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a b s t r a c t

We prove a KAM-type result for the persistence of two-dimensional invariant tori in perturbations
of integrable action–angle–angle maps with degeneracy, satisfying the intersection property. Such
degenerate action–angle–angle maps arise upon generic perturbation of three-dimensional volume-
preserving vector fields, which are invariant under volume-preserving action of S1 when there is no
motion in the group action direction for the unperturbed map. This situation is analogous to degeneracy
in Hamiltonian systems. The degenerate nature of the map and the unequal number of action and angle
variables make the persistence proof non-standard. The persistence of the invariant tori as predicted by
our result has implications for the existence of barriers to transport in three-dimensional incompressible
fluid flows. Simulation results indicating existence of two-dimensional tori in a perturbation of swirling
Hill’s spherical vortex flow are presented.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The KAM (Kolmogorov–Arnold–Moser) [1–4] theorem is one of
the most important results in the stability theory of Hamiltonian
systems. The theorem asserts that most of the invariant n-tori
of n degrees of freedom integrable Hamiltonian systems will
persist under small Hamiltonian perturbations. Arnold proved this
theorem under both non-degenerate and degenerate assumptions
on the unperturbed Hamiltonian [2,3]. Moser proved a version of
the theorem for the perturbation of two dimensional integrable
twist map [5] (Chapter 3; Section 32). In both of these cases the
system is defined on an even dimensional manifold and has a
symplectic structure.

Extension of the KAM theorem to odd dimensional systems
is a challenging problem, that has many practical applications
[6,7]. Volume-preserving flows and maps which arise in the
context of fluid dynamics and magnetohydrodynamics are of odd
dimensions. Because of that, these maps and flows have a looser
structure than symplectic maps and flows. The KAM-type results
have been developed for volume-preserving flows [8–10] and
for diffeomorphisms which either preserve volume [10–14] or
satisfy the intersection property, a relaxed version of volume-
preservation [15,16]. The result in this paper differs from the above
mentioned references in that we prove the KAM-type result for
the degenerate case of three-dimensional volume preservingmaps
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(in fact, more generally for action–angle–angle maps with one
degenerate angle and satisfying the intersection property). A KAM-
type result for maps with unequal number of actions and angles
and with degeneracy of the same type as that considered by us
also appears in [13]. However there are some major differences
between the KAM proof that appears in [13] and the main results
of this paper. In particular, in [13], the KAM-type results are proved
for the case where the size of the perturbations are assumed to
be smaller than the size of the degenerate drift in the angles,
whereas in this paperwe assume that both the degenerate drift and
the perturbations are of same size. Furthermore the proof in the
paper [13] achieves their stated result only when an additional –
unstated – assumption on the perturbation is used (see Section 3.1
below). Similarly [14] prove KAM type result for the case where
the unperturbed system consists of arbitrary number of action and
angle variables. However the set-up does not consider the case of
degenerate angle which is the case discussed in our paper.

The degenerate three dimensional volume preserving action–
angle–angle map considered in this paper arises in the context
of fluid flow problems. The following example from [6], shows
how such action–angle–anglemaps can arise in three-dimensional
incompressible volume-preserving flows, which are invariant
under a one-parameter symmetry group. Consider the following
flow in cylindrical coordinates.

ṙ = rz, ż = 1 − 2r2 − z2, θ̇ =
2c
r2
, (1)

where c is an arbitrary constant. The system preserves the volume
form rdr ∧ dz ∧ dθ [17,18]. In the fluid-mechanics context, c
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Fig. 1. Geometry of action–angle–angle coordinates on cylinder toruswith periodic
orbit (red). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

is the circulation. The flow (1) is a superposition of the well-
known Hill’s spherical vortex with a line vortex on the z axis,
which induces the swirl velocity θ̇ =

2c
r2
. The system of equation

satisfies Euler’s equation of motion for an inviscid incompressible
fluid everywhere except on the z axis, where the swirl velocity
becomes infinite. After transforming the first two components into
canonical Hamiltonian form by letting R =

r2
2 , the system (1)

becomes

Ṙ = 2Rz, ż = 1 − 4R − z2, θ̇ =
c
R
. (2)

This system preserves the volume form dR ∧ dz ∧ dθ [17,18] and
in the R − z components takes the form

Ṙ =
∂H(R, z)
∂z

, ż = −
∂H(R, z)
∂R

(3)

where H(R, z) = Rz2 − R + 2R2 is the Hamiltonian. By first
introducing action–angle coordinate with respect to form dR ∧

dz, we transform (R, z) to action–angle coordinate i.e., (R, z) →

(I, φ1). To obtain action–angle–angle flow, we would need to
perform addition transformation on the angle variable θ to get the
second angle variable φ2(θ, I, φ1) (for the details of the derivation
refer to [6]). Hence we get,

İ = 0, φ̇1 = ω1(I) φ̇2 = cω2(I). (4)

For the case where c is very large (i.e., c ≫ 1 or c ≈
1
ϵ
), we get

the following degenerate action–angle–angle flow equations, after
rescaling time t =

τ
c and in the limiting case of ϵ = 0.

İ = 0, φ̇1 = 0 φ̇2 = ω2(I). (5)

The dynamics of (5) evolves on a cylinder torus and consist of
periodic orbits (refer to Fig. 1 for the schematic). In this paper, we
are interested in time periodic volume preserving perturbations
of degenerate action–angle–angle flows as given in (5) and the
three dimensional maps that arise from it after taking appropriate
Poincare section.We study the perturbation of the above discussed
Hill spherical vortex flow for the case of large swirl in further detail
in Section 4.

Geometrical structures such as invariant manifolds play an
important role in understanding the transport dynamics –
specifically mixing and the lack thereof – in such maps. From
numerical studies and perturbation method calculations, no
invariant two-dimensional structure persists upon perturbation
from an integrable action–angle–anglemapwith degenerate angle
[19]. However the numerical studies carried out in [19] do not
consider the class of perturbations for which the main result
of this paper is proved and in fact corresponds to class of
perturbations that is indicated in [20] as ones with possibility of
having invariant tori. Dynamics related to transport in phase space
for action–angle–angle maps with dynamically degenerate angle
has been studied systematically in [20] where it is shown that
for a large class of such maps, upon perturbation, most of the
invariant surfaces are broken. The invariant surfaces break where
resonance exists and at these locations in phase space, periodic
orbits of specific types persist and dominate transport. This has
been named Resonance-Induced Dispersion [19]. The result in this
paper proves that, for a different class of perturbations, whose
structure was also discussed in [20], two-dimensional invariant
tori indeed exists for the perturbed action–angle–angle maps with
degenerate angle satisfying intersection property—a condition that
is implied by volume preservation. This proves the conjecture on
such maps stated in [20].

