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a b s t r a c t

Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single
approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform
and simpler behavior, we could hope to study each of the structures separately and then form the
understanding of the system as a whole. The method we present in this paper uses trajectory averages
of scalar functions on the state space to: (a) identify invariant sets in the state space, and (b) to form
coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we
construct the ergodic quotient, the object obtained by mapping trajectories to the space of the trajectory
averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric
structure that successfully captures how similar the invariant sets are in the state space. Finally, we
parametrize the ergodic quotient using intrinsic diffusionmodes on it. By segmenting the ergodic quotient
based on the diffusion modes, we extract coherent features in the state space of the dynamical system.
The algorithm is validated by analyzing the Arnold–Beltrami–Childress flow, which was the test-bed
for alternative approaches: the Ulam’s approximation of the transfer operator and the computation of
Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincaré map
analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-
dimensional Hill’s vortex flow, discovering unknown coherent structures in its state space. Finally, we
discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of
(quasi-)periodic structures, and lay out future research directions.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Historically, a lot of work in dynamical systems focused on
understanding a single type of behavior in amodel: elliptical zones,
hyperbolic trajectories, chaotic attractors, mixing regions, etc. As
computers become more powerful, and experimental methods,
such as Particle Image/Tracking Velocimetry, more precise, we
are able to study large, complicated systems, whose state spaces
comprise many different coexisting coherent structures: regions
of uniform and simpler behavior, which might be well understood
individually. To apply our understanding to the entire system,
however, we first need to identify where coherent structures lie
in the state space. This task can bemade difficult by the quantity of
coherent structures, fractal boundaries between them, or the high
dimension of the state space.

Over the past decade, several different interpretations of
coherent structures have appeared, each serving as a foundation
for algorithmswhich extract them from the flow or from trajectory
data. Coherent structures have been identified as: (i) distinguished
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trajectories that organize behavior of the flow nearby, (ii) regions
of state space between barriers of dynamical transport, (iii) sets
of initial conditions that are not dispersed by the flow, and
(iv) sets of trajectories on which all flow-invariant functions take
constant values. All the mentioned definitions identify sets that
are dynamically invariant, in some sense, however, the choice of
atomic objects, i.e., barriers of transport vs. initial conditions vs.
trajectories, influences the type of approximation we obtain when
using algorithms finite in time, space, and precision.

Identification of coherent structures based on barriers to
transport includes both classical geometric studies of invariant
manifolds and newer approaches that attempt to generalize
invariant manifolds to aperiodic, transient flows. The study of
Lagrangian Coherent Structures (LCS) [1,2] focuses on structures
that take the roles of hyperbolic invariant manifolds in time-
varying flows. As a consequence, they are dominantly studied
through finite-time Lyapunov exponent fieldswhose local extrema
are tracked to obtain proxies to LCS [3–5].

While LCS-based methods identify distinguished hyperbolic
trajectories as organizing structures, a recent paper [6], coauthored
by the second author, proposed to identify both hyperbolic and
elliptic behavior in a finite-time, transient context. The approach,
termed mesochronic velocity analysis, studies the Jacobian of the
flow averaged over short segments of trajectories.
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Both LCS andmesochronic velocity fields identify distinguished
trajectories that organize surrounding behavior. ‘‘Surrounding’’
is usually interpreted in terms of regions between neighboring
distinguished trajectories. Such an interpretation is difficult to
generalize to state spaces of higher dimension, where trajectories
are not of codimension-one and cannot be used to segment the
state space, without additional assumptions, e.g., symmetries of
solutions.

Approaches that aggregate smaller flow features into larger
coherent structures are the alternative to analyzing barriers that
separate trajectories. A prominent aggregation method is the
computation of invariant sets through eigenfunctions of the trans-
fer (Perron–Frobenius) operator, a linear operator that captures
evolutions of densities of points carried by dynamics [7–10]. Nu-
merically, the approach most commonly proceeds by the Ulam’s
method: approximation of the system by a stochastic Markov
chain, acting on a discretized state space. The eigenvectors of the
Markov chain transition matrix approximate the eigenfunctions
of the transfer operator. The Ulam’s method requires a compu-
tation of short trajectories started from a large number of initial
conditions within each discretization cell. Despite its prominence,
Ulam’s method can be difficult to apply to, e.g., high-dimensional
systems, and some experimental setups. A large number of state
space dimensions may render computations infeasible, since the
number of elements in Ulam’s matrix grows exponentially with
the dimension of the state space. On the other hand, if resetting
and precise preparation of initial conditions is not possible, e.g., in
certain fluids experiments, it can be more feasible to run fewer ex-
periments for longer periods of time.

The method that does use long trajectories as a direct input
has been pursued in [11,12]. It groups trajectories based on
values of invariant functions along them. This approach interprets
invariant functions as eigenfunctions of the Koopman operator,
which captures howvalues of functions evolve along trajectories of
the system. Koopman and the aforementioned Perron–Frobenius
operator form a dual pair in the appropriate function spaces.
Knowing eigenfunctions of the Koopman operator allows us to
detect invariant sets in the state space, as level sets of Koopman
eigenfunctions divide the state space into invariant partitions. It
is possible to compute them without approximating the operator
itself: starting from any observable, i.e., a scalar function on the
state space, and averaging its values along trajectories projects the
observable to the invariant eigenspace of the Koopman operator.
Choosing observables from a function basis, averaging them, and
forming joint level sets of averaged observables results in finer
and finer stationary partitions of the state space. Ultimately,
the process converges to the ergodic partition of the space: the
unique, finest partition into invariant stationary sets. It was noted
in [13] that even a small number of observables can be used
to approximate the ergodic partition well. It remained unclear,
however, how to select such a small set of observables that
captures a lot of detail except by trial and error.

The algorithm proposed in this paper follows the analysis of
dynamics using averaged observables. It does not aim to ‘‘guess’’
an observable whose time average reveals the most information
about the coherent structure; rather, it constructs a suitable set of
invariant functions fromaverages of a function basis. To explain the
method, we expand on the representation of dynamics using the
ergodic quotient [13]: each trajectory is represented by a sequence
of time-averaged observables taken from a Fourier function basis.
Collection of all such sequences, the ergodic quotient, is equivalent
to the ergodic partition, butmore practical toworkwith, as analytic
tools on sequence spaces are very well studied. To analyze the
ergodic quotient, we endow it with a distance function, adapted
from [14], that identifies two trajectories as coherent if they spend
similar fractions of their evolutions within any particular set in the
state space. As a result, the problem of dynamical analysis of flows
is converted into a geometric analysis of the ergodic quotient, with
a metric structure given by the empirical distance. Our approach is
similar in spirit to analysis of integrable systems through geometry
of their integrals of motion [15].

To analyze geometry of the ergodic set we used the Diffusion
Maps algorithm [16], which retrieves dominant modes of diffusion
on objects with metric structure, e.g., branched manifolds. We
introduced the use of Diffusion Maps as a tool in [17]; here we
explain its results in terms of the ergodic quotient. To validate
the algorithm, we apply it to the Arnold–Beltrami–Childress (ABC)
flow, which was previously used as a test-bed for algorithms
based on the Ulam’s method [8] and on LCS [18]. The second
example, the periodically-forced Hill’s vortex flow, demonstrates
the application of the algorithm to time-dependent flows.

When applied to analysis of time-periodic dynamical systems,
our method extends the familiar analysis of the Poincaré map,
including the averaged information about trajectories between
two piercings of the Poincaré surface. Building on the application
to time-dependent systems, we explain how the algorithm could
be easily extended to the analysis of invariant features of periodic
and quasi-periodic sets in the state space [12]. In this case,
instead of ergodic averages along trajectories, we use harmonic
averages along trajectories, which can also be interpreted through
eigenspaces of the Koopman operator.While the ergodic averaging
projected functions onto invariant eigenspace of the Koopman
operator, the harmonic averaging projects functions to eigenspaces
associated to other eigenvalues.

There are several benefits to the analysis based on averaging
observables along trajectories. Since we use the entire trajectory
evolution, we do not need to access the entire state space directly,
e.g., we can place initial conditions on a lower-dimensional sur-
face and still obtain the full information about coherent struc-
tures intersected by that surface. Furthermore, compared toUlam’s
method, we require fewer initial conditions for analysis. These fea-
tures makes the method applicable to experimental setups where
resetting and initialization of experiments are restricted or costly.
Moreover, when there are low-dimensional surfaces of interest,
such restricted initialization of trajectories makes it possible to
analyze even high-dimensional systems without the exponential
growth in number of initial conditions. Finally, approximation of
eigenfunctions of the Koopman operator does not require passing
through a stochastic approximation of the deterministic dynam-
ical system; instead projections of observables to eigenfunctions
are evaluated directly by averaging.

Although both of our examples in this paper originated as
models of fluid flows, the ergodic quotient analysis can be applied
to a broad range of dynamical systems on compact state spaces.
The incompressible fluid flows and hamiltonian systems, however,
are two classes of systems that commonly have many invariant
sets in their state spaces, arranged in intricate structure, therefore,
those classes provide the most natural targets for our analysis.
Nevertheless, dissipative systems can also be studied using the
ergodic quotient, in which case the method identifies how basins
of attraction are arranged in state spaces.

