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Abstract
Electrokinetic flows lead to promising utilization for mixing, concentration, pumping and have
applications from basic studies of convective flows to fully integrated lab on chip
developments. Despite these wide applications, electrothermal flow models have been scarcely
studied. We find that the model widely used by the microfluidic community does not fit
correctly the measured ac electrothermal fluid flows at higher voltages (10 Vpp and above). We
thus analyse both theoretically and experimentally the importance of electrothermal coupling
and the buoyancy effect. Numerical simulations are compared with micro-particle image
velocimetry measurements of the vortices. Our enhanced model successfully matches our
measurements over a wide range of conductivities and voltages.

(Some figures may appear in colour only in the online journal)

1. Introduction

Driving fluid flows by ac electrokinetics is a useful
method to produce three-dimensional convective flows and
study their mixing properties. Application of voltage
to embedded electrodes can produce a wide range of
mixing protocols. Particle-image velocimetry provides for
quantitative visualization from an Eulerian frame of such
flows, which leads to understanding of Lagrangian structures
that govern mixing. Various phenomena produced by ac
electrokinetic forcing—where the interaction between electric
fields and polarizable and/or conductive solution generates
flows—have been characterized, such as ac electro-osmosis
(ACEO) and ac electrothermal (ACET) effects [1]. In addition,
thermal effects produce buoyancy forces in the fluid. For most
electrode and channel designs, these flows appear in the form
of vortices used for mixing or pumping [2–4]. ACET involves
electric, thermal and fluidic phenomena simultaneously. More
than 10 years ago, based on small perturbation theory, Ramos
et al suggested an elegant ACET model, which has been widely
accepted by the community [5]. Recently, Sin et al pointed out
some differences between this model and their measurement at
high conductivities [6]. We propose an extension of the model
[5] that accounts for these discrepancies. We first demonstrate

1 This author contributed equally to this work as the first author.

that for high temperature elevation, electrothermal coupling
cannot be neglected. Then, we show that the buoyancy force
effect has to be taken into account in the case of our mesoscale
device. To evaluate the present model, we perform micro-
particle-image velocimetry (µPIV) measurements. Numerical
simulations of our enhanced model (18) successfully match
quantitatively our experimental measurements for a wide range
of conductivities and voltages.

2. Background theory

A charged body in an electric field tends to move along the
electric field lines and impart momentum to the surrounding
fluid. Electrothermal flows are due to the interaction of an
electric field with non-uniform permittivity and conductivity.
In such a system, a local free charge distribution must be
present if Gauss’s law and charge conservation are to be
satisfied simultaneously:


∇ × E = 0,

∇ · (εmE) = ρe, Gauss’s law,

∇ · (σmE + ρeu) +
∂ρe

∂t
= 0, charge conservation,

(1)
where σm is the solution conductivity, εm the solution
permittivity, u the fluid velocity, ρe the local charge density
and E the electric field.
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Local charge density, both free and bound, responds to
the applied electric field, resulting in a non-zero volume force
on the fluid. The electrostatic body force density acting
on molecules of an aqueous (incompressible) solution in the
presence of an electric field consists in two terms: Coulombian
and dielectrophoretic force [7]:

FET = ρeE − 1
2 |E|2 �∇εm. (2)

The convection term ρeu in (1) can be ignored since
the electric Reynolds number Reel = εmu0

σmL
� 1 (u0 and L

are the characteristic velocity and length). Moreover, as the
permittivity and conductivity of aqueous solutions depend on
temperature, T , the electrical equations become:




∇ × E = 0,

εm(T )∇ · E + E · ∇εm(T ) = ρe,

σm(T )∇ · E + E · ∇σm(T ) +
∂ρe

∂t
= 0.

(3)

Joule heating induces conductivity and permittivity
inhomogeneities in the solution. The temperature distribution
is given by the Joule heating equation:

ρm(T )cp(T )

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · (km(T )∇T ) + σm(T )|E|2, (4)

where km is the fluid heat conductivity, ρm the fluid density and
cp the fluid heat capacitance and σm|E|2 is the Joule heating
term. For small thermal Peclet number, PeT = ρmcpu0L

k
� 1,

thermal convection can be neglected in (4). Note that for
typical length L = 250 µm, PeT ≈ 1 for u0 = 500 µm s−1.

The fluid velocity, in such systems typically with low
Reynolds number (Re = ρmu0L

µm
� 1) is given by Stokes

equation:

ρm(T )
∂u

∂t
= −∇P + ∇ · (µm(T )(∇u + (∇u)T) + F ,

∇ · u = 0, (5)

where µm is the fluid viscosity and P is the fluid pressure. The
body force F is composed of the electrostatic body force FET

defined in (2) and the buoyancy force Fb = ρm(T0)(T −T0)βg,
where β = 10−3 ◦C−1 is the coefficient of thermal expansion
and g = −9.8 m s−2z is the acceleration of gravity, T0 is the
temperature of reference.