The KAM type of result for the action–angle–angle maps is
analogous to the degenerate Hamiltonian case treated by Arnold
[3]. In proving this degenerate case of KAM, we are faced with two
important problems. The first is due to unequal numbers of fast and
slow variables. Because of this a drift term is introduced at each
step of the coordinate transformations, we solve this problem by
using proof techniques similar to the one which appears in [15].
The second problem is due to the degenerate nature of the one of
the angles. We solve this problem by introducing an intermediate
finite sequence of coordinate transformations. This finite sequence
of coordinate transformations is different from the intermediate
coordinate transformations which appear in Arnold’s proof [3] of
degenerate KAM. The difference arises because of the difficulty
with carrying out the Moser strategy of solution of the sequence
of equations by backward substitution which in this case leads to
O(1) terms after an iteration step. Thus our proof is different in
nature from the degenerate KAM proof which appears in [3].

The paper is organized as follows. In Section 2,we state themain
theorem for the persistence of invariant tori in action–angle–angle
maps with a degenerate angle. In Section 3, we give an outline of
the proof. Simulation results for the Hill’s spherical vortex example
are presented in Section 4 followed by conclusions in Section 5.

2. Formulation of the theorem

Consider the following mapping

M =

x1 = x + f (z)+ ϵX(x, y, z)
y1 = y + ϵg0(z)+ ϵY(x, y, z) (x, y mod 2π)
z1 = z + ϵZ(x, y, z)

(6)

where X,Y, and Z are real analytic functions of period 2π in (x, y)
with ϵ being a small positive number. The f and g0 are analytic
functions of z ∈ [a, b] = G. To simplify the analysis we assume
that f (z) = z and |g0| ≤ 1. Since X, Y and, Z are real analytic
functions, they can be extended to a complex domain:

D : |Im x| < r ≤ 1, |Im y| < r ≤ 1, z ∈ G, (7)

where G is the complex neighborhood of the interval [a, b]. We
now make following assumptions on the mapping (6).

Assumption 1. The functions Y and Z are assumed to satisfy 2π

0
Ydx =

 2π

0
Zdx = 0.

The condition
 2π
0 Ydx = 0 can be relaxed by requiring that the

integral
 2π
0 Ydx be only a function of z because any function of z

can always be absorbed in g0(z).

Assumption 2. Mapping (6) need not be measure preserving but
we assume that themap satisfies the intersection property, i.e., any
torus of the form:

z = γ (x, y) where γ (x + 2π, y) = γ (x, y) &
γ (x, y + 2π) = γ (x, y)

(8)

intersect its image under the mapping.

Assumption 3. The function g0 satisfies g ′′

0 (z) ≥ c1 > 0. g ′′

0 > 0 is
also referred to as second twist condition [15].

Now we state the main theorem for the persistence of invariant
tori in the action–angle–angle map with one degenerate angle.
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Theorem 4. Consider the mapping (6) satisfying Assumptions 1–3.
There exists a positive number ϵ0 depending upon domain D, such
that on D and for all ϵ ∈ (0, ϵ0), the mapping (6) admits a family
of invariant tori of the form:

x = ξ + u(ξ , ζ , ω), y = ζ + v(ξ, ζ , ω),

z = w(ξ, ζ , ω), (9)

where u, v, w are real analytic functions of period 2π in the complex
domain |Im x| < r

2 , |Im y| < r
2 with ω ∈ Sω ⊂ G = [a, b], and Sω is

a Cantor set with positive Lebesgue measure. Moreover the mapping
can be parameterized so that the induced mapping on the tori is
given by

ξ1 = ξ + ω, ζ1 = ζ + ϵg0(ω)+ g∗(ω, ϵ), (10)

where g∗(ω, ϵ) is an analytic function that satisfies g∗(ω, 0) = 0.

3. Outline of the proof

The proof consists of applying coordinate transformations
in three different steps. The first step of averaging coordinate
transformation is applied to reduce the size of all the three
perturbations to order ϵ2. The second step consists of applying a
finite sequence of coordinate transformations to reduce the size of
the action perturbation to order ϵ3. In the third and final step, we
apply an infinite sequence of coordinate transformations similar
to the one applied in proving the classical KAM theorem [2,3,5,15],
but with some modifications.

3.1. First coordinate transformation

With f (z) replacedwith z in (6),wedenote the originalmapping
M (Eq. (6)) byM0 and write it as follows:

M0 =

x1 = x + z + ϵX(x, y, z)
y1 = y + ϵg0(z)+ ϵY(x, y, z) (x, y mod 2π)
z1 = z + ϵZ(x, y, z).

(11)

This map is defined in the complex domain D (Eq. (7)). Now we
prove the main Lemma of the first coordinate transformation. This
Lemma is similar to the averaging Lemma from [3].

Lemma 5. Consider a coordinate transformation Iϵ , defined in do-
main D, of the form:

Iϵ = {x̄ = x + ϵh1(x, y, z), ȳ = y + ϵh2(x, y, z),
z̄ = z + ϵh3(x, y, z),

where h1, h2 and h3 are real analytic functions and periodic with
period 2π in x and y. Using this coordinate transformation, the
mapping M0 (Eq. (11)), defined in the domain D, is transformed to
the form M̄0 = IϵM0I−1

ϵ

M̄0 =

x̄1 = x̄ + z̄ + X̄(x̄, ȳ, z̄)
ȳ1 = ȳ + ϵg0(z̄)+ Ȳ (x̄, ȳ, z̄) (x, y mod 2π)
z̄1 = z̄ + Z̄(x̄, ȳ, z̄).

(12)

The mapping M̄0 is defined in a smaller domain:

D̄ : |Im x| < r − δ, |Im y| < r − δ, z ∈ G′,

where δ is a small positive number. The domain G′ is the complex
neighborhood of G′ and G′ is obtained from G = [a, b] by removing
finite number of resonance zones. In this reduced domain G′, z satisfies
following inequalities

|kz + 2πn| ≥ K̄ |k|−µ̄(0 < |k| ≤ N),

where K̄ is a positive constant, N is a large integer, and µ̄ ≥ 3.
We have the following estimates on the perturbations X̄, Ȳ , Z̄ in the
domain D̄

|X̄ | + |Ȳ | + |Z̄ | < ϵ2 = d0.
Proof. The difference equation (11) in the new coordinates can be
written as follows:

x̄1 = x̄ + z̄ + ϵX1
+ O(ϵ2), ȳ1 = ȳ + ϵg(z̄)+ ϵY1

+ O(ϵ2),
z̄1 = z̄ + ϵZ1

+ O(ϵ2).

The size of the perturbations in the new coordinate will be of the
order ϵ2 if each of the following terms is of order ϵ.