The paper is structured as follows: the Section 2 presents
the theory of the ergodic quotient, the empirical distance, and
the diffusion coordinates, followed by the application to the
autonomous ABC flow. Section 3 demonstrates how application
to non-autonomous, periodically forced flows improves on the
classical analysis of the Poincarè map and supports the case by
a numerical analysis of the periodically-forced 3D Hill’s vortex
flow. In Section 4 we discuss how our method compares with
alternatives, as well as present our suggestions for application and
future research. The Appendices analyze numerical properties of
the averaging algorithm and the empirical distance, and present
details about the Diffusion Maps that are necessary for an
implementation as a computer code.
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Fig. 1. A sketch of (a) the state space portrait, (b) the ergodic quotient in the
space of averaged observables, and (c) the ergodic quotient in the space of diffusion
coordinates. Crosses depict initial conditions used for numerical computation. Note
that crosses on the ergodic quotient represent entire trajectories started from
associated initial conditions on the state space.

2. The ergodic quotient

Geometry of the ergodic quotient enables comparison of
trajectories of dynamical systems across multiple spatial scales. To
be able to study it, we move through three different spaces: the
state space, the space of averaged observables, where the ergodic
quotient is constructed, and the space of diffusion coordinates,
where the ergodic quotient is described by independent, intrinsic
coordinates. Before delving deeper, we give an overview of the
process, with italicized terms defined later in the text.

To measure how similar two trajectories are in the state
space (Fig. 1.a), we use the empirical distance, which compares
trajectories based on their residence times in spherical sets in the
state space. On the state space, however, the empirical distance
is not practically computable, so we map trajectories to a space
where it is. By selecting observables fk from a Fourier function
basis and averaging them along trajectories, each trajectory gets
mapped to a point on the ergodic quotient, which comprises
sequences of trajectory averages1 f̃k for every trajectory in the
state space (Fig. 1.b). We endow the sequence space with a
metric induced by a H−s Sobolev space norm. The H−s metric
is topologically equivalent to the empirical distance, yet it has a
benefit that it is easily computable as a weighted euclideanmetric.
The ergodic quotient is typically low-dimensional, therefore
its representation in a (infinitely-dimensional) sequence space
is not economical. To address this issue, we use a nonlinear
change of coordinates to represent the quotient in diffusion
coordinates, preserving the intrinsic geometry of the quotient.
Diffusion coordinates are an orthogonal, efficient, scale-ordered,
low-dimensional representation of the ergodic quotient that has an
effect of straightening the ergodic quotient (Fig. 1.c). The euclidean
distance in diffusion coordinates represents the diffusion distance
along the ergodic quotient. Diffusion distance is an intrinsic
distance, locally consistent with empirical distance; for the sake of
introduction, it can be thought of as a robust version of the geodesic
distance along the quotient.

Computationally, the construction starts with a finite set of
trajectories xi on the state space. They are mapped to the ergodic
quotient by averaging a finite subset of the Fourier basis along
them, therefore, the points on the numerical ergodic quotient
are vectors of trajectory averages. Based on trajectory averages,
we compute the matrix of pairwise H−s distances between
trajectories, which forms the input data to the Diffusion Maps
algorithm. It computes the diffusion coordinates of each trajectory
by solving a matrix eigenproblem. Starting trajectories are then
grouped into coherent structures, using a k-means algorithm
applied to the diffusion coordinates of trajectories. To visualize

1 Terms time average and trajectory average are used interchangeably. In
literature, ergodic average and Césaro average are also used.
the coherent structures in the state portrait, we either color
trajectories based on their k-clustermembership, orwe color them
based on a single diffusion coordinate.

2.1. Construction: from state space portrait to the ergodic quotient

Take a compact euclidean manifold M ⊂ RD as the state
space of dynamics. The flow map is a composition (semi)-group of
continuous functions ϕt(x) : M → M, with time t ∈ T . For ODE-
generated flows, the time-like parameter is a real number T =

R+

0 , and the semigroup is assumed to be continuous in t . In map-
generated flows, time progression over T = Z+

0 is interpreted as
the iterated application of the map ϕ(x), i.e., ϕt(x) = ϕ[ϕt−1(x)],
with ϕ0(x) = x. The space of observables F is a set of Borel-
measurable functions f : M → C; in this paper we will take F
as the set of continuous functions on M.

The geometric analysis of dynamics studies the state space
portrait of the system, i.e., the collection of all trajectories in
the state space,


(ϕt(x))t∈R : ∀x ∈ M


. Chaotic behavior, however,

implies that individual trajectories are non-robust to errors in
initial conditions x. Despite the lack of robustness of trajectories,
the averages of observables along them are robust, even in chaotic
regimes [19,20]. As our approach is based on averaging, we expect
the computations to remain robust even in chaotic regimes, which
is the main motivator for this approach. Presented introductory
topics follow the exposition given in [21, Section 4].

A finite-time average of an observable f is given by

1
T

 T

0
[f ◦ ϕt ] (x)dt.

Let Σ ⊂ M be the set of points on which the limit as T → ∞

exists. On Σ , we can define the infinite time average

f̃ (x) , lim
T→∞

1
T

 T

0
[f ◦ ϕt ] (x)dt.

If the flow map preserves a measure λ, the set M \ Σ will
be negligible in measure, λ(M \ Σ) = 0, by Birkhoff’s
Ergodic Theorem. As hamiltonian systems and divergence-free
flows preserve the Lebesgue measure, it is unlikely that an initial
condition for which time averages do not convergewill be selected
when analyzing such systems. The same argument can be made
for systems that preserve a Lebesgue-continuous measure, which
contains an even larger class of systems. Consequently, we will
equate Σ and M for purposes of this paper.

The infinite-time average f → f̃ (x) is a positive, linear,
continuous functional, and the Riesz representation theorem
asserts that the averaging functional can be represented by a Borel
probability measure µx, the empirical measure, attached to the
initial condition x:

M

fdµx = f̃ (x). (1)

The empirical measures of sets µx(E) can be interpreted as the
fraction of evolution that the trajectory evolving from x spends
inside the set E (residence or mean-sojourn time). For regular
orbits, empirical measures are masses supported on fixed points
or spread out along periodic orbits, while on chaotic sets they
may have a positive-area support. It is worth noting that empirical
measures µx are instantaneous invariants of the system, despite
our use of an asymptotic process in their construction. They play
a similar role in the measure-theoretic description of dynamics as
the trajectories do in the geometric description.

Instead of working with potentially singular empirical mea-
sures directly, we will work with their weak representatives.
Fix a countable basis of continuous functions fk on M, indexed
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by a multi-index k, e.g., Fourier harmonics with D-dimensional
wavevectors k ∈ ZD. Let the ergodic quotient map be π : M →

l∞(ZD), given by

π(x) := (. . . , f̃k(x), . . .)k, k ∈ ZD.

Action of π at x can be interpreted as forming a weak
representation of the empirical measure µx. The set of all such
sequences, generated by averaging from each initial condition, is
the ergodic quotient ξ := π(M). It will play the same role that
the state-space portrait plays in geometric analysis, with the added
benefit of robustness in all dynamical regimes.

Strictly, every point on the ergodic quotient should be thought
of as the set of trajectory averages of all continuous observables:
by selecting a basis we merely pick a representation of the ergodic
quotient in the particular sequence space l∞(ZD). It was shown
in [12] that all such representations are equivalent; therefore, we
will speak of any of them as the ergodic quotient when there is no
ambiguity.

Conceptually, we have moved from points in the state space x
to associated averages of observables in two steps:

x
I

−→ µx
II
−→ (. . . , f̃k(x), . . .)k∈ZD . (2)

The representation steps (I) and (II) in (2) are not bijective in
general.

Step (I), at the very least, associates all points on the same
trajectory with the same empirical measure; however, the pre-
images of empirical measures might contain more than a single
trajectory. In [17] we discussed the approximation of the ergodic
partition, which is the (unique) partition of the state space into
ergodic sets. An invariant subset of the state space S ⊂ M is
called ergodic when the flow ϕt restricted to it, ϕt : S → S, is
an ergodic system. Since trajectory averages of ergodic systems do
not depend on initial conditions, it follows that all points x ∈ S
have the same empirical measure. In this sense, the pre-image of
the ergodic quotient is the ergodic partition of the state space. Such
an outcome is desirable, as ergodic sets are minimal robust atomic
objects that contain (non-robust) trajectories.

Step (II) is bijective only if the entire function basis can be
used to construct the ergodic quotient. On continuous state spaces
which have infinite bases, we will need to truncate the function
set to implement the algorithm on a computer: the magnitude of
error introduced by basis truncation will depend on the distance
structure on the ergodic quotient, discussed in the Section 2.2.

Remark. Unless we are looking for the ergodic quotient of the en-
tire system,we can place initial conditions only in a region of space
that is of a particular interest. Moreover, only one initial condition
from an ergodic set is required to represent the empirical measure
for the entire ergodic set, as any trajectory in the ergodic set will
correctly sample the associated empirical measure. Therefore, it is
sufficient to sample the initial conditions from the surface that in-
tersects coherent features we wish to explore. After selecting the
initial conditions and the set of observables to average, we com-
pute trajectories starting with each initial condition until time av-
erages along them converge (see Appendix A), thus obtaining the
approximate mapping of the state space into the ergodic quotient.

2.2. Metric structure: empirical distance

Trajectories are aggregated into coherent structures by a
criterion of similarity embodied in a distance function between
trajectories. The choice of the distance function determines the
type of coherent structures we obtain. In this work, we chose to
workwith the empirical distance,which compares two trajectories
based on residence times [14]. Instead of working with the
empirical distance directly on the state space, we use a distance
on the ergodic quotient that is equivalent to it, thus converting
the analysis of dynamics into analysis of geometry of the ergodic
quotient.

