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Yu Zou,1 Vladimir A. Fonoberov,2 Maria Fonoberova,2 Igor Mezic,2,3 and Ioannis G. Kevrekidis1,*

1Department of Chemical and Biological Engineering and Program in Applied and Computational Mathematics, Princeton University,
Princeton, New Jersey 08544, USA

2Aimdyn, Inc., 1919 State Street, Suite 207, Santa Barbara, California 93101, USA
3Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA

(Received 23 April 2011; published 8 June 2012)

Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena
involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted
approach that bridges the significant gap between the single-agent microscopic level and the macroscopic
(coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding
the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence.
This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens
[active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an
equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based
dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens
and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing
the computation time (by a factor of approximately 20).
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I. INTRODUCTION

Agent-based modeling (ABM) has become a powerful tool
for studying the behavior of complex systems in recent years in
part through advances in modern computing technology. In this
modeling approach the system studied consists of individual
agents whose actions and interactions are computed via
stipulated behavioral rules. The ABM provides a convenient
framework in which different interactions between individuals
in possibly large, heterogeneous populations can be com-
putationally implemented and the dynamics and phenomena
resulting from these interaction rules can be observed and
hopefully rationalized. The use of ABM has a long lineage
dating back to von Neumann’s self-reproducing automata [1].
Pioneered by Schelling through his seminal works [2–4], the
ABM has found increasing application in studying a wide
variety of topics in social science (see, e.g., Refs. [5–8]).

Agent-based modeling has, however, an inherent weakness
in that the computational time for large complex systems,
which typically consist of thousands or millions of agents, can
be prohibitively long. This drawback makes the comprehensive
analysis of certain ABM results extremely time consuming
and, as a result, may unsatisfactorily delay realistic decision
and policy making associated with important societal, econom-
ical, or military events. Improving computational efficiency
for ABM therefore becomes a necessity. This naturally links
with mathematical approaches to coarse graining and model
reduction, techniques that attempt to single out crucial macro-
scopic factors of complex systems and construct accurate but
reduced alternatives to the original full-system dynamics. In
this manner the extraction of useful model predictions can be
significantly accelerated.

One approach to achieving an accurate and efficient model
reduction that is particularly well suited for ABM is the
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recently developed equation-free (EF) framework [9–11]. This
framework circumvents the explicit derivation of macroscopic,
system-level equations for coarse-grained observables (statis-
tics and features) of the ABM; it is applicable when we
believe that such coarse-grained equations in principle exist,
yet they are not available in closed form. Our purpose in this
paper is to show how to implement the EF method to ABM,
obtaining reduced models and significantly accelerating the
computational extraction of system-level information from
the ABM.

The concrete topic we choose to illustrate this application
is an agent-based civil violence model originally proposed
by Epstein [12]. In that paper insurgency was characterized
by repeated outbursts of active citizen populations, arising
in a simulation in the form of a punctuated equilibrium, a
phenomenon widely observed across disciplines. From the
perspective of dynamics, it would be interesting to model
this punctuated equilibrium behavior via a few representative
coarse variables. Furthermore, if such a reduced model can
be obtained, the simulation time for the original civil violence
model may also decrease significantly. Since the dynamics of
any system in punctuated equilibrium is stochastic, we attempt
to build the reduced effective model in the form of a system
of stochastic differential equations (SDEs) in which one or
more terms are a stochastic process. The resulting solution
is then in itself a stochastic process [13]. A key difficulty in
constructing the reduced model as a multidimensional (here
two-dimensional) SDE lies in accurately obtaining the drift
and diffusion coefficients in the SDE as functions of the
coarse variables. As we will discuss in more detail below, we
will use two characteristic aggregate features of the original
model—the numbers of jailed and active citizens—as our
two coarse variables. We will also design a computational
procedure, i.e., the so-called lifting step in the EF framework,
that generates detailed agent states consistent with prescribed
values of the coarse variables, thus enabling an estimation
of the drift and diffusion coefficients. The particular lifting
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procedure we will use is inspired from observations of the
dynamics of the detailed ABM.

The paper is organized as follows. Section II briefly de-
scribes the original civil violence model derived from Epstein
[12] and showcases its characteristic dynamical behavior.
Section III provides our observations on relationships between
our two chosen coarse variables and the remaining system
variables. We then design the lifting procedure and show how
to estimate the drift and diffusion coefficients of the reduced
model through short bursts of appropriately designed ABM
simulation. Significant statistics of the temporal behavior
obtained through both the original and the reduced model
will be compared as well. In Sec. IV the Fokker-Planck
equation and the backward Kolmogorov equation, based on
our two-dimensional reduced effective SDE, will be solved to
obtain, respectively, the long-term stationary joint probability
density function (PDF) of the two coarse variables and the
mean exit time for the system (described by the two coarse
variables) to escape a given domain (leading to insurgency).
This mean exit time can be used to approximate the average
time between social upheavals. A summary will be presented
in Sec. V.

