find coefficient a; b such that affiffiffiffils

p þ bl2
s fits the curve for the Gaussian filter (Fig. 5) for different coefficient of diffusion

D. In Fig. 5(a), the coefficient a is plotted. As it corresponds to the stochastic part of the algorithm, its value changes with the
random realization and should not depend strongly with the coefficient of diffusion D. Its mean value is 0:012. The values of
coefficient b are plotted in Fig. 5(b). According to Lemma 2, the numerical approximation error from filtering is given by

cf ¼ jjFe�u� ujj2 6 e2

p l2ðFÞjjujjW2;p . The filtering error depends on the second derivatives of the solution uðx; tÞ. These deriv-

atives are highly dependent on the coefficient of diffusion. Knowing the steady state solution for our test example, we can
estimate jjujjW2;p .



Fig. 3. Comparison of the approximate solution of (16,17) with D ¼ 0:2 before filtering and for 4 different spatial filters using dx ¼ 5e� 5 and
l2ðFeÞ ¼ 0:0025 to the solution given by a commercial finite element software (black -.- line) and the exact steady state solution, (21), (red - - - line). (a)
Solution before filtering. The values of Wxðyk Þ

yk ;t
at t ¼ 1 for yk ¼ ½�1 : 5e� 3 : 1� in blue. (b) Filtered approximate solution ~uM

e ðx; t;DtÞ is plotted in green... line
for a Gaussian filter, in red... line for a Triangular filter and in blue... line for a Square filter, and in black... line for Cos2 filter at t ¼ 1 and t ¼ 0:5. (c) Zoom
around x ¼ 0 of figure (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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@2u1
@x2 ¼

1
I0ð1=ðpDÞÞ ½�DpcosðpxÞ þ sinðpxÞ2�expðcosðpxÞ=ðpDÞÞ;
kukW2;p 6 maxx2½�1;1�
@2u1
@x2

�����
����� ¼ pexpð1=ðpDÞÞ

DI0ð1=ðpDÞÞ 	 p=Dþ Oð1=D2Þ
and thus the filtering error behaves like 1=D for large D. We observe this relationship for coefficient b as can be seen in
Fig. 5(b). We can then estimate the value of b for other coefficient of diffusion D using a 1=D approximation and the value
of b0 ¼ 27:7240 at D0 ¼ 0:05 given by the simulations.
b ¼ b0D0

D
:

The difference of rates of convergence of the error for the sampling term and the filtering terms results in the existence of
an optimal value of ls and hence of filter with e for which the L2 norm of the error is minimal (Fig. 6). For D ¼ 0:05, the best
ls ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFeÞ

p
	 0:0281 and at this value of ls the L2 norm of the error for the four filters are about the same but higher for

the Square filter than the Triangular filter, Gaussian filter, and Cos2 filter.



Fig. 4. Plot in Log–Log scale of the L2 error for different values of ls ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðFeÞ

p
of the filters, in green line for a Gaussian filter, in red dash–dot line for a

Triangular filter, in blue dashed line for a Square filter, and in black dotted line for Cos2 filter at t ¼ 1 in the case when D ¼ 0:05. Guide lines for 1=
ffiffiffiffiffils
p

and l2
s

slopes are shown as Theorem 1 shows that the error is bounded by a function of the form a= ffiffiffiffiffils
p þ bl2

s . (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Plot of the a and b coefficient founds by matching the curves for different coefficient of diffusion D in black line. In figure (a), the mean value of a is
given by the dashed blue line. In figure (b), 1=D is also plotted in blue dashed line. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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We can estimate the value of the best ls at any D using the mean value of a ¼ 0:012 and assuming the L2 error behaves as
affiffiffiffils
p þ bl2

s .
ls ¼
aD

4b0D0


 �2=5

:

This formula shows that ls ¼ 0 when D ¼ 0, which corresponds to saying that no averaging is necessary. When D ¼ 0, the
solution of the PDE is given by deterministic trajectories. The result for our test example is given in Fig. 6 where the blue
dashed line is the estimated ls and the black full line show the ls obtained from the simulations.
4.2. 2D example

We apply our method to the study of the transport of density by a perturbed cellular, divergence-free velocity field and
small diffusion. The example presented here is motivated by the study of optimal mixing with an array of vortices with alter-
nating rotations, by means of Lorentz forces in a two-dimensional fluid layer that carries an electric current [20].



Fig. 6. Plot of the ls ¼
ffiffiffiffiffiffil2
p

that gives the lowest L2 error for different values of D where the blue dashed line is the estimated ls and the black full line show
the ls obtained from the simulations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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We consider two separate arrays with different alignments. The corresponding advection velocity field is the sum of two
rotating fields:
Fig. 7.
field sh
vðx1; x2; tÞ ¼ vcðx1; x2Þ þ apcosð2ptÞvcðx1 � 0:25; x2 � 0:25Þ; ð22Þ
with vcðx; yÞ being the well-understood cellular velocity field shown in Fig. 7(a) and described by:
vcðx1; x2Þ ¼
�sinð2px1Þcosð2px2Þ;
cosð2px1Þsinð2px2Þ:

�
ð23Þ
For this velocity field, we impose periodic conditions on the boundary of our 2D domain ½0;1� � ½0;1�.
The standard way to visualize such systems in the non-diffusive case is the Poincaré map method. The Poincaré map for

the time-periodically perturbed cellular velocity field is shown in Fig. 7(b). This Poincaré map shows the well-understood
mixture of chaotic behaviour, as indicated by orbits filling an area of the phase space, and Kolmogorov–Arnold–Moser
(KAM) orbits, surrounding elliptic fixed points and elliptic periodic orbits.