The empirical distance was originally used to quantify how
closely a trajectory samples an a priori distribution on the state
space, i.e., to compare an empirical measure with a fixed prior
measure on the state space. The same distance can be used
to compare two empirical measures and estimate how similar
the processes that generate measures are. Define the empirical
distance D between measures µx, µy by

D(µx, µy)
2

=

 1

0


M


µx [B(p, r)] − µy [B(p, r)]

2 dpdr,

where B(p, r) ⊂ M are spherical sets of center p and radius r
normalized such that B(p, 1) ⊃ M and Vol M = 1. Note that
integration is over all spherical sets, without normalization by the
sets’ volumes, resulting in higher sensitivity to differences across
larger spatial scales.

Integration over uncountably many spherical sets is practically
infeasible, however, themetric induced by the norm on a negative-
order Sobolev space of measures can be used instead. The distance

D−s(µx, µy) ,

F̃(x) − F̃(y)

2,−sF̃(x) − F̃(y)

2

2,−s
=


k∈ZD

f̃k(x) − f̃k(y)
2

1 + (2π ∥k∥2)
2s ,

(3)

is easily computed as a weighted sum of Fourier coefficients,
F̃(x) ,


. . . , f̃k(x), . . .


k∈ZD

of measures involved. The order s of
the Sobolev space is selected based on the dimension D of the
domain of measures M as s = (D + 1)/2. Using D−s instead of
D does not change the resulting topology, as the empirical metric
and the H−s with the order s = (D+1)/2 are equivalent, i.e., there
exist positive constants c and C such that for all µx and µy it holds
that

cD(µx, µy) ≤ D−s(µx, µy) ≤ CD(µx, µy).

When µx and µy are empirical measures, the Fourier coeffi-
cients can be computed as trajectory averages of observables, due
to (1), which is the core observation onwhichwe base ourmethod.
Therefore, we choose observables fk as Fourier basis functions,

fk(x) = (2π)−D/2 exp


i2π

D
d=1

kdxd


, (4)

with kd, and xd being components of the wave- and state-vectors,
respectively, assuming M = TD for simplicity.2 Interpreted in the
ergodic quotient framework, sequences f̃k(x) and f̃k(y) are points
on the ergodic quotient corresponding to empirical measures µx
and µy.

For purposes of our method, it is important to capture
the topology and the geometry of the ergodic quotient, not
the values of involved quantities. Therefore, we will use the
empirical distance D and the H−s Sobolev space distance D−s
interchangeably: the former in explaining conceptual implications
of the metric structure, the latter in computational considerations.

In practice, we cannot compute averages of the entire function
basis. The direct effect of the basis truncation is difficult to

2 For arbitrary domains, observables are solutions of the Helmholtz problem
on the domain. Mathew and Mezić will address the general formula for the H−s

distance in their upcoming work.
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Fig. 2. Geometry of the ergodic quotient under empirical distance. Sketches of
matching features in state space portraits (top) and ergodic quotients (bottom)
are given from left to right for a harmonic oscillator, a Duffing-type oscillator and
a double gyre system. Dots indicate equilibria and dashed arrows indicate how
moving an initial condition in the state space moves its image on the ergodic
quotient.

quantify; intuitively, the higher the cutoff K is set, restricting
wavevectors to k ∈ [−K , K ]

D, the finer are the state space features
we are able to resolve through empirical distance. In Appendix B
we show that truncation introduces at most O(1/

√
K) error in the

distance for any state space dimension D.

Remark. From a signal processing perspective, the H−s distances
correspond to a low-pass filtering of empirical distributions prior
to their comparison. Since numerical errors are more likely to
manifest in averaging of higher-wavenumber modes, we expect
that the use of such distances will improve the numerical stability
of the analysis. For a brief analysis of these effects, see Appendix A.

2.3. Geometry of the ergodic quotient

Equipping the ergodic quotient with a distance function pro-
vides a setting for studying the geometry of the space of invari-
ant functions. The study of dynamics through ergodic quotient
shows similarities with the study of dynamics of integrable sys-
tems through geometry of integrals of motion. Themain difference
is that the ergodic quotient is a constructive technique: we do not
need to know the expressions for integrals of motion to construct
the ergodic quotient or approximate it numerically.Moreover, con-
struction of the ergodic quotient is possible even when the system
is not integrable.

In Fig. 2 we demonstrate what the ergodic quotient might
look like locally for several simple state-space portraits. In elliptic
regions, invariant functions are a one-parameter family, mapping
to a filament in the ergodic quotient. In Duffing-type dynamics,
one-parameter invariants exist along libration trajectories in
elliptic zones and along the revolution trajectories outside of the
separatrix.Moving initial conditions close to separatrix from either
side results in trajectories slowing down more and more as they
pass the saddle, and consequently time averages of an observable
will converge to the value that the observable attains at the saddle.
As a result, filaments for librations and revolution trajectoriesmeet
in the ergodic quotient. In double-gyre flows, the filaments do
not meet, since two adjacent elliptic cells share only two out of
four saddles; as trajectories slow down next to all four, the time
averageswill converge to aweighted average of the function values
at the saddles, which will be different for every adjoining elliptic
cell.

Remark. Fomenko in [15] used a similar construction, the Reeb
graphs, to analyze integrable systems. Reeb graphs are graphical
representations of connected components in level sets of Morse
functions, in particular, the integrals of motion. For an integrable
system, the joint level sets of integrals of motion are ergodic sets.
Fomenko did not extend his work to systems for which we do
not have expressions for integrals of motion. The ergodic quotient,
therefore, can be interpreted as a setting for generalization of
Fomenko’s approach to non-integrable systems.

2.4. Diffusion modes as global coordinates

Although the ergodic quotient is a subset of an infinite-
dimensional sequence space, its main features could be approx-
imated well in a lower number of dimensions, as illustrated
in Fig. 2. To obtain a low-dimensional representation, we will
convert from the ambient coordinates, where axes are given by
averaged observables, to intrinsic coordinates, where axes are in-
dependent parameters that parametrize the ergodic quotient. As
intrinsic coordinates, we chose the modes of diffusion, or heat
spread, along the ergodic quotient, which provide an efficient, or-
thogonal low-dimensional representation. Numerically, we pass
from ambient coordinates to diffusion modes using the Diffusion
Maps algorithm [16].

Problems of approximating high-dimensional data by low-
dimensional parametrizations are common in data mining and
machine learning communities, where a low-dimensional process,
e.g., an object moving in the field of vision, is measured by
high-dimensional observation, e.g., image consisting of pixels. The
usefulness of diffusion eigenfunctions, as a prominent example
of Laplacian-based methods, is well documented in such settings,
e.g., [22].

On a differentiable manifold, the diffusion operator is given by
A = e−t∆, where∆ is the Laplace–Beltrami operator and t the time
over which diffusion evolves. Spectrum of the diffusion operator
is contained within the unit interval, with first eigenvalue always
λ0 = 1, and the rest of the eigenvalues ordered in decreasing order.
Eigenfunctions of the diffusion operator χ (k) are orthogonal and
normalized to

χ (k)


∞
amplitude with the trivial eigenfunction

χ (0)
≡ 1. The numerical algorithm, The Diffusion Maps, retrieves

the values of eigenfunctions sampled at finite number of points on
the underlying manifold.

When we apply Diffusion Maps to sequences of time averages,
the ergodic quotient plays the role of the differentiable manifold.
The interpretation of numerical results as discretizations of the
Laplace–Beltrami eigenfunctions is strictly valid only in the case
when ergodic quotient is a differentiable manifold, as it seems to
be for some simple systems, but not necessarily in the general case.
Despite this fact, this paper demonstrates that Diffusion Maps are
practically useful in analysis of dynamical systems and we expect
that a consistent interpretation will be found even for sets without
a differential structure.

The properties of diffusion eigenfunctions are demonstrated on
simple examples in papers [23,24], and detailed analysis of the
mathematical properties can be found in [25–27]. In short, we
can expect the lowest-index eigenfunctions to be combinations of
indicators on disconnected components of the ergodic quotient.
The eigenfunctions of higher index behave similarly to Fourier
modes on each of the components: first varying over coarser
features and, as the order is further increased, varying over finer
features.

In the spirit of representation sequence (2), we will add
embedding into the eigenfunctions of the diffusion operator as the
final step:

x
I

−→ µx
II
−→ (. . . , f̃k(x), . . .)k∈ZD

III
−→ (λ1χ

(1)(x), λ2χ
(2)(x), . . .),

and refer to embedding x → (λ1χ
(1)(x), λ2χ

(2)(x), . . .) as the
diffusion coordinates of the dynamics. The sketch of the embeddings
was given at the beginning as Fig. 1.



1260 M. Budišić, I. Mezić / Physica D 241 (2012) 1255–1269
Fig. 3. A sketch of distances in the space of trajectory averages. The full line
represents the ergodic quotient, the chordal distance is the empirical metric, and
the dotted line indicates the point where a small amount of noise can change the
geodesic distance discontinuously, but not the diffusion distance.