II. CIVIL VIOLENCE ABM AND SIMULATION

In Epstein’s original model [12] the dynamics of social
violence is simulated via interactions among citizens and
police officers that are placed on a square lattice grid. Each
position in the lattice grid can be occupied by one agent (citizen
or police officer) only. A citizen is defined as an agent with two
inherent characteristics: hardship H and risk aversion R. The
values of these characteristics are sampled from the uniform
distribution U (0,1) and fixed for each agent during the entire
simulation. Quantifying the perceived legitimacy of the regime
by a quantity L, a citizen will decide whether or not to rebel
based on the following rule: If H (1 − L) − RP > T , then the
citizen becomes active; otherwise, the citizen remains inactive
(quiet). In the above rule T is a (fixed) threshold value and P

is a (spatiotemporally varying) arrest probability that depends
on the current state of the agent neighborhood.

Active citizens may be arrested, and jailed, by the police
officers in their spatial vicinity. The arrest probability is
modeled in Ref. [12] as

P = 1 − exp[−k(C/A)v], (1)

where C and A are, respectively, the numbers of police officers
and active citizens in a circular neighborhood with radius v

(called vision v) and k is a constant. In this paper a different
model for the arrest probability, proposed in Ref. [14], is used:

P = 1 − exp[−k(C/A)v]
15∑
i=0

[k(C/A)v]i

i!
. (2)

The sigmoidal function given by Eq. (2) is capable of giving
rise to insurgency outbursts (see Ref. [14] for the justification
of this modification to the Epstein model and for references
documenting the occurrence of the punctuated equilibrium
phenomenon in this social context). The shapes of the arrest
probability from the above two models are compared in Fig. 1.
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FIG. 1. (Color online) Arrest probability from Eqs. (1) and (2)
(see the text).

Citizens and police officers constantly perform random
walks on the lattice by moving to a randomly selected position
in their size-1 Moore neighborhood if that position is not
occupied. Otherwise, they remain in their original position.
Police officers also have the ability to arrest the nearest active
citizen in their vision v′, jump to that citizen’s position, and
send the citizen to jail. The jail term of an arrested citizen is
variable; at every arrest it is initialized with a random integer
sampled over the uniform distribution U (0,Jmax). As citizens
complete their full term in the jail, they are released back to
the lattice and select random, unoccupied locations to reside.

Within each day (one step of the evolution algorithm is
taken to be one day), a citizen is allowed to move only
once, yet the police officers are more mobile and can move
and arrest M (>1) times (this is another modification of the
Epstein model proposed in Ref. [14]). Table I lists values of the
parameters used to simulate the model. Note that the parameter
k is found from the condition that P = 0.5 when M = A/C.
The boundary conditions in space are set to be periodic, which
means that an agent, after exiting the domain at one of the four
side boundaries, reenters the lattice from the opposite side.

A typical simulation procedure within a one-day step is
described by the flow chart in Fig. 2. Using the model
and the procedure described above, we perform multiagent
simulations and extract time histories of the numbers of jailed

TABLE I. Parameters used by the simulation (for notation see the
text).

Parameter Value

lattice size 100 × 100
citizen density 0.7
police officer density 0.01
T 0.1
L 0.8
Jmax 120
k 62.6716
v 14
v′ 14
M 4
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FIG. 2. (Color online) Flow chart for the model simulation
procedure within a one-day period.

and active citizens, as plotted in Fig. 3(a). The histories
show remarkable emergent dynamics exhibiting the so-called
punctuated equilibrium phenomenon [15,16]: Long periods of
quiescent, stable stasis are punctuated by almost instantaneous
outbursts of insurgency. Note, however, that this phenomenon
does not occur in the original Epstein model [12] with the arrest
probability P defined as in Eq. (1) as discussed in Ref. [14].
The observations are also plotted in a two-dimensional phase
plane projection [Fig. 3(b)].

III. COARSE GRAINING: SDE REDUCED MODEL
APPROXIMATION

The punctuated equilibrium shown in Fig. 3 is a feature
of the collective behavior of the citizen-police system whose

occurrence results from detailed interactions among all agents.
Table II lists inherent (fixed during a simulation) properties as
well as (time-varying) state variables for each type of agent.
The question arises naturally as to whether it is possible to
obtain a closed set of dynamic equations for the evolution
of only a few coarse variables. More specifically we ask if
such a set of dynamic equations can be written in terms of
only two such variables: the numbers of the jailed and the
active citizens. In other words, if the information we have is
the current value of only these two coarse variables, we query
if it is possible to obtain a model that allows us to predict
the value of these two variables in the future. To date, no
explicit set of equations, deterministic [ordinary differential
equations (ODEs)] or stochastic [stochastic differential equa-
tions (SDEs)], has been obtained analytically that accurately
describes the temporal evolution in terms of only these two
quantities.