X1
:= X(x, y, z)+ h1(x + z, y, z)− h1(x, y, z)− h3(x, y, z)

Y1
:= Y(x, y, z)+ h2(x + z, y, z)− h2(x, y, z)

Z1
:= Z(x, y, z)+ h3(x + z, y, z)− h3(x, y, z). (13)

PerturbationsX,Y, andZ can be expressed in the Fourier series as

X =

∞
k=−∞

Xk(y, z)eikx, Y =

∞
k=−∞

Yk(y, z)eikx,

Z =

∞
k=−∞

Zk(y, z)eikx.

Now we represent each of the hi by the finite series hi =
|k|≤N hik(y, z)e

ikx, where hik satisfies following equality for |k|
≤ N:

h1k =
Xk − h3k

(1 − eikz)
, h2k =

Yk

(1 − eikz)
, h3k =

Zk

(1 − eikz)
.

To satisfy the above equation for bounded hik, we require z to
satisfy the following inequalities:

|kz + 2πn| ≥ K̄ |k|−µ̄ (0 < |k| ≤ N),

for some positive constant K̄ and µ̄ ≥ 3. Since average value of Z
and Y with respect to x is equal to zero, h30 and h20 are free to take
any value. We make h30 = X0 so as to satisfy first equality of (13).
With these choices of hi (13) reduces to

X1
=


|k|>N

Xkeikx, Y1
=


|k|>N

Ykeikx, Z1
=


|k|>N

Zkeikx.

Each of these terms will be of order ϵ, if N is chosen sufficiently
large to be of order greater than 1

δ
ln 2

(1−e−δ)ϵ , (refer to [3], technical

Lemmas on page 163). The δ is related to the new domain D̄ as
follows:

D̄ : |Im x| < r − δ, |Im y| < r − δ, z ∈ G′.

This new complex domain G′ of z is a complex neighborhood of G′,
where G′ is obtained from G after removing the finite number of
resonance intervals. The total measure of the resonance intervals
has an upper bound of (b − a)2K̄ , so that the reduced domain is of
order 1 for small value of K̄ (refer to [3], technical Lemmas on page
163).

In this new domain following inequalities are satisfied

|kz + 2πn| ≥ K̄ |k|−µ̄ (0 < |k| ≤ N). �

After this first averaging coordinate transformation, we get
following estimates on the perturbations

|X̄ | + |Ȳ | + |Z̄ | < ϵ2 = d0.

The action variable z now belongs to the domain which is a
function of ϵ i.e., z ∈ G′(ϵ) and the magnitude of the connected
components of G′ is going to zero as (ln 1

ϵ
)−2.

At this point it seems that with some work is needed to deal
with the (ln 1

ϵ
)−2 shrinkage of connected components of G′, we

should be able to utilize results of [13] to conclude existence of
a Diophantine invariant tori in the perturbed mapping. However,
careful examination of the proof of the result in [13] reveals that
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the proof holds true only under the additional assumption that
the perturbation Z̄ = 0. The assumption of Z̄ = 0 is clearly not
satisfied in our case since Z is not assumed to be zero. In fact,
the finite sequence of coordinate transformations discussed in the
following section are precisely introduced to decrease the size of
action perturbation Z̄ relative to other perturbations, if not tomake
it zero.

3.2. Second coordinate transformation

At this point we would like to continue with the standard
infinite sequence of coordinate transformations as in Siegel and
Moser [5] but we are faced with the following problem. The aim
is to reduce the size of all the three perturbations X̄, Ȳ and Z̄ . Due
to the degenerate nature of the angle y, the small denominator
problem is exaggerated. The degenerate angle y introduces a term
of order 1

ϵ
in the estimates, which gives O(1) estimates for the

size of the coordinate transformation. This makes it impossible to
continue with the infinite sequence of coordinate transformations.
This problem can be solved by introducing an intermediate finite
sequence of coordinate transformations. The aim of the finite
sequence of coordinate transformations is to reduce the size of
action perturbation Z to order ϵ3 so that 1

ϵ
order term introduced

by the degenerate angle can be compensated.
For notational convenience we remove the over-bar notation
from the coordinates and the perturbations X̄, Ȳ and Z̄ and
parameterize themap byω. The newmap after the first coordinate
transformation is denoted by M0(ω). At this stage it is not
really necessary to parameterize the mapping by ω however the
importance of this parameterization will become clear later in the
infinite sequence of coordinate transformations. We have,

M0(ω) =

x1 = x + ω + z + X(x, y, z, ω)
y1 = y + ϵg0(z, ω)+ Y (x, y, z, ω)
z1 = z + Z(x, y, z, ω)

(14)

defined in the domain:

D0(ω) : |Im x| < r̂0 < 1, |Im y| < r̂0 < 1, |z| < ŝ0,
ω ∈ G′,

where r̂0, ŝ0 are positive numbers defined later and |X | + |Y | +

|Z | < d0 in D0(ω). The mapping M0(ω) is parameterized such
that g0(z, ω) = g0(z + ω), X(x, y, z, ω) = X(x, y, z + ω) and so
on for Y and Z . In the second coordinate transformation we treat
this map as an action–angle map, where x is the angle and z is the
action, andwe consider y as a parameter. Note thatω ∈ G′, and the
magnitude of the connected components of G′ is going to zero as
(ln 1

ϵ
)−2. In order to account for the shrinking size of the connected

components of the domain G′ with decreasing ϵ, we require ω to
satisfy infinitely many inequalities of the form:

|kω + 2πn| ≥ ϵγ1 K̂ |k|−µ̂ (k, n = 1, 2, . . .), (15)

where K̂ is a positive constant, µ̂ ≥ 3, and γ1 is a suitably
chosen constant satisfying 0 < γ1 ≪ 1. The introduction of
ϵγ1 term in (15) ensures that while the size of the domain G′

goes to zero as (ln 1
ϵ
)−2 the reduction in the size of perturbation

can be obtained in the neighborhood of the nonresonant value of
action, the length of which tends to zero as power of ϵ. Now we
show that after applying finitely many coordinate transformations

we can reduce the size of action perturbation Z to order d
3
2
0 .

Let Ti(ω) denote these coordinate transformations. Let Mk(ω) =

T−1
k−1(ω)Mk−1(ω)Tk−1(ω) be the mapping obtained after applying

these coordinate transformations and defined in the domain
Dk(ω). We will suppress the dependence on ω of the mapping
M and coordinate transformation T at some places for notational
convenience. We have following Lemma for the intermediate step
of coordinate transformation.
Lemma 6. There exists a coordinate transformation T (ω) of the form:

T (ω) =


x = ϕ + Û(ϕ, ψ, η, ω), y = ψ,

z = η + Ŵ (ϕ, ψ, η, ω) (16)

such that the mapping M0(ω) (Eq. (14)) defined in the domain:

A0(ω) : |Im x| < r̂, |Im y| < r̂, |z| < ŝ,

with |X |+|Y |+|Z | < d, takes the formM(ω) = T−1(ω)M0(ω)T (ω)

M(ω) =


ϕ1 = ϕ + ω + η + X̂(ϕ, ψ, η, ω)
ψ1 = ψ + ϵg0(η, ω)+ Ŷ (ϕ, ψ, η, ω)
η1 = η + Ẑ(ϕ, ψ, η, ω).