To study the effect of small diffusion, we solve, using our spatial filter and backward time approach, the following 2D Fok-
ker–Planck equation:
(a) A cellular, divergence-free velocity field described in Eq. (23), (b) Poincaré map for the time-periodic, divergence free perturbation of the velocity
own in (a) by a vector field described in Eq. (22) with a perturbation ap ¼ 0:1.



Fig. 8. Snapshot at various times of the density field advected by the velocity in (22) with a perturbation ap ¼ 0:1, solution of (24) with a coefficient of
diffusion D ¼ 10�5 with a smooth initial condition uðx1; x2; t ¼ 0Þ ¼ sinð2px2Þ.

Fig. 9. Snapshot at various times of the density field advected by the velocity in (22) with a perturbation ap ¼ 0:1, solution of (24) with a coefficient of
diffusion D ¼ 10�5 with a step initial condition uðx1; x2; t ¼ 0Þ ¼ �1, if y > 0:5 and uðx1; x2; t ¼ 0Þ ¼ 1, if y 6 0:5.
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@u
@t
þ
X2

i¼1

v iðx1; x2; tÞ
@u
@xi
¼ D

X2

i;j¼1

@2u
@xi@xj

: ð24Þ
For non smooth initial conditions, the method presented here works as long as the solution for t > 0 belongs to
W2;p 8t > 0. The initial density field is, in our first 2D example, chosen to be uðx1; x2; t ¼ 0Þ ¼ sinð2px2Þ, a smooth initial con-
dition. Then we use the same results of the SDE system to get the solution uðx; tÞ for t > 0 in the case of an initial step func-
tion with uðx1; x2; t ¼ 0Þ ¼ �1, if y > 0:5 and uðx1; x2; t ¼ 0Þ ¼ 1, if y 6 0:5.

The results of the numerical simulations are shown in Figs. 8 and 9 for a perturbation ap ¼ 0:1 and a coefficient of diffu-
sion D ¼ 10�5. The simulations are done with a uniform 501� 501 grid in the spatial domain, a time step dt ¼ 10�4 and using
a Gaussian spatial filter. Note thatr:vc ¼ 0, i.e. the velocity field is conservative. As t increases, the density gets slowly more
and more uniform. The simulations also show that for slow diffusion, the mixing mechanism is similar to the one without
diffusion. Indeed, the zones with best mixing, zones where c 	 0 (see in Fig. 9(f) and 8(f)), are similar to the chaotic mixing
zones of the Poincaré map while the zones with low mixing correspond the the KAM zone shown by the Poincaré map.

5. Computational efficiency

In this section, we study the computational complexity of the presented Backward Spatial Filtering method compared to
the traditional Monte Carlo method. This calculation does not take into account the computational cost related to solving the
SDE system or the influence of the choice of the method used to solve the SDE sytem (multilevel, stratified sampling, etc.) as
it would affect the traditional Monte Carlo method and the Spatial Filtering method similarly. In Table 2, we present results
from our simulations for the computational effort needed to reach a L2 accuracy a ¼ 0:05 for our test 1D example with
v ¼ �sinðpxÞ and D ¼ 0:2. The results are given for the traditional Monte Carlo method, for the Spatial Filtering method
and the combination of the two, using different sizes of grid.

Suppose we have a grid with L points with a fixed grid width Dx. Let N be the number of independent simulation launched
from each point on the grid such that the Monte Carlo averaging method results in accuracy a for the values of uðx; tÞ on the
grid. The total number of time the SDE system needs to be solved to reach an accuracy a is L� N. As the Monte Carlo aver-

aging error is given by a ¼ O 1=
ffiffiffiffi
N
p� �

, then N is of the order of a�2. Hence the computational effort for the traditional Monte

Carlo method is of order La�2. For our test example, N ¼ 2000 independent simulations are needed at each point of the grid to
reach a L2 accuracy a ¼ 0:05. This leads to a computational effort on a grid of L ¼ 10 points of LN ¼ 20;000 and on a grid of
L ¼ 26 points of LN ¼ 52000 and on a grid of L ¼ 400 points of LN ¼ 800;000 (see Table 2).