The euclidean distance in the diffusion coordinate representa-
tion carries a geometric meaning, which is different from, but re-
lated to the meaning of the distance in the ambient space of the
ergodic quotient, spanned by averaged observables. The empirical
distance D is the chordal distance in the ambient space, i.e., the
length of a shortest path between points. Diffusion distance, like
geodesic distance, takes into account only paths that lie within
the ergodic quotient. However, while the geodesic distance is the
length of the shortest path connecting two points, diffusion dis-
tance is, in a sense, the average length of all paths that connect the
two points. This average is computed as the difference in heat flow
reaching two points when heat is injected at any other point on the
quotient, averaged over all possible positions of the heat source. A
more detailed description can be found in [16].

For our purposes it is sufficient to state that averaging over
all paths provides robustness to noise. If the noise introduces
a short-cut between two parts of the manifold, as depicted in
Fig. 3, the geodesic distance changes discontinuously, however, the
diffusion distance does not, as averaging over all paths ensures that
a small amount of noise does not change the geometry significantly
[24, Section 4.2].

The Diffusion Maps algorithm approximates the operator e−t∆

by a N × N matrix, where N is the number of points sampled from
the ergodic quotient: in our case equal to the number of initial
conditions. Discrete diffusion modes are obtained as eigenvectors
of that matrix. The Appendix C provides more details about
the implementation: the input to Diffusion Maps is a matrix of
pairwise D−s distances between computed trajectories, while the
output is the set of diffusion coordinate vectors, assigning diffusion
coordinates to each trajectory.

2.5. Example: steady ABC flow

We will demonstrate the use of the ergodic quotient on
the Arnold–Beltrami–Childress (ABC) flow [28]. This flow was
previously used to demonstrate identification of Lagrangian
Coherent Structures in [18] and almost-invariant sets in [8]. It is
a steady, volume-preserving flow, evolving on a 3-torus. Despite
its very simple system of ODEs, the state space of the ABC flow
contains both regular vortices and chaotic zones.

Trajectories of the ABC flow obey the following equations on
(x, y, z) ∈ T3ẋ
ẏ
ż


= A(x, y, z) ,

1
2π

A sin 2πz + C cos 2πy
B sin 2πx + A cos 2πz
C sin 2πy + B cos 2πx


. (5)

As in [18,8], we used A =
√
3, B =

√
2, C = 1, but the

domain was rescaled to Vol T3
= 1. Observables are the complex

Fourier harmonics (4) with wavevectors k ∈ [−10, 10]3 ∩ Z3. The
trajectories were integrated using an adaptive solver (Radau) for at
least T = 500 per initial condition, but possibly longer to achieve
tolerance ATOL = 2 × 10−4 in convergence of averages for each
observable and trajectory (see Appendix A).3

In short, the steps used for identification of coherent structures
are:

1. Select initial conditions xi,
2. Compute trajectories and time averages until convergence,
3. Compute H−s distance matrix

(dij) = D−s(µxi , µxj),

4. Feed (dij) into Diffusion Maps to compute diffusion coordinates
(λ1χ1(xi), λ2χ2(xi), . . .),

5. Compute k-means clusters (optional, for visualization).

Connected components in the ergodic quotient correspond to
sharply distinct coherent features. Information about all distinct
components will rarely be visible from a single, or a few, diffusion
coordinates. To quickly recover the dominant features in the flow,
we can apply a clustering algorithm. Clustering based on the
euclidean distance, e.g., the k-means algorithm, is justified since
the euclidean distance approximates the diffusion distance on the
ergodic quotient.

The Fig. 4 demonstrates the application of k-means clustering,
with k = 7, to the first ten diffusion coordinates on the ergodic
quotient of the ABC flow. The six clusters correspond to six
primary vortices that were identified in [28, Fig. 4]. Furthermore,
these are the same structures visible in LCS analysis of the
flow [18, Fig. 1] and the eigenvectors of the Ulam discretization
of Perron–Frobenius operator [8, Fig. 6]. This corroborates our
assertion that the components of the ergodic quotient correspond
to features typically identified as coherent structures in fluid flows.

In contrast to LCS and Ulam’s methods, the initial conditions
do not have to be placed in the entire state space, as mentioned
in Section 2.1: it is sufficient to place them on a set that
intersects interesting coherent structures that we want to analyze
or visualize. In Fig. 5 we show a visualization based on N = 500
initial conditions sourced from a rectangle (y, z) ∈ [0.35, 0.8] ×

[0.6, 0.9], on the x = 0 face of the unit cell. This region intersects
one of the six primary vortices shown in Fig. 4a. Since we focused
the initial conditions in a smaller region of state space, the same
number of diffusion coordinates discerns smaller features in the
state space, in this case the secondary 1:2 vortices that wrap
around the central vortex.

The Fig. 5c shows that some diffusion coordinates are local-
ordering functions on the elliptic zones, acting as computationally
constructed local integrals of motion. The 10th ergodic coordinate
acts as an energy-like integral of motion, locally on the inner
primary vortex. The blue filament in upper-left corner of Fig. 5b
indicates that the positive values of the 12th coordinate vary
approximately continuously over the secondary vortex lobes,
colored in blue in Fig. 5a. This is an indication that a plot similar
to Fig. 5c could be made to demonstrate local-ordering on a part of
the secondary vortex, using the 12th coordinate.

3. Extensions including time-varying features

3.1. Periodically-driven flows

Although we have presented the construction of the ergodic
quotient for the autonomous flows, in practice, nothing prevents

3 The precise value of the tolerance chosen did not make a big difference in data
obtained by the method for the ABC flow. Reducing tolerance further extends the
computation on a relatively small number of trajectories (see Fig. A.9) while most
of the trajectories require very similar simulation times even if the tolerance is
reduced by an order of magnitude.
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(a) Six subsets in the state space corresponding to
six clusters of aggregation. Subsets contain
primary vortices of the ABC flow. The chaotic sea
between vortices is the seventh cluster and
appears as the void between vortices.

(b) Projection of ergodic quotient onto three out of
ten diffusion coordinates used for clustering, axis
labels are indices k of coordinates λkχ

(k) . Points were
colored according to membership in clusters. Cluster
at the top of the figure corresponds to the chaotic sea.

Fig. 4. Six primary vortices extracted by k-means clustering (k = 7) of projection of ergodic quotient onto first 10 diffusion coordinate. ABC flow (5) was simulated with
A =

√
3, B =

√
2, C = 1, from N = 1000 initial conditions uniformly distributed in basic periodicity cell [0, 1)3 , with observables cut off at wavenumber K = 10, and

convergence tolerance ATOL = 2 × 10−4 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
(a) Five subsets identified by the k-means
algorithm with k = 5 acting on first ten
diffusion coordinates.

(b) Projection of the ergodic quotient onto
three diffusion coordinates, axis labels are
indices k of coordinates λkχ

(k) . Points
were colored according to membership in
clusters.

(c) Level sets of the 10th diffusion eigenvector.
The chaotic sea has been cropped for clarity of
display by thresholding the first diffusion
eigenvector.

Fig. 5. A primary vortex aligned with the x-axis of the ABC flow (A =
√
3, B =

√
2, C = 1). Lobe-shaped structures that wrap around the central vortex correspond to

secondary 1:2 vortices. Results are based on N = 500 trajectories initialized uniformly in rectangle x = 0, (y, z) ∈ [0.35, 0.8] × [0.6, 0.9], with observables cut off at
wavenumber K = 10, and convergence tolerance ATOL = 2 × 10−4 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
one from applying the exact same computational procedure
to a non-autonomous flow. In this Section, we explain that
when system is non-autonomous, yet periodically-driven, one still
obtains useful and non-trivial information about the structure of
invariant sets.

The non-autonomous systems can be embedded in an au-
tonomous system by extending the state space. Let Me = M × T
be an extension of the state spaceM. For periodically driven flows,
T can be taken asT, while for aperiodically driven flows and finite-
time flows T can be taken as R and [ti, tf ] ⊂ R, respectively.

For a non-autonomous dynamical system defined by an ODE
ẋ = A(x, t), where x ∈ M, we can define the extended,
autonomous system through

ẋ = A(x, τ ),

τ̇ = c,

where (x, τ ) ∈ Me and c is a time-rescaling constant. For
periodically-driven systems on compact M, i.e., for T = T,
the extended state space Me is also compact. If, additionally, the
flow map ϕt : Me → Me of the system is continuous, the
system (Me, ϕt) fulfills all the conditions that we required for the
construction of the ergodic quotient map πe : Me → l∞, given in
Section 2.1.
The difference between an autonomous system on M and a
periodically-driven system cast into an autonomous system onMe
is in the eye of observer. Typically, we will treat only the first
factor of Me as ‘‘physical’’ states, always keeping in mind that T
was a formal construct accounting for the ‘‘physical’’ time. This
is reflected in observables usually still available as functions f :

M → C.
If the observables on M were chosen as Fourier functions fk :

M → C, with k ∈ ZD, we can interpret them as a subset of Fourier
observables gw : Me → C, w ∈ Zd+1,

gw(x, τ ) = Cfk(x)ei2πwd+1τ ,

with the constant C normalizing the observable to ∥gw∥∞ = 1.
When wave-vector w is constrained to w = (k, 0), the identity
gw(x, τ ) ≡ fk(x) holds for any τ . Consequently, the trajectory
averages g̃w(x, τ ) = f̃k(x) are then insensitive to the initial
‘‘physical’’ time τ .