If such a set of equations can in principle be derived, it
makes sense to expect that this reduced closed model will be
stochastic in the form of a SDE

dX1 = μ1dt + σ1dW1,
(3)

dX2 = μ2dt + σ21dW1 + σ22dW2,

where X1 and X2 are, respectively, the numbers of jailed
and active citizens and W1 and W2 are independent
Wiener processes. Then the drift and diffusion coefficients
μ1,μ2,σ1,σ21, and σ22 will, in general, be functions of X1 and
X2 only. To evaluate these functions for different values of
X1 and X2, the following equation can be used (see, e.g.,
Ref. [17]):

μi(x1,x2) = lim
�t→0

〈Xi(t + �t) − Xi(t)〉
�t

∣∣∣∣
X1(t)=x1,X2(t)=x2

,

(4)

Dij (x1,x2) = lim
�t→0

〈Xi(t + �t) − Xi(t) − μi�t〉〈Xj (t + �t) − Xj (t) − μj�t〉
�t

∣∣∣∣
X1(t)=x1,X2(t)=x2

.

The operator 〈·〉 represents ensemble average and Dij are the diffusion coefficients of the Fokker-Planck equation corresponding
to the SDE (3). In this paper the values of μi and Dij are estimated using

μi(x1,x2) ≈ 〈Xi(t + �t) − Xi(t)〉
�t

∣∣∣∣
X1(t)=x1,X2(t)=x2

,

(5)

Dij (x1,x2) ≈ 〈Xi(t + �t) − Xi(t) − μi�t〉〈Xj (t + �t) − Xj (t) − μj�t〉
�t

∣∣∣∣
X1(t)=x1,X2(t)=x2

by setting �t to a single day (�t = 1): The diffusion coefficients in Eq. (3) are then calculated via a Cholesky decomposition
[17,18]

σ1 =
√

D11, σ21 = D12

σ1
, σ22 =

√
D22 − σ 2

21. (6)
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FIG. 3. (Color) (a) Time history of the numbers of jailed and
active citizens extracted from the full agent-based simulation and (b)
their two-dimensional phase plane projection.

In Eq. (5) we need to compute the ensemble values of
Xi(t + �t) − Xi(t), with i = 1,2, for (in principle) any pos-
sible pair [X1(t),X2(t)] = (x1,x2). This can be achieved via
a properly designed coarse time stepper for Xi , with i = 1,2.
Starting with a pair of values for X1(t) and X2(t), we need
to be able to generate consistent detailed initial conditions
for the entire population of all agents (this is called the
lifting procedure in the equation-free framework). The entire
system then evolves over a short time interval �t via the

agent-based simulation and the values of the coarse variables
(the numbers of jailed and active citizens) Xi(t + �t) are
observed from the detailed simulation; this is the so-called
restriction step. Clearly, the restriction step is easy: At the
end of the full ABM simulation we simply count the numbers
of jailed and active citizens; the key difficulty lies in finding
an appropriate lifting procedure. In what follows a detailed
approach to implementing a reasonable lifting is presented and
discussed.

A. From macro to micro: Discussion of lifting considerations

Suppose that a simulation is suddenly interrupted and
from it we are given only the values (at that time) of the
two coarse variables: the numbers of jailed X1 and active
citizens X2 (and we also know the constant during the entire
simulation, i.e., the total number of citizens Ncitizen). A very
interesting and important question then becomes how one
can construct appropriate realizations of the entire detailed
ABM state (lattices of active as well as inactive citizens and
police officers, jailed citizens, and their jail term distributions)
that are consistent with the two coarse values. Appropriate
here means that whether we continue the original, interrupted
simulation or restart it from these artificially constructed
(lifted) states, the ABM dynamics will be effectively the
same (in probability). It might be tempting, just knowing X1

and X2, to initialize all Table II features for all agents in a
random and uncorrelated way; yet we find that in order to
reproduce the true system dynamics certain correlations that
have developed during the simulation must somehow be cap-
tured and retained when consistently initializing the detailed
ABM states.

It is worth pausing for a moment to consider how much
information must be reinjected, in this step, in the fine
scale model: Based on only two scalar numbers we must
assign hundreds and even thousands of agents (citizens and
policemen) with appropriate intrinsic properties on the lattice
as well as citizens in jail with appropriate jail terms. In
certain cases, if there is a large separation of time scales
in the problem, any errors one makes in these assignments
are quickly forgotten after a few simulation steps. In our
problem this is not the case: In addition to the values of
the coarse variables we will incorporate certain qualita-
tive observations we have made, based on extensive ABM
simulations, in our construction of an acceptable lifting
operator.