(17)

The mapping M(ω) is defined in the smaller domain A1(ω) : |Im ϕ|

< ρ̂ , |Im ψ | < ρ̂ , |η| < σ̂ , with 0 < ρ̂ < r̂ , 0 < σ̂ < ŝ. Assume
that

r̂ < 1, 0 < 3σ̂ < ŝ <
r̂ − ρ̂

4
, d <

ŝ
6
,

ϑ̂ <
ϑ̂2

ŝ
<

1
7
,

(18)

where ϑ̂ =
a1
K̂2 (r̂ − ρ̂)−2µ̂−2 d

ŝ ϵ
−2γ1 < 1

7 , ϑ̂2 =
a1
K̂4 (r̂ − ρ̂)−4µ̂−3

dϵ−4γ1 , and a1 is a positive constant independent of the domain and
depends only upon µ̂. Using the above assumptions, we get following
estimates for Û, Ŵ , X̂, Ŷ , and Ẑ

|Ŷ | < d, |Û| + |Ŵ | < ϑ̂ ŝ,

|X̂ | + |Ẑ | < a4


(r̂ − ρ̂)−2µ̂−3ϵ−2γ1dŝ + (r̂ − ρ̂)−2µ̂−3ϵ−2γ1

d2

ŝ

+ (r̂ − ρ̂)−2µ̂−3ϵ1−2γ1d +


σ̂

ŝ

5

d


,

where a4 is a positive constant independent of the domain.

The proof of this Lemma is similar to theMoser version of the KAM
proof for action–angle maps [5] with the difference being that the
angle variable y in this proof is treated as a parameter. We refer
the readers to [5] (Chapter 3; Section 32) for the proof. We now
use the result of this Lemma to prove that at the end of the second
coordinate transformation, the size of action perturbation Z is of

order d
3
2
0 . To this end we apply the Lemma to the mapping M0(ω)

defined in the domain:

D0(ω) : |Im x| < r̂0, |Im y| < r̂0, |z| < ŝ0,

where D0(ω) correspond to the domain A0(ω) of the Lemma. By
assumption, we have

|X | + |Y | + |Z | < d0 in D0(ω).

Transforming the mapping M0(ω) by the coordinate transforma-
tion T0(ω) = T (ω) provided by the Lemma,we obtain themapping
M1(ω) = T−1

0 (ω)M0(ω)T0(ω) defined in the domain:

D1(ω) : |Im x| < r̂1, |Im y| < r̂1, |z| < ŝ1,

where D1(ω) correspond to the domain A1(ω) and r̂1, ŝ1 corre-
sponds to the parameter ρ̂, σ̂ of the Lemma.We define the follow-
ing sequences

r̂n =
r̂0
2


1 +

1
2n


, ŝn = d

11
50
n , ŝ0 = ŝ,

dn+1 = r̂−χ̂

0 ĉn+1
7 d

6
5
n ϵ

−2γ1 , χ̂ = 2µ̂+ 3

r̂0 = r − δ, ĉ7 > 3, d0 < ĉ−20
7 r̂7χ̂0 ϵ14γ1 .
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For the above sequences to bewell definedwe require that γ1 < 1
5 .

We need to check whether these sequences satisfies the inequality
(18). Towards this we have,
ŝn+1

ŝn

 50
11

=
dn+1

dn
= ĉn+1

7 d
1
5
n = e

1
5
n ĉ−5

7 r̂ χ̂0 ,

where en = r̂−5χ̂
0 ĉ5(n+6)

7 ϵ10γ1dn and en+1 = e
6
5
n . Since d0 <

ĉ−20
7 r̂7χ̂0 ϵ14γ1 , we have e0 < 1 and

sn+1

sn
< ĉ

−11
10

7 <
1
3
, since ĉ7 > 3.

The inequality ŝn = d
11
50
n <

r̂n−r̂n+1
4 , dn < ŝn

6 , and ϑ̂ < 1
7 can be

satisfied by taking d0 sufficiently small and using the fact that

r̂ − ρ̂ = r̂n − r̂n+1 = r̂02−n−2, ŝn = d
11
50
n .

Using dn+1 = r̂−χ̂

0 ĉn+1
7 dβn ϵ−2γ1 with β =

6
5 , we have

dn+1 = r̂
−χ̂(

n
k=1 β

k)
0 ĉ(

n+1+nβ+(n−1)β2+···+βn)
7 ϵ−2γ1(

n
k=1 β

k)dβ
n+1

0 .

We want that after finitely many coordinate transformations

dn+1 < d
3
2
0 . Using the fact that ϵ = d

1
2
0 and d0 < ĉ−20

7 r̂7χ̂0 ϵ14γ1 ,

it follows for n = 5 that d6 < d
3
2
0 and we get,

|X̂6| + |Ẑ6| < a4


27(2µ̂+3)ĉ−6

7 d
1
50
5 + 27(2µ̂+3)ĉ−6

7 d
29
50
5

+ r̂ χ̂0 2
7(2µ̂+3)ĉ−10

7 +


d6
d5

 1
10

d6.

The coefficient multiplying d6 can be made less than one by
choosing ĉ7 sufficiently large, γ1 sufficiently small, and noticing
that d6

d5
< 1 to give us

|X̂6| + |Ẑ6| < d6 < d
3
2
0 .

3.3. Infinite sequence of coordinate transformation

At this stage of infinite sequence of coordinate transformations,
our aim is to decrease the size of all the three perturbations
simultaneously. In both the KAM proof for Moser twist map
[5], and the action–angle–angle maps [15], the size of all the
perturbations decreases simultaneously with the same estimates
on the perturbations at each step of the infinite sequence of
coordinate transformations. In our proof, due to the degenerate
nature of the angle y, we require that the size of action perturbation
Z is always d

1
2 order smaller than the angle perturbations. This

requires us to estimate the size of action perturbation Z separately
from the size of the angles perturbations X and Y .

Now we have a problem which is different from the Moser
version of the KAM proof for the twist maps, but similar to the
one faced in proving the KAM theorem for action–angle–angle
maps. The problem is due to unequal numbers of action and angle
variables. Due to this problem, it is not possible to predict which
toriwill survive the perturbation andhence at this stage it becomes
necessary to parameterize the mapping by ω.