If we proceed with such a partial set of observables gw , where
w = (k, 0), k ∈ ZD, we cannot in general hope to obtain the full
ergodic quotient by mapping x → g̃w(x, τ ). Denote the partial
quotient map by π |M : Me → l∞(ZD), defined through

π |M(x, τ ) := (. . . , g̃w(x, τ ), . . .)w,
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Fig. 6. Three trajectories illustrating the distinction between the direct study of a
Poincaré map and coherent features identified by partial ergodic quotient analysis.

for w = (k, 0) and k ∈ ZD, with the associated partial quotient
ξ |M , π |M(M). Looking at pre-images of any trajectory-averaged
observable, it follows that g̃−1

w (c) = f̃ −1
k (c) × T. Therefore, for any

point p ∈ ZD, with pre-image π−1(p) formed using observables
fk, the pre-image under partial quotient map is π |

−1
M (p) =

π−1(p) × T. Such pre-images are still invariant sets for the
dynamics, as they are formed from joint level sets of averaged
observables. The difference between the invariant partition
corresponding to the ergodic quotient of the extended system ξe
and the invariant partition corresponding to the partial quotient
ξ |M is that only ξe yields the ergodic partition, in general.

In plainer terms: any analysis based on the partial quotient
ξ |M will identify features distinct only in physical state-space M,
but not distinctions in physical time. This is sometimes desirable;
as a trivial example consider a simple oscillator, θ̇ = 1 for
θ ∈ M = T, and, even though it is already autonomous,
consider its formal extension into Me = T2. Analysis of the
partial quotient ξ |M would identify a single invariant set M,
while the analysis of ξe would identify a continuum of ergodic
sets, each corresponding to a trajectory with a different initial
phase. Depending on the application, either of the two analysis can
contain valuable information about the analyzed system.

A common technique used in analysis of periodically-driven
systems is the Poincaré map Φn

t0 : M → M associated to the
system:
Φn

t0(x) := ϕt0+2πn(x).
It is a simple result to show that for continuous flows ϕt , the choice
of the initial time (or phase) t0 results in topologically-conjugate
maps, implying that each there exists a homotopy such that each
invariant set of Φt1 has a homotopy-related invariant counterpart
in state space of Φt2 . However, the analysis presented in this paper
goes beyond topology, as we study geometry of the features in the
state space.

Consider three trajectories sketched in the Fig. 6. If a Poincaré
map was taken at t ≡ 0(mod 2π) all of them would be
represented as fixed points in state space of the map. Looking
at just the Poincaré map, we would be much more likely to
identify trajectories A and B as similar, since they pierce the
Poincaré surface at nearby locations. However, considering the
entire evolution, trajectories B and C deviate significantly only over
relatively short time interval. Since time averages capture mean
behavior, H−s distance on π |M would (correctly) identify B and C
as similar, regardless of the time instance atwhich Poincaré section
used for visualization is taken.

In summary, constructing the partial quotient, i.e., embedding
the state space using trajectory averages of observables on the
‘‘physical’’ states M, identifies ergodic partition of the Poincaré
map. Additionally, the metric structure on the partial quotient
reveals which invariant sets are similar based on the entire
trajectory evolution, not just on the points at which trajectories
pierce the Poincaré surface. Therefore, this method extends
the Poincaré map analysis by providing additional information
which is potentially useful in identifying coherent structures. To
demonstrate, we proceed with a numerical example.
3.2. Example: periodically-driven 3D Hill’s vortex flow
As an example of a periodically-driven flow, consider the

following ODE, evolving states x = (R, z, θ) ⊂ R+
× R × T:Ṙ

ż
θ̇

 =

 2Rz
1 − 4R − z2

c/2R

 + ε

 √
2R sin θ

z(
√
2R)−1 sin θ
2 cos θ

 sin 2π t

  
A(x,t)

,

where parameters c and ε are swirl and perturbation strengths,
respectively. For all values of c and ε the system preserves the
state space volume, i.e., ∇ · A ≡ 0, where ∇ = (∂R, ∂z, R−1∂θ ).
This system was studied analytically in [29,30] as an example of
a non-hamiltonian system showing Kolmogorov–Arnold–Moser-
type structures at low values of ε = c. In this paper, we will
show the structure of invariant sets for both low- and high-
valued perturbations for the purposes of illustrating the method
of analysis; therefore, we will not explore here the bifurcation
mechanism behind the structures in the state space. A preliminary
numerical study was presented in [31].

The results of the first simulation (Fig. 7) demonstrate the low-
perturbation structure of the state space, at c = ε = 0.01.
Uniformly distributed initial conditions (N = 1000) were seeded
on the θ = 0 plane in the rectangle (R, z) ∈ [0.01, 0.30] ×

[−0.5, 0.5], which is within a bounded invariant set. The
observables were chosen as Fourier basis functions on [0.0, 0.5] ×

[−1.0, 1.0] × [0, 2π ] ⊂ M, with wavevectors in the box |kR| ≤

8, |kz | ≤ 8, |kθ | ≤ 4. Simulations were run for no less than
Tmin = 600, and until tolerance ATOL = 10−4 was achieved
(see Appendix A for definition), withmost simulations terminating
before 2000 time units expired.

At c = ε = 0, any fixed-θ plane is invariant and on it the system
conserves the Hamiltonian H(R, z) = Rz2 − R + 2R2. The Fig. 7
demonstrates that at low perturbation values, the structure of the
cross-section of invariant sets is very similar to the level sets of
the Hamiltonian, despite the flow having a full three-dimensional
character. At the plotted scale, χ1 appears to be a monotonic
function of the Hamiltonian; however, the non-hamiltonian KAM
theory predicts that invariant tori do not form a continuum,
but are interspersed with thin chaotic zones. Observables of
low wavenumbers effectively coarse-grain dynamics; since the
chaotic zones are so thin at low perturbation values, they are not
identified as significantly different invariant sets. Plotting higher-
order diffusion eigenfunctions against the χ1 reveals the similarity
of diffusion eigenfunctions to the Legendre polynomial system,
which is likely due to connection of Legendre polynomials to
spherical harmonics and the spherical shape of the Hamiltonian
function. In this case it is particularly obvious how monotonic
parametrization of the ergodic quotient can serve as a proxy for
conserved quantities, possibly leading to Fomenko-type analysis.

When the perturbation is increased, the dissolution of invariant
tori continues, but an additional invariant set becomes visible in
the state space. For the next simulation, we have chosen c = ε =

0.3495. There is nothing special about this particular parameter
value: all perturbations c = ε between roughly 0.2 and 0.4 exhibit
the same topological structure, visible on similar scales. As the
region where trajectories stay bounded shrinks with the growth of
the perturbation, we have seeded the initial conditions uniformly
(N = 1000) in (R, z) ∈ [0.2, 0.3] × [−0.1, 0.1] in θ = 0
plane, with initial time t = 0. The observables were Fourier
functions on [0.0, 0.5]×[−0.5, 0.5]×[0, 2π), with the samewave-
vector bounds as before. The simulation times and tolerances also
remained as in the low-perturbation case.

The Fig. 8a and b show a secondary coherent set that becomes
visible within the onion layers at higher perturbation values. The
primary tubular invariant set (in red, Cluster 3) remains at the
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(a) The slice at θ = 0 through the Poincaré section at
t ≡ 0 (mod 1) in the invariant region; color interpolated
using the first diffusion eigenfunction χ1 from points in
panel (b).

(b) Points of the Poincaré section used for
interpolation in panel (a), colored using the first
diffusion eigenfunction χ1 .

(c) Bounded level sets of the unperturbed
Hamiltonian H(R, z) = Rz2 − R + 2R2 in a
(R, z)-plane.

(d) Diffusion eigenfunctions χk , k = 2, 3, 4, 5 of
the ergodic quotient plotted against χ1 .

Fig. 7. Structure of the invariant sets in the state space of a periodically-forced 3D Hill’s vortex at low perturbation c = ε = 0.01. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
center, with the secondary invariant set (in blue, Cluster 0), sickle
shaped in its cross section, wrapping around the tubular core in
1:2 resonance. Both primary and secondary sets are enclosed by
the outer tubular shells (in yellow, Cluster 2). Here, we stress
again, that even thoughweare showing sets in a three-dimensional
Poincarè section, they are truly time invariant, despite the time-
dependent forcing. More precisely, to each of the invariant sets
C ⊂ M identified by clustering, there exists a direct extension in
the extended state space C × T ⊂ Me.

The topology of the embedded quotient reflects the change in
the invariant set structure, compared to the low perturbation case.
While embedding in χ1 vs. χ2 in Fig. 7d showed a topological
line interval, the high perturbation case in Fig. 8c shows that a
branch splits off the interval which was once formed by segments
corresponding to clusters that compose the inner and outer tubular
regions. The Fig. 8d takes a closer look at diffusion eigenfunctions
within only one of the identified clusters. Comparing the shapes
of coordinate functions with the low perturbation case in Fig. 7d
in interval χ1 ∈ [0.4, 1], we can again notice the similarity to
Legendre polynomials, indicating that the flow appears to locally
conserve a continuous motion integral, even if that is not the case
globally.

3.3. Harmonic quotients

While this paper deals primarilywith time-invariant structures,
the Section 3.1 describes how even time-varying flows can be
analyzed using trajectory averages, through embedding of the
system into an extended state space, expanded by time variable.
Fourier observables g on the extended state space Me = M × T
were formed from Fourier observables fk : M → C as gw(x, t) =

fk(x)ei2πωt , where w = (k, ω) was the extended wave-vector, with
ω the wavenumber along time axis. Time averages of observables
were given by

g̃w(x, t) = lim
T→∞

1
T

 T

0
g[ϕτ (x), τ ]dτ

= lim
T→∞

1
T

 T

0
[f ◦ ϕτ ](x)ei2πωτdτ .