TABLE II. Inherent properties and state variables for the different types of agents (see the text). A check mark indicates that this type of
agent has a given property; the dash indicates that it does not.

Agent type H R Position Active status Residual jail term

active
√ √ √

active —
citizens
inactive

√ √ √
inactive —

citizens
jailed

√ √
— inactive

√
citizens
police — —

√
— —

officers
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FIG. 4. (Color online) (a) Partition of the H -R domain into three regions and (b) allocation of H,R pairs in each region to each citizen
type (active, inactive, and jailed).

We start by observing that the two-dimensional parameter
space of all citizens’ H and R values (which, as intrinsic
properties of the agents, are prescribed at the beginning of the
simulation and remain constant through it) can be divided into
three parts [Fig. 4(a)].

Region 1: H � T/(1 − L). Citizens in this region are
always inactive.

Region 2: H > T/(1 − L) and H (1 − L) − R > T . Citi-
zens in this region are always active or jailed.

Region 3: H > T/(1 − L) and H (1 − L) − R � T . Citi-
zens in this region may be active, inactive, or jailed. Whether
they are active or inactive depends on the value of the arrest
probability P , which varies in space and time.

With the denotation of the number of citizens in region 1
of the H -R parameter plane by Ni (these are fixed at the
beginning of the simulation), the allocation of subpopulation
types (active, inactive, or jailed) in each of the three regions
is shown in the chart of Fig. 4(b). There is only one unknown
quantity in these allocations: the value of A2, which is
constrained by A2 < X2 and N2 − A2 < X1. At the beginning
of every computational experiment, given the current values of
the coarse variables X1 and X2, we first select the value of A2 at
random. Given the prescriptions in Fig. 4(b), we calculate the
subpopulation count in each region. The available H -R pairs
are then randomly assigned to citizens based on the allocations
indicated in the chart. For example, all N1 pairs in region 1
are allocated to inactive citizens; N2-A2 pairs are randomly
selected from region 2 and allocated to jailed citizens; X2-A2

pairs are randomly selected from region 3 and allocated to
active citizens, and so on. Note that, because citizens in
region 2 are always active or jailed, we have X1 + X2 � N2.
In addition, since all citizens in region 1 never turn active
or go to jail, we have X1 + X2 � Ncitizen − N1 = N2 + N3.
Also accounting for the conditions X1 � 0 and X2 � 0, the
trajectories in the X1-X2 phase plane are always confined in
the simulation domain as shown in Fig. 5.

The police officer positions change drastically during an
outburst of rebellious activity; during the quiescent period,
however, when the population of active citizens is very close
to zero, the police officer positions show more (if not entirely)
homogeneous patterns. This can be seen in Figs. 6(b)–6(k),
where we divide the simulation lattice into a 10 × 10 grid and
plot populations of police officers in each grid cell.

The spatial heterogeneity of police officer position patterns
is evaluated via the following measure:

σ =
∑10

i,j=1(C(i,j ) − Chom,(i,j ))2

100
, (7)

where C(i,j ) is the number of police officers in cell (i,j )
and Chom,(i,j ) is the number of police officers in cell (i,j ) if
the police officers were homogeneously distributed. Clearly,
since there are 100 total 10 × 10 coarse cells in our 100 × 100
lattice and a total of 100 police officers, Chom,(i,j ) = 1 for
each of these coarse cells (i,j ), with i,j = 1, . . . ,10. The time
history of the heterogeneity measure σ is shown in Fig. 6(l).

The reason for the above temporal variation of the police
officer position patterns is that police officers move rapidly to
arrest active citizens in an outburst, but after the outburst is
suppressed, there are almost no citizens to arrest, so the police
officers move only in their size-1 Moore neighborhood. Their
position patterns therefore become nearly stationary between
two successive outbursts. As a culmination of the quick
outbursts of rebellions, these position patterns of police officers
appear to be able to effectively suppress almost all possible
subsequent insurgencies; we observe that they maximize arrest

FIG. 5. (Color online) Simulation domain in the X1-X2 phase
plane that contains all trajectories. The central white region stands for
the simulation domain. The surrounding green region is not accessible
by X1 and X2 pairs.
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FIG. 6. (Color) Snapshots and heterogeneity measures of police officer position patterns between time 0 and 200 in a single realization
of simulation. (a) Time history for populations of jailed and active citizens. Green vertical bars stand for the time steps at which the police
officer position patterns shown have been obtained. (b)–(k) Snapshots of police officer position patterns in a 10 × 10 grid of uniform cells. (l)
Heterogeneity measure σ of the police officer position patterns. Drastic police officer movement can be seen between times 4 and 20. More
homogeneous and stationary position patterns subsequently arise between times 20 and 200.

probabilities of potentially active citizens in region 3, leaving
only a small chance for an outburst to occur again. This is
also the cause for a long stable stasis between two adjacent
rebellions. To consistently generate police officer positions,
one possible way is to run the original simulation for some
time and record one snapshot of police officer positions within
the quiescent period where the number of active citizens X2 is
low, say, 5–10. This set of positions is then used to place police
officers for (X1,X2) pairs with X2 in a representative range,

say [0,8]. Police officer positions are generated randomly for
X2 values out of this range.