We denote the mapping obtained after the second coordinate
transformation M6(ω) by M0(ω). We are using the same notation
for the perturbation X, Y , and Z as at the beginning of the second
coordinate transformation i.e., we define X := X̂6, Y := Ŷ6, Z := Ẑ6
and again the parameterization on X, Y , Z and g0 are chosen such
that X(x, y, z, ω) = X(x, y, z + ω) and g0(z, ω) = g0(z + ω) and
so on for Y and Z . So we have

M0(ω) =

x1 = x + ω + z + X(x, y, z, ω)
y1 = y + ϵg0(z, ω)+ Y (x, y, z, ω)
z1 = z + Z(x, y, z, ω),

(19)

with |X | < d
3
2
0 < d0, |Y | < d0, and |Z | < d

3
2
0 defined in domain

D0(ω) : |Im x| < r0 ≤ r̂6, |Im y| < r0 ≤ r̂6, |z| < s0 ≤ ŝ6.
To account for the shrinking size of the connected components of
domain G′(ϵ) ∋ ω with decreasing ϵ, in this step of coordinate
transformation we require (ω, ϵg0(ω)) to satisfy infinitely many
inequalities of the form:

|k1ω + ϵk2g0(0, ω)+ 2πn|

≥


ϵγ2K |k|−µ if k1 ≠ 0
ϵ1+γ2K |k|−µ if k ≠ 0

∀(k1, k2, n) ∈ Z3
\ {0}, (20)

where |k| = |k1| + |k2|, K some positive constant, µ ≥ 5
and γ2 is sufficiently small positive constant i.e., 0 < γ2 ≪ 1.
Now we use an infinite sequence of coordinate transformations
similar to the one used in [5] but with some modification. We
have following induction Lemma for the third and final step of
coordinate transformation.

Lemma 7. There exists a coordinate transformation U(ω) of the
form:

U(ω) = {x = ϕ + U(ϕ, ψ, η, ω), y = ψ + V (ϕ, ψ, η, ω),
z = η + W (ϕ, ψ, η, ω)

such that the mapping M0(ω) (Eq. (19)), defined in the domain:

B0(ω) : |Im x| < r, |Im y| < r, |z| < s,

with |X | + |Y | < d and |Z | < d
3
2 takes the form M(ω) = U−1(ω)

M0(ω)U(ω). The mapping M(ω)

M(ω) =


ϕ1 = ϕ + ω + η + Φ(ϕ, ψ, η, ω)
ψ1 = ψ + ϵg0(η, ω)+ g1(η, ω)+ Ψ (ϕ, ψ, η, ω)
η1 = η + H(ϕ, ψ, η, ω)

(21)

is defined in the following smaller domain:

B1(ω) : |Im ϕ| < ρ |Im ψ | < ρ |η| < σ,

with 0 < ρ < r, 0 < σ < s. Now assume that

0 < r ≤ r̂6, 0 < 3σ < s < d
1
2 (r − ρ), d <

s
2
,

ϑd
1
2 <

ϑ2d
1
2

s
<

1
8
,

(22)

where ϑ =
b1
K2 (r −ρ)−2µ−4ϵ−2γ2 d

1
2
s , ϑ2 =

b1
K4 (r −ρ)−4µ−4ϵ−2γ2d

1
2

and b1 is a positive constant independent of the domain and depends
only on µ. Under the above assumptions, it follows that M(ω) is well
defined in B1(ω) and there are following estimates:

|U| + |V | <
b1
K 2
(r − ρ)−2µ−4ϵ−2γ2d

1
2 ,

|W | <
b1
K
(r − ρ)−µ−2ϵ−2γ2

d
3
2

ϵ
|Φ| + |Ψ |

< b6


(r − ρ)−2µ−5

K 2
ϵ−2γ2d

1
2 s +

(r − ρ)−2µ−4

K 2
ϵ−2γ2

d
1
2

s
|H|

+
(r − ρ)−2µ−4

K 2
ϵ−2γ2

d2

s
+
(r − ρ)−4µ−8

K 4
ϵ−4γ2

d
5
2

s2


(23)
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|H| < b5


(r − ρ)−2µ−5

K 2
ϵ−2γ2ds +

(r − ρ)−4µ−8

K 4
ϵ−4γ2

d
5
2

s

+
(r − ρ)−6µ−13

K 6
ϵ−6γ2

d
7
2

s2
+
(r − ρ)−2µ−4

K 2
ϵ−2γ2

d5/2

s

+

σ
s

3
d

3
2


where g1(0, ω) = −ϵg0η(0, ω)X̃(0, ω) + Ỹ (0, ω), X̃ and Ỹ are
average value of X andY respectively and b5, b6 are positive constants
independent of the domain. The functions g0(0, ω) and g1(0, ω)
satisfy the following new Diophantine conditions:

|k1ω + k2(ϵg0(0, ω)+ g1(0, ω))+ 2πn|

≥


ϵγ2

K
2

|k|−µ if k1 ≠ 0

ϵ1+γ2
K
2

|k|−µ if k ≠ 0
∀(k1, k2, n) ∈ Z3

\ {0}.

Proof of this Lemma follows along the similar lines for the Moser
version of the KAM proof for the action–angle map [5] (Chapter 3;
Section 32). Due to unequal numbers of action and angle variables
we have a problem which is different from the KAM proof for
the twist map. The term g1(η, ω) in the mapping M(ω) of the
Lemma gives rise to the shift in frequency of the degenerate angle.
In general at the (n + 1) step of the coordinate transformation
there is a frequency drift from (ω, ϵg0(0, ω) +

n
j=1 gj(0, ω)) to

(ω, ϵg0(0, ω)+
n+1

j=1 gj(0, ω)) similar to the case in [15]. In order
to compensate for this frequency drift we need to broaden the
set of admissible values of ω. This can be achieved by allowing
the constant K in inequalities (20) to decrease at each step of
the coordinate transformation. However decreasing the size of K
will lead to increase in the size of estimates for the perturbations
and hence the scheme to make the mapping closer to the double
twist mapping might be a failure. We show that this is not always
the case and there exists a nonempty set S(ω) ⊂ G on which
corresponding K decrease at most like power of K0 (Kn =

K0
2n )

so that the size of the perturbations decreases exponentially. To
prove this we employ the strategy similar to that in [15] with
the difference that while the strategy in [15] is developed for
action–angle–angle map with no degeneracy in angle, we extend
it to the case of degenerate angle. More specifically there are
following differences between our proof and proof technique
developed in [15]; (1) The averaging transformation is not needed
in [15]; (2) The intermediate sequence of transformations is not
needed in [15]; (3) The ‘‘Cantor set’’ calculations are substantially
modified; (4) Whitney theory is used directly instead of doing
it from scratch. Before explaining this strategy, we prove the
following Lemma similar to the one in [15] except for the fact that
the estimates in this Lemma are derived for the case of degenerate
angle.