When T = T, it was sufficient to consider only ω ∈ Z to obtain a
full function basis on Me. However, when the time is the full real
line, as in the aperiodic case, we require a real-valuedwavenumber
ω ∈ R. The complete functional basis on Me is then uncountable,
and the ergodic quotient of the extended system, evolving in Me,
would not be a subset of a sequence space anymore.

Nevertheless, even in the case of flows ϕt generated by
autonomous systems, it is of interest to fix ω and to consider
functions f (ω) given by averages

f̃ (ω)(x) , lim
T→∞

1
T

 T

0
[f ◦ ϕτ ](x)ei2πωτdτ ,

termed harmonic averages. The harmonic averages were consid-
ered byWiener andWintner under the name Fourier averages [32],
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(a) The Poincaré section at t ≡ 0 (mod 1).
Segments of state space corresponding to clusters
0 and 3 shown in blue and red, respectively. The
remaining clusters are cropped for clarity.

(b) The slice at θ = 0 through the Poincaré section in
panel (a), displaying all clusters; colors reflect cluster
labels (0, 1, 2, 3).

(c) Embedding of the partial quotient into first
two diffusion eigenfunctions χ1 , χ2 , with color
indicating the cluster assigned to the point.

(d) Diffusion eigenfunctions χk of the partial quotient, plotted
against χ1 for points in the cluster 2.

Fig. 8. Structure of the invariant sets of a periodically-forced 3D Hill’s vortex at high perturbation c = ε = 0.3495. Diffusion coordinates were clustered using k-means
algorithm into 4 clusters to extract the main features. The Poincaré section used for visualization is at t ≡ 0 (mod 1). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
but more recently, they have been analyzed in [12]. We use them
here to provide a generalization of the ergodic quotients which can
be used to analyze periodic and quasi-periodic transport.

For any fixed ω ∈ R, and Fourier observables fk, the embedding
πω(x) = (. . . , f̃ (ω)

k (x), . . .)k∈ZD generates an analog of the
ergodic quotient, the harmonic quotient at frequencyω. The ergodic
quotient is then a special case of the harmonic quotient, computed
for ω = 0. In understanding the ergodic quotient, the level sets
of averaged observables f̃ played a crucial role as invariant sets.
Similarly, level sets of f̃ (ω) provide insight into periodic sets and
periodic transport when ω ∈ Q, and wandering sets and quasi-
periodic transport when ω ∉ Q [12]. More concretely, if ω = 1/2,
f̃ (ω) will vanish over all points x that are notϕt-periodicwith period
2. Consequently, the joint level sets of f̃ (ω)

k away from (0, 0, . . .)
identify sets in state space between which there exists dynamical
transport of period 2.

The functional mapping f → f̃ (ω) has an interpretation
connected to the Koopman operator. For systems satisfying
conditions in this paper, the Koopman group consists of linear,
bounded composition operators Ut : F → F , defined as

Ut f , f ◦ ϕt ,

for time t ∈ T . The space F is a space of observables, in literature
typically chosen as Lp(M, µ), for p = 1, 2 or ∞, where µ is a ϕt-
invariant measure. The Koopman operator is the generator of the
Lie group; when time is discrete, i.e., T ⊂ Z, the generator is often
denoted simply by U .

The harmonic averages f̃ (ω) are eigenfunctions of the Koopman
operator, since it is simple to show that

Ut f̃ (ω)
= ei2πωt f̃ (ω).

It follows that, for any observable f , the harmonic average f̃ (ω) is
an eigenfunction of the Koopman group generator at eigenvalue
λω = ei2πω for discrete time, and at eigenvalue λω = i2πω for
continuous time. The operator Pω : F → F ,

Pωf = f̃ (ω)

is a projection operator, projecting the space of observables onto
the eigenspace of the Koopman operator at λω . In this context,
the harmonic quotient map πω , applied to the Fourier basis,
evaluates the functions spanning the eigenspace at λω . Therefore,
by endowing the harmonic quotient with a particular geometry,
we are able to computationally analyze the eigenspaces of the
Koopmanoperator,without ever computing, or approximating, the
Koopman operator itself.

4. Discussion

It is difficult to give a level-field comparison of different
methods for identification of ‘‘coherent structures’’ in state spaces
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due to the lack of a method-independent, universal definition of
what a coherent structure might be. While each of the methods,
namely, LCS, Ulam’s approximation, and ergodic quotient, has an
operational understanding of a coherent structure, ultimately the
experience and application is the only judge of howwell a method
captures what is identified as ‘‘coherent’’ in practical settings. For
this reason, we decided to apply the analysis to the ABC flow;
this was not because we viewed the ABC flow as a particularly
challenging problem, but rather because it was well analyzed both
theoretically and computationally, resulting in well-established
knowledge about what coherent structures one should obtain. In
this sense, we found that the analysis of ergodic quotient identified
the same structures as the theoretical analysis and the alternative
computational methods.

When it comes to the amount of work, computational or
experimental, needed to compute an approximation to invariant
sets, one has to asses the setting in which either of the methods
is applied. An advantage of the ergodic quotient method is that
it requires a single initial condition to be placed in any ergodic
set sought to be identified. In practical terms, this means that
simulations or experiments need to be initialized only on a small
subset of the entire state space: this was clearly exemplified in
Section 3.2 where simulations were initialized on the θ = 0 planes
and the method successfully identified coherent structures in the
full (R, z, θ) state space. By contrast, methods based on Ulam’s
approximation require seeding the initial conditions in the entire
invariant domain. While this might not be a significant distinction
when working with ODEs, in experimental settings, e.g., when
analyzing fluid flows using Particle Tracking Velocimetry, it might
be possible to initialize the trajectories only in a specific, small
region, and count on the long experimental runs to collect data
about the rest of the state space. Such data is a natural input
to ergodic quotient methods, whereas Ulam-type computations
would require additional processing, e.g., flow interpolation, that
might introduce further errors.

The number of initial conditions required to approximate the
ergodic quotient is fairly low: only N = 1000 trajectories were
used to retrieve a very detailed image (S = 2003 spatial cells)
of the flow structures in Section 2.5. This is a consequence of
the recognition that the entire trajectory can be described to a
high precision by a relatively small set of values, i.e., averages
of a function basis. While the entire trajectory evolution is used
for visualization of the structures, the identification of structures,
where the algorithmic effort is really spent, is performed only with
N data-points (samples of the ergodic quotient) as inputs.

In terms of numerical linear algebra, we do acknowledge that
although the Ulam’s matrix is large, S × S, where S is the
total number of spatial cells, it is often sparse. In contrast, the
eigenproblemat the core of theDiffusionMaps is potentially dense,
although on a much smaller N × N matrix, where N is the number
of trajectories.4 Nevertheless, we see the distinction as conceptual,
rather than computational, signifying that the complexity of the
state space is often captured by a far smaller number of parameters
than needed to describe transport between pairs of cells in
state space which is especially true for (near-) integrable, high-
dimensional systems. This paper focuses on visualization as the
first step in validation of the ergodic quotient approach; however,
we expect that the ergodic quotient could be analyzed directly,
for example, to detect topological changes such as those between
embedding χ1 vs. χ2 in Figs. 7d and 8c. These changes indicate a
bifurcation of the flow, without ever visualizing the state space. If

4 Due to the rapidly-decaying exponential diffusion kernel, however, the
diffusion eigenproblem might also be sparsified by truncating the kernel. We have
not explored the consequences of sparsification, though.
our expectations are confirmed, the high-dimensional state spaces,
which cannot be visualized and requiring a large number of cells
to discretize the state space, could potentially be analyzed through
the study of a small number of trajectories by noting topological
changes in the ergodic quotient.

Both the Ulam’s approximation and the ergodic quotient
construction feature exponential growth of problem size with the
increase of the state space dimension D. Number of state space
discretization cells, for a fixed axial resolution R, grows as RD.
Similarly, to approximate the ergodic quotient, if we truncate the
function basis at a uniform cutoff wavenumber K , the number of
required Fourier observables is KD. For certain high dimensional
systems, it is not always necessary to analyze the state space
directly: rather a particular, low-dimensional output space might
suffice. For example, in networks of power generators the variable
of interest in detecting instabilities might be the mean frequency
across all generators (see [33]). If instead of the state space we
studyobservables only on the output space, thenumber of required
observables can be significantly lower. It is therefore possible that
it is sufficient to initialize the trajectories on a low-dimensional
set in the state space and analyze it in a low-dimensional output
space, despite the dynamics being high-dimensional. Both order
reductions are a natural fit with the presented technique in
analysis of trajectory averages presented here.

The application of the ergodic quotient techniques to
periodically-forced systems has been presented in Section 3. The
extension of the method to the case of transient systems, where
long-time averages lose the information about the initial evolution,
is the focus of our future studies. The case of transient systems is
related to the study of finite-time systems, i.e., those defined only
on a fixed time interval, which includes all data sets where exper-
iment time cannot be extended into the steady regime, e.g., field
samples of geostrophic flows. We do not intend delve deep into
a discussion about how much we can predict about the future of
an aperiodic flow based only on a finite time interval. Instead, we
point out that the analysis presented in this paper does have a very
clear interpretation even on a fixed finite-time interval: the finite-
time quotient would reflect sets of initial conditions that remain
together under advection by the flow map over the interval con-
sidered. In that case, the H−s metric and diffusion maps result in a
multi-scale aggregation of finite-time trajectories, identifying re-
gions of space where material is transported in a homogeneous
fashion. The resulting ‘‘coherent structures’’ present a template of
the transport of material over the analyzed time interval. It is left
for future research to study the relationship between transport
templates corresponding to overlapping or adjoining time inter-
vals and their invariance and predictive power.