By monitoring several snapshots of the citizen positions
during an outburst, we observe that active citizens are almost
invariably located fairly homogeneously within a circle whose
radius r varies with time (see Fig. 7). We also observe that
the density of active citizens within this circle is (to a very
good approximation) equal to the density of potentially active
citizens [that is, citizens with internal properties H and R in
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FIG. 7. (Color) Two snapshots of active citizen position patterns
at times 1 and 3 in the simulation of Fig. 6. Red, cyan, and black
dots represent active citizens, inactive citizens, and police officers,
respectively. The active citizen positions can be approximately
enclosed by a circle with the radius r calculated from Eq. (8).

region 2 and 3 of Fig. 4(a)] over the entire lattice. Therefore,
the value of r(t) can be estimated by

r(t) ≈
√

X2(t)

π (N2 + N3)/L2
. (8)

When initializing citizen positions, given X2(t), we there-
fore place active citizens uniformly within a circle with
the appropriate radius r . Since the boundary conditions are
periodic in space, the center of the circle can be set (without
loss of generality) at the center of the lattice. We then place all
other inactive and nonjailed citizens, with properties H and R

in regions 2 and 3, randomly and uniformly outside this circle.
Finally all citizens with properties H and R in region 1 are
randomly and uniformly placed on the square lattice.

We also observe that the residual jail terms for jailed citizens
show interesting patterns. If the distribution of residual jail
terms is plotted separately for jailed citizens with properties in
region 2 and those with properties in region 3, we observe that
the distribution for region 2 jailed citizens is almost always
uniform over the domain [0,Jmax] [Figs. 8(a) and 8(b)]. The

distribution for region 3 jailed citizens, in contrast, is nearly
uniform, with a density of about 25 for the parameter set
(Table I) used in this paper [Figs. 8(c) and 8(d)]. The upper
limit of this latter distribution can thus be estimated from the
population of region 3 jailed citizens, i.e., X1 − (N2 − A2) in
Fig. 4(b).

B. Simulating the reduced model

Based on the above lifting procedure, we can construct
initial conditions for the entire system with the prescribed
distribution of inherent properties H and R and with the
state variables (positions, active status, and residual jail terms)
of all agents consistently initialized based on the numbers
of jailed and active citizens only. We can then proceed to
estimate the drift and diffusion coefficients in Eq. (3) via
brief computational bursts of ensemble realizations of the
original ABM and the formulas in Eqs. (4) and (6). The
ensemble size for performing the ensemble average in Eq. (4)
is set to 200. We estimate these coefficients as functions of
X1 and X2 on a two-dimensional grid with a spacing of
1 within the domain [0,300] × [0,20] and a spacing of 10
otherwise. Computations were not performed in the region
X1 + X2 < N2 since X1 and X2 cannot actively enter that
region. The coefficients for X1 and X2 values not on the grid
are interpolated from the closest three grid values through
a linear combination of linear (finite-element basis) shape
functions.

We have now obtained our effective reduced SDE (3); to
simulate it we also need boundary conditions in X1-X2 space,
which are set as follows:

if X2 < 0 set X2 = 0,

if X1 < 0 set X1 = 0, (9)

if X1 + X2 < N2 set X2 = N2 − X1.

The numbers of jailed and active citizens take only integer
values, so X1 and X2 are floored to their nearest inte-
gers after each temporal step in the stochastic simulation
of Eq. (3).

Figure 9 shows the time histories of X1 and X2 simulated
from the effective reduced SDE. They qualitatively resemble
closely Fig. 3 and clearly exhibit punctuated equilibria. We also
plot the distribution of the outburst times (the times between
two successive outbursts) and compare it to the one obtained
from the original ABM (Fig. 10). The first three moments of
the two distributions agree reasonably well (Table III). The
probability density of the numbers of jailed and active citizens
can now be computed by running the reduced simulation up to
very long times (say, 107 time steps); there is little difference
between the two simulation methods (Fig. 11). These small
differences do not affect the validity of the effective reduced
SDE to replicate the punctuated equilibrium state and its
statistics. Moreover, simulation of the SDE for 2 × 105 steps
takes about 45 min, whereas the original ABM requires over
17 h for the same simulation length (a difference factor of
more than 20).
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FIG. 8. (Color online) Distribution of residual jail terms for jailed citizens from regions 2 and 3 in Fig. 4(a): (a) distribution for region 2
jailed citizens at time 50, (b) distribution for region 2 jailed citizens at time 100, (c) distribution for region 3 jailed citizens at time 50, and
(d) distribution for region 3 jailed citizens at time 100.