Lemma 8. Let ϵ > 0 be fixed and assume ϵg0(z) ∈ C2, g ′′

0 (z) ≥

c1 > 0. Then the set S(ω), where

S(ω) = {ω ∈ G′
: |k ·Ω + 2πn| ≥ ϵ1+γ2K |k|−µ,

(µ ≥ 5), (k, n) ∈ Z3
\ {(0, 0, 0)}}

is a Cantor set with the Lebesgue measure µl(S(ω)) > µl(G′) −

c3

ϵγ2K
c1

 1
2
where, (k · Ω) = k1ω + ϵk2g0(0, ω), c3 is a positive

constant, and µl is the Lebesgue measure.

Proof. For a fixed (k1, k2, n) ∈ Z3, consider the lines

l1 : k1ω1 + ϵk2ω2 + 2πn = 0,
l2 : k1ω1 + ϵk2ω2 + 2πn − ϵ1+γ2K |k|−µ = 0
l3 : k1ω1 + ϵk2ω2 + 2πn + ϵ1+γ2K |k|−µ = 0.
The minimum distance between the lines l1, l2 or l1, l3 in the
(ω1, ϵω2) plane is ϵ1+γ2K |k|−µ(k21 + k22)

−
1
2 . Consider the points

(ω1, ϵω2) in the set

Ω1 = {(ω1, ϵω2) ∈ R2
: d((ω1, ϵω2), l1) ≥ δ},

δ = ϵ1+γ2K |k|−µ(k21 + k22)
−

1
2 .

The points in Ω1 set will satisfy the inequality (20) for a fixed
(k1, k2, n, K), where d(#, l) means the distance to the line l. Let
Ω2 = R2

\ Ω1, Γ = graph ϵg0, and T1 the projection over first
component. The length of T1|(Γ ∩ Ω2) is less than 4( δ

ϵc1
)
1
2 . For a

fixed k ∈ Z2, if (ω1, ϵω2) is restricted in the domain Rω:

0 ≤ min(ω1, ϵω2) < max(ω1, ϵω2) ≤ a8,

then the setΩ2∪Rω is nonempty only if |n| < a8|k|
2π . So the Lebesgue

measure of the set S(ω) is

µl(S(ω)) > µl(G′)−
4a8
2π


ϵγ2K
c1

 1
2 

k∈Z2
|k|

−µ
2 +1(k21 + k22)

−
1
4 ,

which is positive if µ ≥ 5 and K is sufficiently small. Now

4a8
2π


k∈Z2

|k|
−µ
2 +1 k21 + k22

− 1
4 <

4a8
2π


k∈Z2

|k|
−µ
2 +1− 1

4 =: c3

and the sum converge because µ ≥ 5 and µl(S(ω)) > µl(G′) −

c3( ϵ
γ2K
c1
)
1
2 . �

We now introduce a sequence of coordinate transformation
Un(ω) on a nonempty set S̃n ⊂ G′:

Mn+1(ω) = U−1
n (ω)Mn(ω)Un(ω), with S̃n(ω) ⊂ S̃n−1(ω).

By Lemma 8, there exists a Cantor set S0(ω) = S̃0(ω) given by

S0(ω) =

ω ∈ G′

|(ω, ϵg0(0, ω)) satisfies (20) with K0

replacing K} .

The Lebesgue measure of the set S0(ω) is µl(S0(ω)) > µl(G′) −

c3

ϵγ2K0
c1

 1
2
, where µl is the Lebesgue measure. Let S̃1(ω) =1

j=0 Sj(ω), where

S1(ω) =


ω ∈ G′

|(ω, ϵg0(0, ω)+ g1(0, ω)) satisfies (20)

with
K0

2
replacing K


.

In order to derive the Lebesgue measure of the set S1(ω) we need
g1(0, ω) to be defined on the entire domain G. However, g1 is only
defined on the set S̃0(ω). This problem can be solved using the
Whitney extension theorem [21]. By using the Whitney extension
theorem, we can extend the perturbations X, Y , Z and subsequent
perturbationsXj, Yj, Zj coming from infinite sequence of coordinate
transformation to the entire domain G w.r.t. variable ω. The proof
for the extension follows along the lines of proof outlined in
[11,22]. Since X, Y , and Z are extended to the domain G, the
function g1 is well defined for all values of ω ∈ G because

g1(0, ω) = −ϵg0η(0, ω)X̃(0, ω)+ Ỹ (0, ω),

where X̃ and Ỹ are the average values of X and Y respectively. We
will use the same notation for the functions and its extension to
the domain Gw.r.t. variable ω with the following estimate

∥X∥2,1,G + ∥Y∥2,1,G < cwd i = 0, 1, 2,

where cw is the Whitney constant and is independent of the
domain. The notation ∥ · ∥2,1,G is used as a measure for the norm
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of the function and the second derivative of the function w.r.t.
variable ω in the domain G (For more details on the norm refer
to [22].) Differentiating g1(0, ω) twice w.r.t. ω we get, d2

dω2
g1(0, ω)

 < 5 sup(ϵg0η, ϵg0ηω, ϵg0ηω2 , 1)cwd < ϵβ1.

Hence

d2

dω2
(ϵg0 + g1) > ϵ(c1 − β1), and

µl(S1(ω)) > µl(G′)− c3


K0ϵ

γ2

2(c1 − β1)

 1
2

.

Themeasure of the set S1(ω) is obtained fromLemma8by applying
the results to k · Ω = k1ω + k2(ϵg0 + g1). Now S̃1(ω) =

S0(ω)


S1(ω) and

µl(S̃1(ω)) > µl(G′)− c3


K0ϵ

γ2

c1

 1
2

1 +


c1

2(c1 − β1)

 1
2

.

For K0 andβ1 sufficiently smallµl(S̃1(ω)) is positive.We obtain the
following expression for gj+1 by induction on g1 and its derivation
is similar to that of g1

gj+1(0, ω) = −


ϵg0η(0, ω)+

j
l=1

glη(0, ω)


X̃j(0, ω)+ Ỹj(0, ω),

where Xj and Yj are extended to interval G by using Whitney’s
extension with the following estimates

∥Xj∥2,1,G + ∥Yj∥2,1,G < cwdj.

Assume that there exists a positive constant c5 such that

sup

 dv

dωv


ϵg0η(0, ω)+

j
l=1

glη(0, ω)

 < c5 v = 0, 1, 2. (24)

The existence of such a positive constant c5 can be proved as
follows:

|ϵg0η| ≤ 1 for η ∈ G, and |ϵg0ηω2 | ≤ 1

|g1| = |ϵg0ηX̃0| + |Ỹ0| ≤ 2d0, |g1η| ≤
2d0
s0

for |η| < s0, and |g1ηω2 | ≤ cw
2d0
s0

|gj+1| ≤ 2djΠ
j−1
i=1


1 +

di
si


, |gj+1,η| ≤

2dj
sj
Π

j−1
i=1


1 +

di
si


for |η| < sj and |gj+1,ηω2 | ≤

cw2dj
sj

Π
j−1
i=1


1 +

di
si


,

so by choosing d0 sufficiently small it is possible to find the
constant c5 such that (24) is true. Now setting c6 = 5max(c5, 1)
we get d2

dω2
gj+1(0, ω)

 < c6cwdj = ϵβj+1,

j+1
l=1

βl =
c6cw
ϵ

j+1
l=1

dl−1

and this can bemade less than c1
2 , if we choose d0 sufficiently small.