Recently, the analysis of mesohyperbolicity and mesoelliptic-
ity has yielded success in the study of finite-time flows. Both the
ergodic quotient and mesohyperbolicity depend on averages of
observables along trajectory lines. The first distinction between
these methods is in their purpose: mesohyperbolicity andmesoel-
lipticity are proposed generalizations of concepts of hyperbolicity
and ellipticity from autonomous, steady-state flows to unsteady,
finite-time flows. In contrast, ergodic quotient is directly related
to the ergodic partition, which studies invariant sets. The two con-
cepts are potentially related, as is the case in classical theory of
autonomous systems, where the relationship between analysis of
invariant manifolds and analysis of Lyapunov coefficients is stan-
dard.

The second, more technical, distinction is in the objects aver-
aged along trajectories. In construction of the ergodic quotient, the
ultimate goal is to include all observables in the averaging process,
in an attempt to represent the underlying empirical measures as
well as it is possible. The observables chosen depend only on the
topology of the state space, not on the actual flow map of the dy-
namical system. In studies of mesohyperbolicity/ellipticity, a very
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particular set of observables is chosen: they are entries in the Ja-
cobian matrix of the flow. Therefore, while the methods use the
same technique of computing averages of observables, the the-
ory behind the averages serves different purposes, and, ultimately,
demonstrates the versatility of information that can be extracted
from trajectory averages of observables.

From the standpoint of the direct application of methods
presented in this paper, there are still points where one could
improve the presented procedure, although most of such efforts
fall outside the scope of dynamical systems, e.g., into fields of
machine learning or computational geometry. For example, setting
the bandwidth of the exponential kernel in the Diffusion Maps
algorithm (see Appendix C), although relatively simple to perform
manually, is still not fully automatic, which might slow down the
analysis process when dealing with a particularly complex ergodic
quotient.

Furthermore, we were guided mostly by simplicity and clarity
in our choice of the k-means algorithm for post-processing of
diffusion coordinate, in an effort not to derail the main point
of this paper. The Fig. 8c reflected the imperfections in the
choice of k-means clustering as the final step in post-processing.
One could expect that the four clusters identified would be the
three ‘‘branches’’ and the point at which they merge. While the
numerical results come close to such classification of points,
there is room for improvement. It is possible that instead of
identifying clusters, identification of connected components or
one-dimensional sets, based on a proximity graph in a diffusion
coordinate space, would yield even better results than those
presented here.

5. Conclusion

Our results demonstrate that, by analyzing the ergodic quotient,
we can infer how trajectories organize into coherent structures
in the state space. To construct an approximation to the ergodic
quotient, we average a subset of a function basis on the state
space, and endow it with the empirical distance. In this setting,
the geometry of the ergodic quotient reveals dynamically coherent
regions in the state space. The geometry was studied using
diffusion coordinates which rectify the ergodic quotient, enabling
clear visualization and extraction of clusters corresponding to
coherent structures.

To evaluate the method, we identified coherent structures for
the ABC flow, an area-preserving, three-dimensional, steady flow.
Our results correspond to those coherent structures identified
by Lagrangian Coherent Structures [18] and Ulam’s method [8].
Unlike those approaches, however, our method does not require
placing the initial conditions in the entire state space, but rather
depends on long-time integration to explore the state space. For
the same reason, it requires a relatively small number of initial
conditions. This makes it suitable for analyzing experimentally
harvested trajectories in experiments where initial conditions can
be placed in a small region of the state space, but the dynamics of
the system evolves on a larger domain.

For autonomous flows, points on the ergodic quotient represent
ergodic invariant sets in the state space. When the flow is
periodically-dependent on time, the construction we present
identifies invariant sets of the Poincaré map. In contrast to
analysis of Poincaré map, however, coarse graining of invariant
sets takes into the account the entire evolution of the trajectory,
not only their Poincaré section, providing a more accurate method
of identifying trajectories which have similar behavior. On an
example of a periodically-forced 3D Hill’s vortex flow we show
that themethod is able to identify previously undescribed coherent
features in state spaces. Finally, we close the discussion of
time-dependent features by generalizing the ergodic quotient to
harmonic quotients, which can provide information about periodic
and quasi-periodic transport in the state space.

Although this paper discusses applications of the ergodic
quotient to analysis, we believe that the proposed framework
could, in future, be useful in design. Diffusion coordinates provide
an orthogonal system of invariant functions for the system.
They are, therefore, particularly suitable as a setting for design
of invariants of motion, e.g., through optimization of linear
combinations of diffusion coordinates based on a design criterion.
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Appendix A. Convergence of averages

Our implementation of the averaging process computes aver-
ages of observables along with the numerical evolution of the tra-
jectory, i.e., ‘‘on-line’’. A heuristic criterion uses the on-line finite
averages to terminate the trajectory integration once a desired tol-
erance on convergence is achieved. As a result, different initial con-
ditions will result in different lengths of trajectories, depending on
the regularity of trajectory that evolves from an initial condition.

The ODEmodel of a system is numerically integrated producing
state vectors ϕtn(x) at adaptively-determined time instances
tn. Summing a zeroth-order interpolation of evolution of fk
approximates the continuous-time average along the trajectory:

1
tN − t0

 tN

t0

[f ◦ ϕt ] (x)dt

≈
1

tN − t0

N
n=1

(tn − tn−1)[f ◦ ϕtn−1 ](x).

To determine the stopping time of the integration, we pause
the integrator in intervals of fixed length Te and at every time
instance t0 + jTe compare the vector of time averages with the
vector obtained at the previous pause t0 + (j − 1)Te:

ADIFFj(x) =

F̃j(x) − F̃j−1(x)


∞

where F̃j(x) indicates the vector containing all the chosen
observables averaged along trajectory starting at x, computed in
the [t0, t0 + jTe] interval. When ADIFFj(x) < ATOL for some pre-
specified small tolerance ATOL, the integration is stopped, and Fj(x)
taken to be the value of time-averaged observables at point x. The
underlying assumption is that the finite-time averages will show
little variation as the infinite limit is approached. As an alternative
to ∥·∥∞, the H−s distance (3) could have been used in the stopping
criterion, however, we have not explored that option here.

Theory gives some guidance on times required for convergence
of finite-time averages: over regular trajectories, averages con-
verge with T−1, while overmixing trajectories, the slope is gentler,
T−1/2. A classical result asserts that for other types of trajectories
the slope T−α can be arbitrarily small [37, Section 3.2B]. A compu-
tational study of convergence with various slopes is given in [13].
From a practical standpoint, the outlook is not so bleak: slopes of
small α are to be typically expected to occur along trajectories that
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pass close to homoclinic and heteroclinic orbits, and get entrained
around periodic orbits that exist in their vicinity (intermittency,
or stickiness) [38]. Regions of intermittency are typically small,
e.g., for a pendulum perturbed by a small periodic forcing of mag-
nitude ε, the area of intermittent regions scales as ε log(1/ε) [39].

In Fig. A.9 we present several metrics which illustrate how
well the time averages converge at the time the simulation
is stopped by the ADIFF(x) < ATOL criterion. Time average
vectors F̂∞(x) and F̂ATOL(x) both represent finite-time averages,
computed for trajectories originating at initial conditions x. The
difference between them is in the moment of termination of the
averaging process. The vector F̂ATOL(x) was obtained by stopping
the averaging at time T (x), dependent on the initial condition,
when the described stopping criterion reached ATOL = 10−5.
The vector F̂∞(x) mimics the ‘‘true’’ infinity, where averaging was
terminated at the initial-condition-independent time T∞ = 2.5 ×

104. We compared these finite-time vectors in the L∞ norm ∥·∥∞

(Fig. A.9b) and in the H−s norm ∥·∥2,−s (3) (Fig. A.9c), as the latter
is the relevant error for the remainder of the computation.

Generated images demonstrate that the described termination
criterion results in stopping times that vary by an order of
magnitude (Fig. A.9a). As a result, the errors in convergence are
consistently low, for regular, chaotic and intermittent trajectories.
If we compare the magnitude of errors in H−s- and L∞-
norms, it is clear that the use of H−s norm, which discounts
higher wavenumbers, has a desired side-effect of increasing the
robustness of the averaging to finite stopping times.

Even though the proposed criterion is only one of many
criteria which could be used for stopping, we believe that,
based on the results presented, it provides a good heuristic that
consistently produced low errors in time averages, while keeping
the simulation times reasonable.

Appendix B. A finite approximation to empirical metric

A finite approximation to the norm on the Sobolev space H−s

(3) is computed by truncating the infinite sum over wavevectors
k ∈ ZD to a box k ∈ [−K , K ]

D. In this appendix we show that
such approximation convergeswith rate

√
K with the rate constant

depending on the dimension of the system.