Let us now determine the computational effort to reach accuracy a for the Backward Spatial Filtering method presented in
this paper. Let the filter width be e which corresponds to ð2M þ 1Þn grid points used for the spatial filtering. Then the accu-
racy a needs to be equal to e2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Mþ1Þn
p . First, we choose e that leads to the desired accuracy a for the spatial filtering. Then

let’s find the spatial grid width Dx and hence L, the number of grid points, needed to reach the accuracy a. We need
a of the order of e2 ¼ Dx2M2 and M�n=2;

Dx2M2 ¼ M�n=2;

M ¼ Dx�
4

nþ4;

a ¼ e2 þM�n=2 ¼ Dx 2� 8
nþ4ð Þ þ Dx �n

2
�4

nþ4ð Þ;
a ¼ 2Dx

2n
nþ4;

Dx ¼ a
2

 �nþ4
2n :

8>>>>>>><
>>>>>>>:
Table 2
Computational effort to reach a L2 accuracy of a ¼ 0:05, for different sizes of grid for our 1D test example (16)–(17) with D ¼ 0:2 on
a grid of L points. At each point of the grid, N simulations are launched. A Gaussian filter with ls ¼ 0:03 is used and 2M þ 1 is the
number of neighbouring points used in the filter. The total computational effort is given by the value of LN.

L 2M þ 1 N ð2M þ 1ÞN LN

10 1 2000 2000 20,000
26 1 2000 2000 52,000

400 1 2000 2000 800,000
400 37 110 4070 44,000

4000 361 15 5415 60,000
8000 721 6 4326 48,000

10,000 901 4 3604 40,000
16,000 1441 3 4323 48,000
20,000 1801 2 3601 40,000
40,000 3601 1 3601 40,000
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We have Dx of order L�n. Thus
L scales as a�
nþ4
2n2 :
The total computational effort of the Backward Spatial Filtering method is equal to the number of points on the grid L and

hence scales as a�
nþ4
2n2 . For n ¼ 1, we need L ¼ Kaa�2:5 with Ka > 0. For our test 1D example, we need a grid of L ¼ 40000 points

to reach a L2 accuracy of a ¼ 0:05 and hence the computational effort using the spatial filter method is LN = 40,000 (see Ta-
ble 2). For this example, the constant can be estimated to Ka 	 22. As discussed above, the computational effort for the stan-
dard Monte Carlo method scales as a�2. Indeed the number of launches at each grid point is estimated by Kma�2 where
Km 	 5 for our test example. If we are interested in a solution on a sparse grid then the Monte Carlo is more efficient. If
we are interested in a fine grid, the spatial filter method performs better. More precisely, for our test example, the compu-
tational effort for the filtering method is less than the one for the Monte Carlo method when Kaa�2:5

6 LKma�2. Hence for an
accuracy a ¼ 0:05, this means the spatial averaging is more computationally efficient if the number of grid points
L P Ka

Km
a�0:5 ¼ 20. The Monte Carlo method on a grid of 400 points has a computational effort about 20 times higher than

the Spatial Filtering method for a grid of 40000 points (see Table 2). For any n > 1, the computational effort increases much
slower for the Spatial Filtering method, L 
 a�p with p ¼ � nþ4

2n2 < 1, than for the Monte Carlo method. The minimum number

of grid points that leads to a smaller computational effort for the spatial filter method scales as a
4n2�n�4

2n2 !
n!þ1

a2. Thus, the Spa-

tial Filtering method is significantly more computationally efficient than the Monte Carlo method to give the solution on a
large grid of points and allows better accuracy with very little additional computational effort.

Now let us estimate the number of independent simulations, N, launched from each point on the grid to reach accuracy a
when the grid size Dx is fixed using the combined Monte Carlo and Spatial Filtering method.
a ¼ e2 þ N�1=2M�n=2;

a=2 ¼ Dx2M2 hence M ¼ a1=2Dx�1=
ffiffiffi
2
p

;

a=2 ¼ N�1=2M�n=2 hence N ¼ 2
n�4

2 a�
nþ4

2 Dxn:

8><
>:
If using Monte Carlo averaging alone, we need N 
 a�2 runs to reach a certain accuracy. By combining spatial filtering on
M points and Monte Carlo averaging using N 
 2

n�4
2 a�

nþ4
2 Dxn runs, we can reach the same accuracy by using Nð2M þ 1Þn esti-

mates of the value at each points on the grid. In 1D, the number of runs N scales as Dx which can be seen in Table 2.
The study of the computational effort presented here shows that in many cases it is advantageous to use spatial averaging

to calculate solutions to reduce computational time.

6. Conclusion

This Backward Time Probabilistic method with spatial averaging permits to simulate parabolic equation with high Péclet
number on a large grid using less computational time than the usual Monte Carlo methods. In fact when D ¼ 0; then M ¼ 1,
this method reduces to backward tracking and no filtering is needed. Thus for very small diffusivity, the method is expected
to perform extremely well against classical Monte Carlo. Moreover, backward tracking does not suffer from lack of coverage
issues appearing in forward tracking methods. The method provides a computational advantage when solutions of the same
parabolic equation is needed for various initial conditions since the SDE systems only need to be solved once, or when an
accurate solution is needed on a multidimensional large regular grid. This type of method is also very effective for solving
a large number of coupled linear parabolic PDEs since the number of paths used in the solution does not change with the
number of PDEs [40].
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