So we have
j+1

l=1 βl <
c1
2 and then following inequality holds

d2

dω2


ϵg0η(0, ω)+

j+1
l=1

glη(0, ω)


> ϵc1 − ϵ

j+1
l=1

βl > ϵ
c1
2
.

By defining S̃j+1(ω) =
j+1

l=0 Sl(ω), where

Sj+1(ω) =


ω ∈ G′



ω, ϵg0(0, ω)+

j+1
l=1

gl(0, ω)



satisfies (20) with Kj+1 = K0/2j+1 in place of K


,

we obtain,

µl(Sj+1(ω)) > µl(G′)− c3

 K0ϵ
γ2

c1 −

j+1
l=1
βl


2j+1


1
2

µl(S̃j+1(ω)) > µl(G′)− c3


K0ϵ

γ2

c1

 1
2 j+1

l=1

2−l/2

 c1

c1 −

l
n=1

βn


> µl(G′)− c3


K0ϵ

γ2

c1

 1
2 j+1

l=0

2−l/2+1.

The measure of set S̃j+1 (i.e., µl(S̃j+1(ω))) is positive if K0 is
sufficiently small. The total drift in the degenerate angle at the jth
step of iteration is given by ϵg0(0, ω) +

j
k=1 gj(0, ω) and in the

limit as j → ∞ we get ϵg0(0, ω) + g∗(ω, ϵ), where g∗(ω, ϵ) :=
∞

j=1 gj(0, ω).
Now we define a sequence similar to the one in [5]. Let

rn, rn+1, sn, sn+1, dn,
K0
2n correspond to parameter r, ρ, s, σ , d0, K

respectively. Setting

rn =
r0
2


1 +

1
2n


, Kn =

K
2n
, sn = d

11
16
n , s0 = ŝ6,

dn+1 = r−χ

0 cn+1
7 ϵ−6γ2d

9
8
n

where c7 > 2, χ = 2µ + 5 are suitable constants, rn converges
to r0

2 , and dn converges to zero provided d0 is chosen sufficiently

small. The sequence en = r−8χ
0 c8(n+9)

7 ϵ−48γ2dn satisfies en+1 = e
9
8
n

and hence converges to zero if we take 0 < d1−24γ2
0 < r8χ0 c−72

7 . The
inequality 3σ < s follows from
sn+1

sn

 16
11

=
dn+1

dn
= r−χ

0 cn+1
7 d

1
8
n = e

1
8
n c−8

7 <
1
c87
,

sn+1

sn
<

1
c5.57

<
1
3
, and

rn − rn+1 = r02−n−2.

Nowwewill use induction Lemma to show that |Hn+1| < d
3
2
n+1 and

|Φn+1| + |Ψn+1| < dn+1. By induction on second inequality of (23)

and the fact that sn = d
11
16
n we have

|Hj+1| < b5


rχ/20 2χ(j+2)+2j

K 2
0

c
−

3
2 (j+1)

7 ϵ7γ2 +
r
2− χ

2
0 22(χ−1)(j+2)+4j

K 4
0

c
−

3
2 (j+1)

7 ϵ5γ2d
1
8
j +

r
2− 3χ

2
0 2−(j+2)(2−3χ)+6j

K 6
0

c
−

3
2 (j+1)

7 ϵ3γ2d
7
16
j

+
r
1+ χ

2
0 2−(j+2)(1−χ)+2j

K 2
0

c
−

3
2 (j+1)

7 ϵ7γ2d
2
16
j

+


dj+1

dj

 9
16

d

3
2
j+1. (25)
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Since dj is bounded, the coefficient of dj+1 can be made less than 1
by choosing c7 sufficiently large and hence we have

|Hj+1| < d
3
2
j+1. (26)

Using the fact that s = d
11
16 , |H| < d

3
2 and by induction on the first

inequality of (23) and using Eq. (26), we have

|Φj+1| + |Ψj+1|

< b4


2χ(j+2)+2j

K 2
0

c−(j+1)
7 ϵ4γ2d

1
16
j +

2r02−(1−χ)(j+2)+2j

K 2
0

× c−(j+1)
7 ϵ4γ2d

3
16
j +

r (−χ+2)
0 2−(j+2)(2−2χ)+4j

K 4
0

× c−(j+1)
7 ϵ2γ2


dj+1. (27)

The coefficient of dj+1 can be made less than one by choosing c7
sufficiently large and hence

|Φj+1| + |Ψj+1| < dj+1.

Thus there exists a positive constant d∗
= d∗(r, c1, K0, K̂0, K̄ , µ, µ̂,

µ̄, γ1, γ2) such that the theorem is true for d0 ∈ (0, d∗) with
g∗(ω, ϵ) :=


∞

j=1 gj(0, ω).

4. Application to Hill’s spherical vortex flow

A particularly important application of the theorem proven
above is in the case of a three-dimensional, time-periodic, volume-
preserving fluid flows [20,23]. A steady integrable example of
a three-dimensional vortex structure was developed in [6] as
an extension (called swirling Hill’s vortex) of the well-known
Hill’s spherical vortex flow (see Eq. (1)). The swirling Hill’s
vortex, besides radial and axial velocity in three-dimensional polar
coordinates, contains a strong swirl induced by a line vortex
situated at the z axis. Here we consider the volume-preserving
time-dependent perturbation of the swirling Hill vortex (1) with
strong swirl. In cylindrical coordinates the equations of motion of
fluid particles are given as follows:

ṙ = rz +
√
2r sin θ sinΩ(c)t

ż = 1 − 2r2 − z2 − z


1
2r

sin θ sinΩ(c)t

θ̇ =
2c
r2

+
√
2r cos θ sinΩ(c)t, (28)

where Ω(c)
c =: ω is assumed to be of O(1) size. Under the

assumption that the swirl c ≫ 1 or 1
c ≈ ϵ and after rescaling

the time t =
τ
c , we get the following time periodic perturbed flow

equations in the transformed action–angle–angle coordinates:

İ = ϵFI(I, φ1, φ2, τ )

φ̇1 = ϵω1(I)+ ϵFφ1(I, φ1, φ2, τ )

φ̇2 = ω2(I)+ ϵFφ2(I, φ1, φ2, τ ), (29)

where the action–angle variables (I, φ1) are obtained from (r, z)
and the second angle variable φ2 is obtained using the following
transformation [6]

φ2 = θ +
φ1

2π

 2π

0

2
r2(I, φ1)ω1(I)

dφ1

−


2

r2(I, φ1)ω1(I)
dφ1. (30)
We are interested in showing that the Poincare map constructed
from the system (29) satisfies the Assumption 1 of the main
theorem. Towards this goal, wewrite θ as θ = φ2−ϕ(I, φ1), where
ϕ is defined using (30) as follows:

ϕ(I, φ1) :=
φ1

2π

 2π

0

2
r2(I, φ1)ω1(I)

dφ1 −


2

r2(I, φ1)ω1(I)
dφ1.