Proposition 1 (Error in Finite-Wavenumber Approximation to H−s

Norm). Let the error in approximation εK be given by a weighted sum
of coefficients, ck =

f̃k(x) − f̃k(y)
, summed outside the [−K , K ]

D

box:

ε2
K =


k∉[−K ,K ]D

c2k
1 + (2π ∥k∥2)

2s ,
where s = (D+1)/2, and 0 ≤ ck ≤ C(D) are differences in averages
of Fourier observables scaled to unit L2 norm. Then

εK <
E(D)
√
K

, with E(D) <


2
π

3/4 D1/4

πD
,

where E(D) is the error decay rate constant.

Proof. Norms on ZD are ordered in scale, ∥k∥∞ < ∥k∥2 on ZD,
enabling us to bound εK by summing over ∞-spheres in ZD:

ε2
K =


κ>K


∥k∥∞=κ

c2k
1 + (2π ∥k∥2)

2s
≤ C(D)2

∞
κ>K

σκ − σκ−1

[1 + (2πκ)]s
,

where σκ , #{k ∈ ZD
: ∥k∥∞ ≤ κ} count the number

of wavevectors in each ∞-ball. To bound σκ , we expand the
polynomials in κ:

σκ − σκ−1 = (2κ + 1)D − (2κ − 1)D

=

D−1
d=0


D
d


(2κ)d[1 − (−1)D−d

]

≤ D


D
⌊D/2⌋


(2κ)D−1,

as there is less than D/2 nonzero coefficients, all bounded by the
largest coefficient 2


D

⌊D/2⌋


.

Choosing order s = (D + 1)/2, the error is bounded above by
tails of sums of inverse squares

ε2
K ≤ C(D)2D


D

⌊D/2⌋

 ∞
κ>K

(2κ)D−1

[2πκ]D+1

≤ D


D
⌊D/2⌋


C(D)2

4πD+1

∞
κ>K

κ−2.

As


∞

κ>K κ−2 <


∞

K u−2
= K−1, it follows that εK ∈ O(K−1/2).

To bound the decay constant G(D), we use an upper bound for
the binomial coefficient, computed in [40]:
mn
pn


<

1
√
2πn

mmn+1/2

(m − p)(m−p)n+1/2ppn+1/2
,

for m, n, p ∈ N and m > p. Setting n = ⌊D/2⌋ + 1, m = 2, p = 1,
provides a conservative estimate:

D
⌊D/2⌋


<


8
π

2D

√
D + 1

.

As observables are L2-normalized Fourier functions (4), C(D) =

(2π)−D/2, allowing us to compute a bound on E2(D):

E2(D) = D


D
⌊D/2⌋


C(D)2

4πD+1
<


8
π3

√
D

π2D
,

resulting in

E(D) <


2
π

3/4 D1/4

πD
. �

Appendix C. Diffusion maps

The DiffusionMaps is an algorithm that retrieves an orthogonal
coordinate system, the diffusion coordinates, for a set of points in
a metric space. If the set of points is taken from a differentiable
submanifold in the original space, the retrieved coordinates
are discretized eigenfunctions of a Laplace–Beltrami operator
on the submanifold. Diffusion coordinates yield a parsimonious
description of the data set, i.e., even a truncated diffusion
coordinate set provides a good low-dimensional model of the
original data set.

The Diffusion Maps is a part of a broader class of Laplacian
manifold-learning algorithms, which rely on spectral computa-
tions to obtain information about geometry of manifolds. The al-
gorithm was first described by Lafon and Coifman in [23,16] with
more detailed discussions on numerical implementation given
in [41,24]. To convey the intuition about the algorithm, we pro-
vide a short account of the general algorithm and implementation
details we found relevant. At the end, we discuss how we applied
it to the ergodic quotient.
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(a) Simulation termination time T (x). (b) Time average error in infinity norm:
log10

F̂ATOL(x) − F̂∞(x)


∞

.
(c) Time average error in H−s norm:
log10

F̂ATOL(x) − F̂∞(x)

2,−s

.

Fig. A.9. Convergence of averages for N = 500 trajectories of ABC flow starting at plane z = 0. Simulations were terminated at tolerance ATOL = 1 × 10−5 . Figures show:
A.9a the termination time T (x), A.9b and c the difference between time averages at time T (x) and at ‘‘true’’ infinity T∞ = 2.5 × 104 , in infinity and H−s norms, respectively.
Observables were Fourier harmonics (4) with wavevectors k ∈ [−3, 3]3 , and simulation extension time was Te = 500. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
The ambient space is the space CN with a distance function D .
We aim to obtain a representation of a subset Y ⊂ CN , with a
distribution dP(y) = p(y)dy supported on Y. Averaging operators
Ah are defined through the kernel kh:

Ahϕ(y) =


CN kh(y, z)ϕ(z)dP(z)

CN kh(y, z)dP(z)
(C.1)

kh(y, z) = (4π)−d/2 exp
−D2(y, z)

4h
(C.2)

and they represent diffusion of points on Y, while the diffusion
time-scale h specifies thewidth of theGaussian kernel.5 The h → 0
limit of the flow At/h

h has a simple structure when Y has a well-
defined differential structure: it is generated by a Fokker–Planck-
type operator G:

lim
h→0

At/h
h = e−tG

G = ∆ −
∇p
p

,

where diffusion evolves over time period t . The Diffusion Maps
algorithm computes values of eigenfunctions χ (k)(y) of e−tG at a
finite number of points yi that are sampled from Y according to
the (sampling) density p(y).

Eigenfunctions of the Laplace–Beltrami operator convey the
geometry of the set Y. If understanding geometry of Y is the goal,
as in the case of ergodic quotient, it is necessary to remove the bias
in G resulting from non-uniformity in density p. The bias can be
removed by replacing the heat kernel kh by its rescaled version:

k̂h =
kh(y, z)
p̂(y)p̂(z)

p̂(y) =


kh(y, z)dz,

where p̂ acts as an estimate for the sampling density. In this case,
the flow in the h → 0 limit represents the pure Laplace–Beltrami
diffusion on Y, i.e., G = ∆.

To compute the diffusion coordinates, defined as the embed-
ding of points yi into eigenvalue-scaled eigenfunctions of the dif-
fusion operator y → (λ1χ

(1)(y), λ2χ
(2)(y), . . .), Diffusion Maps

treats the finite set of sampling points yi ∈ CN as vertices of a fully-
connected graph in Y, while weights of edges are given by the am-
bient distance D on CD, between pairs of points yi. The diffusion
process on the graph can be represented by aMarkov chain, whose

5 Sometimes 1/h is referred to as the bandwidth.
eigenvectors χ (k) are discretizations of eigenfunctions of the dif-
fusion on Y. In other words, we construct a discrete embedding
yi → (λ1χ

(1)
i , λ2χ

(2)
i , . . . , λNχ

(N)
i ), assuming

χ (k)


∞
= 1.

From the standpoint of the implementation, Diffusion Maps
takes amatrix of pairwise distances between points yi as the input,
and computes diffusion coordinates λχ following these steps:

D matrix (d2ij) = D2(yi, yj), (C.3a)

Heat kernel Aij = exp


−

d2ij
4h


, (C.3b)

Est. sampling density p̂i =

N
j=1

Aij, (C.3c)

Unbiased heat kernel Âij =
Aij

pipj
, (C.3d)

State transition Sij =
Âij

N
j=1

Âij

, (C.3e)

Solve the eigenproblem Sχ = λχ, (C.3f)

with i, j ∈ 1, 2, . . . ,N indexing elements of matrices and vectors,
and D−s,K representing summation (3) truncated to k ∈ [−K , K ]

D.
The time-scale of the heat kernel h in (C.3b) is a parameter that

determines the strength of diffusion along graph that samplesY. It
influences the information about topology of Y that we infer from
discrete data: too small of a choice of h will introduce artificial
discontinuities, while too large of a choice will artificially connect
disconnected components of Y. Paper [24, Section 5.3] describes
several heuristics for determining h from the data set; we chose
the Neighborhood Size Stability approach. It computes the minimal
time-scale h for which every graph vertex has Nmin neighbors
within the characteristic diffusion distance

√
2h, as measured by

the H−s distance. Number Nmin is chosen by the user, depending
on number of discrete samples analyzed.

Since S is not symmetric, complex values appear as partial
results in numerical solutions of its eigenproblem, which is
a source of further numerical errors. To avoid such issues, it
is common to first symmetrize the matrix, using a spectrum-
preserving symmetrization:

Ŝij =
Âij

N
k=1

Âik


N

k=1
Âkj

.
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Solving the eigenproblem for Ŝ, we obtain eigenvectors χ̂ (k) from
which we recover the eigenvectors that sample the diffusion
eigenfunctions (C.3f) by rescaling χ̂ (k) by the zeroth eigenvector
χ

(k)
i = χ̂

(k)
i /χ̂

(0)
i . Vectors χ (k) are point-wise evaluations of

diffusion eigenfunctions χ (k)(y) at yi, i.e., χ
(k)
i = χ (k)(yi).

In application of Diffusion Maps to the ergodic quotient, initial
conditions xi ∈ M and associated trajectories get mapped to the
points yi in the space CN of averaged observables, with dimension
N given by the number of chosen observables. The ambient dis-
tance D is the H−s distance, while the set Y is the ergodic quotient
ξ . The sampling density p(y) is determined both by the distribu-
tion of initial conditions xi of trajectories on the state space, which
can be controlled, and the distribution of the ergodic sets in the
state space, which is a priori unknown and cannot be controlled.
As a consequence, p(y) is rarely uniform and the rescaling of the
diffusion kernel is a necessary step in the algorithm to obtain the
intrinsic coordinate set with the correct interpretation of the eu-
clidean distance.
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