IV. JOINT PDF OF THE COARSE VARIABLES AND MEAN
OUTBURST TIME: EFFECTIVE FOKKER-PLANCK

AND BACKWARD KOLMOGOROV PARTIAL
DIFFERENTIAL EQUATIONS

Now that an effective model in the form of a reduced SDE
has been obtained and validated, a number of mathematical or
computational tools, in the form of associated continuum par-
tial differential equations, become available for the extraction
of information about the system behavior and statistics.

The Fokker-Planck equation corresponding to the SDE (3)
describes the evolution of the joint PDF of the numbers of
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FIG. 9. (Color) Stochastic path of jailed and active citizens
obtained from the simulation of the effective reduced SDE (3) subject
to the boundary conditions (9).

jailed and active citizens P (X1,X2,t):

∂P

∂t
= −

∑
i

∂(μiP )

∂Xi

+ 1

2

∑
i,j

∂2(DijP )

∂Xi∂Xj

. (10)

Obtaining such a PDF directly from the SDE would require
a large number of sample paths, that is, many stochastic
realizations, each for time t , which can now be performed
through a single, deterministic PDE computation. As t → ∞,
P (X1,X2,t) approaches a stationary state [this can be visually
verified by the fact that as the number of simulation time
steps becomes larger, the joint PDF of (X1,X2) pairs appears
very similar to that shown in Figs. 11(a), 11(c), and 11(e)].
At stationarity the left-hand side of the above PDE vanishes,
leaving

−
∑

i

∂(μiP )

∂Xi

+ 1

2

∑
i,j

∂2(DijP )

∂Xi∂Xj

= 0, (11)

which we use to solve directly for the stationary distribution
of the numbers of jailed and active citizens.

We note that no boundary condition corresponding to the
boundary condition [Eq. (10)] of the SDE (3) is analytically
known for the Fokker-Planck PDE. In order to circumvent this
lack of explicit boundary conditions, we solve the Fokker-
Planck equation in a much larger domain (approximately, the
entire positive X1 half plane). The values of the drift and
diffusion coefficients in this extended domain come from
the following considerations. (a) We set the drift coefficient
μ2 to positive values in the region below the simulation
domain, as shown in Fig. 5; this would correspond to (X1,X2)
trajectories of the SDE instantaneously bouncing back to
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FIG. 10. (Color online) Comparison of the outburst time distributions from (a) the effective reduced SDE and (b) the original ABM.

the original domain if they attempted to exit it. (b) The
diffusion coefficients Dij in the same region have to be set
appropriately to avoid significant spurious oscillations when
Eq. (11) is solved. A large domain � = [0,300] × [−100,100]
encloses most observed trajectories. We set homogeneous von
Neumann boundary conditions for the Fokker-Planck PDE on
the boundary ∂�. The PDE now reads

−div(A∇P + P b) = 0 in �,
(12)

(A∇P + P b) · n = 0 in ∂�,

where ∇ represents the gradient and n stands for the outward
unit normal vector to ∂�. The matrix A and the vector b are
given by

A =
(−D11/2 −D12/2

−D12/2 −D22/2

)
,

(13)

b =
(

μ1 − 1

2

∂D11

∂X1
− 1

2

∂D12

∂X2
,μ2 − 1

2

∂D22

∂X2
− 1

2

∂D12

∂X1

)T

.

The positive values for the drift coefficients in the region below
the original domain are set to

μ1 = 0, μ2 = −X2 if X1 > N2, X2 < 0;
(14)

μ1 = 0, μ2 = N2 − X2 if 0 � X1 < N2, X1 + X2 < N2.

The diffusion coefficients in this region should have values
comparable to those of the drift coefficients in order to
avoid spurious oscillations. We adopt the idea of introducing
additional isotropic artificial diffusion terms [19] to the left-
hand side of Eq. (12) in the region � = {(X1,X2) : X1 >

N2,X2 < 0 or 0 � X1 < N2,X1 + X2 < N2}, i.e.,

D11 = D22 = −X2/2, D12 = 0

if X1 > N2, X2 < 0;

TABLE III. Comparison of the statistics (the first three moments)
of the outburst time distribution between the true (ABM) and reduced
(SDE) models.