The action–angle perturbations terms appearing in (29) can be
written as:

Fφ1[I] = sin(φ2 − ϕ) sinωτ


∂φ1[I]
∂r


2r(I, φ1)

−
∂φ1[I]
∂z

z(I, φ1)


1

2r(I, φ1)


. (31)

Defining Gφ1[I] :=


∂φ1[I]
∂r

√
2r(I, φ1)−

∂φ1[I]
∂z z(I, φ1)


1

2r(I,φ1)


, we

write (31) as

Fφ1[I] = (sinφ2 cosϕ − cosφ2 sinϕ) sinωτGφ1[I](I, φ1). (32)

The vector field (29) is time periodic with time period T =
2π
ω

and hence we can construct the Poincare map. Using the regular
perturbation theory, the solutions of (29) are O(ϵ) close to the
unperturbed solutions on the time scale of O(1), and hence can be
written as

Iϵ(t) = I0 + ϵI1(t)+ O(ϵ2)
φϵ1(t) = φ0

1 + ϵφ1
1(t)+ O(ϵ2)

φϵ2(t) = φ0
2 + ϵφ1

2(t)+ O(ϵ2).

Using the above perturbation expansion in ϵ, the time period T
Poincare map can be written as

Pϵ : (Iϵ(0), φϵ1(0), φ
ϵ
2(0)) → (Iϵ(T ), φϵ1(T ), φ

ϵ
2(T ))

(I0, φ0
1 , φ

0
2) → (I0 + ϵI1(T ), φ0

1 + ϵω1(I0)T + ϵφ1
1(T ), φ

0
2

+ω2(I0)T + ϵφ1
2(T ))+ O(ϵ2).

From this Poincare map, we are interested in the perturbations
terms of order ϵ entering in I and φ1 directions (i.e., I1(T ) and
φ1
1(T )) and verifying that their average with respect to φ0

2 is
zero thereby satisfying Assumption 1 of the main theorem. The
perturbation terms of O(ϵ2) and their zero average with respect
to φ0

2 is not necessary because the averaging Lemma 5, where the
Assumption 1 of themain theorem is used, only reduces the size of
perturbations from order ϵ to ϵ2. We have following expressions
for I1(T ) and φ1

1(T )

I1(T ) =

 T

0
sin(φ0

2 + ω2(I0)τ ) cosϕ sinωτGI(I0, φ0
1)dτ

−

 T

0
cos(φ0

2 + ω2(I0)τ ) sinϕ sinωτGI(I0, φ0
1)dt

=: fI(I0, φ0
1 , φ

0
2)

φ1
1(T ) =

 T

0
sin(φ0

2 + ω2(I0)τ ) cosϕ sinωτGφ1(I
0, φ0

1)dτ

−

 T

0
cos(φ0

2 + ω2(I0)τ ) sinϕ sinωτGφ1(I
0, φ0

1)dτ

=: fφ1(I
0, φ0

1 , φ
0
2).

Using the trigonometric identities for sin(a + b) and cos(a + b), it
follows that 2π

0
fI(I0, φ0

1 , φ
0
2)dφ

0
2 =

 2π

0
fφ2(I

0, φ0
1 , φ

0
2)dφ

0
2 = 0.
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Fig. 2. Visualization of ergodic partition on θ = 0 plane for the Poincare map of system (28); (a) ϵ = 0.05; (b) ϵ = 0.01.
This verifies that the Poincare map of system (29) satisfies the
Assumption 1 of the main Theorem.

We pursue a visualization technique based on ergodic partition
to visualize the dynamics of this three-dimensional map. The
basic idea behind the constructing of the ergodic partition is to
identify the set of points in the phase space which have same
time averages for a set of basis functions [24–27]. We pursue the
implementation of this idea as presented in [26]. Ideally these time
averages are computed for a basis set functions defined on the
phase space. We provide a computational implementation using
only finitely many functions. Fig. 2, shows the two dimensional
slice of the ergodic partition in the three dimensional (r, z, θ)
space. The two dimensional slice is taken at θ = 0 plane. The
initial conditions for the time averages are chosen from the set I =

[0.2, 0.3] × [−0.1, 0.1] × {0}. The number of initial conditions for
the simulation are chosen to be equal to 7000 and the total number
of functions used for time averages equal 83

= 512. The averaging
functions were selected as the truncated set of complex harmonics
functions on the rectangle D = [0, 0.5] × [−1, 1] × [0, 2π ] and
are of the form

fk̄(x) = (2π)−
3
2 ei2π⟨x,k̄⟩,

where k̄ ∈ [0, 7]3 so that in each spatial direction up to 8
harmonics are considered, and x = T (R, z, θ), with T : D → [0, 1]3
consists of translation and rescaling of domain D. For more details
on the computation of ergodic partition refer to [25–27]. In Fig. 2,
we show the results of the computation for values of perturbation
ϵ = 0.05 and ϵ = 0.01. Given the finite color resolution and the
computation of time average with finitely many functions we can
only resolve the ergodic partition to finite approximation. However
even with the finite resolution one can identify the signature of
the surviving KAM tori as smooth banded structure of the invariant
sets shown in Fig. 2.

5. Conclusions

In conclusion, we have proved the persistence of two-
dimensional invariant tori in the perturbation of integrable
action–angle–angle maps with degenerate angle. The persistence
proof requires a combination of the proof techniques for non-
degenerate volume-preserving maps as pursued in [15] and
Arnold’s methods in proving the KAM theorem in the case of
Hamiltonian systems with degenerate angles [2,3]. A specific
peculiarity of our proof is the need for an intermediate sequence
of coordinate transformations that reduces the size of the
perturbation in the action variable by an order and allows us to
proceed with a Moser-type technique pursued in [15]. Elegant and
shorter proof technique for KAM-type results has recently been
pursued by Broer et al. [9]. It would be interesting to see whether
their ‘‘parametric’’ KAM-type technique could be used to prove a
version of our theorem in a simpler way. In addition, we have used
the main result of this paper to prove persistence of invariant tori
in a perturbation of a volume-preserving Euler fluid flow, swirling
Hill’s vortex, under the assumption of large swirl. Note that our
proof above can be easily extended to the full class of perturbation
similar to the single-mode perturbation in θ that we have used, as
any such perturbation can be expanded in Fourier series. In other
words, any sufficiently small, volume-preserving perturbation that
has axial (z) symmetry will have a set of tori preserved.
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