Method Mean Standard deviation Skewness

SDE 611.3 478.1 2.171
ABM 714.4 723.7 1.893

D11 = D22 = (N2 − X2)/2, D12 = 0

if 0 � X1 < N2, X1 + X2 < N2. (15)

We use the same finite-element formulation as in Ref. [20]
to solve Eq. (12). Triangular elements on a uniform mesh are
used for the discretization [Fig. 12(a)]. The resulting stationary
P (X1,X2) is normalized so that

∫
�

P (X1,X2)dX1dX2 = 1.
Figure 12(b) shows the PDF computed from Eq. (12), whose
profile closely approximates that obtained from long SDE
simulations [Fig. 11(e)].

Another continuum PDE whose solution provides impor-
tant information for the behavior of stochastic solutions of
our effective reduced SDE is the corresponding backward
Kolmogorov equation. This equation can be used to obtain
the mean exit time τ (X1,X2), which is defined as the mean
time a path starting at (X1,X2) will take to exit a domain D in
X1-X2 space; it reads (see, e.g., Refs. [20,21])∑

i

μi

∂τ

∂Xi

+ 1

2

∑
i,j

Dij

∂2τ

∂Xi∂Xj

= −1. (16)

The domain D of interest here is [0,∞] × [−∞,500]. To
avoid numerical difficulties in solving the very large set of lin-
ear equations resulting from the finite-element discretization
of this entire domain, we confine the computational domain for
Eq. (16) as D̃ = [0,600] × [−50,500]. A Dirichlet boundary
condition is prescribed at X2 = 500 and homogeneous von
Neumann boundary conditions are used on the other sides of D̃.
The reason we can set homogeneous von Neumann boundary
condition at X2 = −50 is because X1 and X2 in the negative
X2 domain can instantaneously bounce back to the simulation
domain (Fig. 5), so the mean exit time for negative X2 will
be nearly uniform along the X2 direction. The reformulated
backward Kolmogorov equation is then given by

−div(A∇τ ) + b · ∇τ = −1 in D̃,

τ = 0 at X2 = 500, (17)

(A∇τ ) · n = 0 at X1 = 0, X1 = 600, X2 = −50.

We again use the finite-element formulation described in
Ref. [20] to solve Eq. (17). The drift and diffusion coefficients
at X1 close to N2 and X2 close to zero have important
contributions to the mean exit time τ (X1,X2) for all (X1,X2)
pairs. We thus choose to use a nonuniform mesh, which has a
(finer) size of 1 for 170 � X1 � 180 and 0 � X2 � 5 and
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FIG. 11. (Color) Comparison of the PDF of the numbers of jailed and active citizens between the true (ABM) and the reduced (SDE)
models. (a) Three-dimensional (3D) surface of log10 (PDF) simulated using the SDE, (b) 3D surface of log10 (PDF) simulated using the ABM,
(c) 2D projected image of log10 (PDF) simulated using the SDE [the region in the red box is zoomed in and shown in (e)], (d) 2D projected
image of log10 (PDF) simulated using the ABM [the region in the red box is zoomed in and shown in (f)], (e) zoomed-in image of the PDF
simulated using the SDE in the subdomain [150,300] × [−5,50], and (f) zoomed-in image of the PDF simulated using the ABM in the same
subdomain.

a (coarser) size of 5 elsewhere, to discretize the domain
D̃. Triangular elements are used to solve Eq. (17) on this
mesh [Fig. 13(a)]. The result for τ (X1,X2) is shown in
Fig. 13(b). The mean exit time starting from (X1,X2) =
(600,0) is approximately 510. When running many sample

paths of the effective reduced SDE we observe that the value
of X1 in the resulting time histories peaks at around 3250.
The drift coefficient μ1 at X2 = 0 is approximately −25 for
600 � X1 � 3250; this would suggest that the trajectory of
X1 at such large X1 values will mostly tend to go back toward
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FIG. 12. (Color) (a) Finite-element mesh for solving Eq. (12) and (b) resulting stationary PDF of the numbers of jailed and active citizens.

X1 = 600. Observing that an outburst (the rise to 3250) occurs
almost instantaneously, using the above numbers to estimate
the return to quiescence time by (3250 − 600)/25 = 106, and
using the obtained value of 510 for the mean exit time, we
obtain an estimate of 510 + (3250 − 600)/25 = 616 for the
mean outburst time, which agrees very well with the mean
outburst time obtained from the SDE-based distribution of
outburst times in Table III.

V. CONCLUSION

This paper explored the important issue of model reduction
as a tool for the effective extraction of information from
detailed, fine-scale agent-based models of social phenomena.
In particular, using an intricate civil violence ABM as our illus-
trative example, we showed how to obtain an effective reduced
model, here in the form of a two-degree-of-freedom SDE. An
important consideration in such attempts at model reduction
is the selection of the right variables: the (hopefully) small set
of observables from the ABM simulation in terms of which a
meaningful reduced description can in principle be obtained.
In our example we found that two such coarse variables, the

number of jailed citizens, and the number of active citizens
could be used to formulate an effective reduced model.

Through an appropriately designed lifting procedure, which
links variables between the reduced SDE (coarse) and the
original ABM (fine) level of description of our complex
system, and using the resulting coarse time stepper, we were
able to estimate the drift and diffusion coefficients in the
reduced effective SDE as functions of the two coarse variables
only. The sample paths of the numbers of jailed and active
citizens, as well as the statistics of the outburst time distribution
from the reduced SDE model, closely resemble those obtained
from the original (but significantly more time-consuming)
agent-based simulation. We also demonstrated how to use
continuum tools associated with the reduced SDE model,
in particular the corresponding Fokker-Planck and backward
Kolmogorov equations, to directly and efficiently extract
additional useful information for the model behavior: We were
able to directly compute the stationary PDF of the numbers of
jailed and active citizens as well as to estimate the mean time
between outbursts through the computation of mean exit times.

Equation-free techniques are intended to accelerate the
(computational) extraction of information from a fine-scale

FIG. 13. (Color) (a) Finite-element mesh for solving Eq. (17) and (b) mean exit times computed as a solution of Eq. (17).
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model (here an ABM interacting particle model). Coarse
projective integration, for example, exploits the smoothness
of the coarse behavior in time to compute with the ABM for
only short time intervals; techniques such as patch dynamics
exploit the smoothness of the coarse observables in space
in order to compute in only parts of a model domain. To
accurately gauge these savings one should also include the cost
of repeated lifting and restriction; to be fair, one should also
take into account the initial outlay of effort to determine what
good coarse variables might be. It should be said, however,
that certain tasks such as the location of unstable stationary
states, or transition points (saddles), would be essentially
impossible by direct simulation of the full ABM, so the amount
of computational savings is clearly both problem dependent
and, for a given problem, computational task dependent. The
conceptual benefits from understanding that a complex model
with many degrees of freedom can in principle be coarse
grained are many and obvious: The equation-free approach
is trying to capitalize on these benefits even when the coarse
equations we postulate exist are not explicitly available.

Let us reiterate that qualitative observations from long-
detailed simulations were incorporated in our lifting operator:
Obtaining good fine-scale initial conditions for so many agents
and states based on only two scalar values is a formidable
task even when we suspect that only two coarse variables
will suffice. It is important to note that the value of such a
model reduction techniques lies only in the computational
efficiency of extracting information from the ABM model;
the correctness of the extracted information is completely
determined by this original detailed ABM model. If the ABM is
physically accurate, then the reduction approach can speed up
the computational extraction of useful behavioral predictions
and statistics. If, in contrast, the ABM model is wrong, then
its (wrong) macroscopic consequences can be quickly found
and thus indirectly help modify the model. It is important to
observe that many of these reduction steps take the form of
a wrapper: an algorithm that can be wrapped around the best
agent-based model one has at hand. Changing the ABM, i.e.,
making it more detailed and/or more accurate, does not affect
these wrappers, so they can be used without change. In our case
the wrappers were the solvers of the two-dimensional SDE
and the Fokker-Planck equation, with the values of the drift
and diffusion coefficients in the equations provided by short

agent-based simulation and estimation. For different problems
and different types of tasks, these wrappers are motivated by
different types of coarse-grained models and algorithms. If the
coarse model is a deterministic ODE or PDE, initial-value
solvers (such as the forward Euler algorithm) become the
wrappers that help accelerate the temporal simulation of
the unavailable coarse model; fixed-point solvers (based on
matrix-free linear algebra such as Newton-Krylov generalized
minimal residual method) become the wrappers that help
locate coarse stationary states; and eigensolvers (such as
Arnoldi-type algorithms) become the wrappers that help
quantify the linearized stability of these states [22].

It is also important to note that in our illustrative example
we already had (from experience with the simulations) a
reasonably good idea of what good coarse variables might
be. For problems where such a priori knowledge of the right
macroscopic observables for the reduction is not available
we expect that modern data-mining (manifold learning)
techniques such as DIFFUSION MAPS [23,24] or ISOMAP [25]
can be used to suggest such good reduction coordinates. It is
worth noting that the structure of the equation-free approach
(and in particular the lifting step) does not allow easily for
coarse models with memory (e.g., rate-type models of neural
activity). One must instead discover additional state variables
(possibly higher-order spatial correlations) that embody the
same information we would have in a model with fewer
variables but also memory. Needless to say, it follows that
the longer the memory, the more additional state variables we
need (see the discussion in Ref. [26]).

We hope that the reduction approach we demonstrated here
can be extended to the coarse graining of more detailed models
that manifest the same punctuated equilibrium phenomenon in
the social sciences as well as in evolutionary biology.
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