This system of equations was elegantly simplified
by Ramos et al [5], using a small temperature gradient
approximation, to permit easier simulations and understanding
of the velocity dependence on the applied voltage. In the
approximation of small temperature gradients, the changes in
fluid properties are assumed to be small. The electric field is
calculated as the sum of the isothermal solution and a small
perturbation:

E = E0 + E1,

with E1 � E0, and ∇ · E0 = 0. (6)

Considering an ac signal with angular frequencies ω, the
body force is given by evaluating ρe using an expression of

∇ · E1 in terms of E0 in the time-averaged ACET force (2):

〈FET〉 = εm(T0)

2

[
(cε − cσ )

∇T · E0

1 + (ωτ)2
E0

−1

2
cε∇T |E0|2

]
. (7)

For aqueous solutions, a linear approximation of the
temperature dependence of the electrical conductivity and
permittivity is adequate, σm(T ) = σm(T0)(1+cσ (T −T0)) and
εm(T ) = εm(T0)(1 + cε(T − T0)) where cσ = 1

σ(T0)
( ∂σ

∂T
)|T0 ≈

0.02 ◦C−1 and cε = 1
ε(T0)

( ∂ε
∂T

)|T0 ≈ −0.004 ◦C−1 [8], with T0

being a temperature of reference. The time τ = ε(T0)/σ (T0)

represents the charge relaxation time. The ACET flow is hence
estimated by solving the following set of equations:


∇2V = 0, E0 = −∇V,

km∇2T +
σm

2
|E0|2 = 0,

µm∇2u + 〈FET〉 = ∇P, ∇ · u = 0,

(8)

where V is the electrical potential and the medium properties
σm, µm and km are constants.

This system of equations can be solved sequentially since
with the approximation of small temperature gradients, the
electrical equation is not coupled with the thermal equation.
Assuming the applied voltage has a peak to peak amplitude
Vpp, the maximum temperature rise can be estimated by

�T ∼ σmV 2
pp

8km
, and the ACET fluid velocity is proportional to

V 4
pp. In [1], Castellanos et al discuss the relative importance

of buoyancy flows versus ac electrothermal flows [1]. The
scaling of the buoyancy force is in V 2

pp while the ACET force
is in V 4

pp. At low voltages, buoyancy can be the dominant
effect. Castellanos et al predict a transition between ACET
and buoyancy around L ≈ 300 µm. They estimate that for
σm < 10−1 S m−1, a frequency of f < 107 Hz, a characteristic
length L less than 100 µm and an applied voltage greater than
1 V, buoyancy effects are lower than Brownian motion. Thus
most papers presenting numerical simulations of the ACET
flows driven by microelectrodes (L ≈ 25 µm) do not need to
include buoyancy forces.

3. Enhanced model of ac electrothermal effect

We look into the validity of the standard model approximations
in details.

The total temperature T (t) solution of (4), for an applied
ac electric field can be written as T (t) = 〈T 〉 + T�(t) where
〈T 〉 is the solution of the time-averaged equation and T�(t)

is the time dependent solution [1]. After time averaging and
using the complex representation Ẽ of the electric field E with
frequency ω, E = Re[Ẽeiωt ], (4) becomes

∇ · (km∇〈T 〉) +
σm

2
|Ẽ|2 = 0. (9)

The time-averaged temperature rise due to Joule heating

can be estimated to be �T ≈ σmV 2
pp

8km
> 1 ◦C for Vpp = 10 V

and σm = 1 mS cm−1. The typical thermal diffusion time can
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be estimated by τdiff = ρmcpL2

km
. For a characteristic length L =

100 µm, τdiff is of order of 0.1 s. The temperature deviation
from the averaged temperature, T�(t) can be approximated to
be the solution of∣∣∣∣∂T�

∂t

∣∣∣∣ ≈ σm

2ρmcp

|E|2,

and hence |T�(t)| ≈ σm

4ωρmcp

|Ẽ|2. (10)

For an applied electric field with a frequency of 1 MHz,
the relative importance of T�(t) on the total temperature is
| T�

T
| ≈ 1

2ωτdiff
� 1. The temperature deviation, T� is thus

negligible in the temperature expression. However, the time
derivative of T� cannot be necessarily neglected likewise,

since | ∂T�

∂t
| ≈ σmV 2

pp

8ρmcpL2 ≈ �T
τdiff

	 1, for Vpp = 10 V and

σm = 1 mS cm−1. Similarly,
The electrical equations (3) can be rewritten as

−(σm∇ · Ẽ + Ẽ · ∇σm) = ∂ρe

∂t
= ∂εm

∂t
∇ · Ẽ + εm∇ · ∂Ẽ

∂t

+
∂Ẽ

∂t
· ∇εm + Ẽ · ∇

∂εm

∂t
. (11)

To understand the importance of each terms, we look at ratios
of the terms in ∂εm

∂t
on the right over the terms on the left:∣∣∣∣ 1

σm

∂εm

∂t

∣∣∣∣ =
∣∣∣∣ 1

εm

∂εm

∂T
τ

∂T�

∂t

∣∣∣∣ ≈ cε�T
τ

τdiff
and

∣∣∣∣ 1

∇σm
∇

∂εm

∂t

∣∣∣∣ =

∣∣∣∣∣∣∣∣
τ

1

σm

∂σm

∂T
∇T

1

εm

∂εm

∂T
∇

∂T�

∂t

∣∣∣∣∣∣∣∣
≈ cε

cσ

τ

τdiff
.

(12)

If τ
τdiff

� 1, then ∂εm
∂t

∇ · Ẽ is negligible compared to

σm∇ · Ẽ and ∇ ∂εm
∂t

· Ẽ is negligible compared to ∇σm · Ẽ.
Since τ

τdiff
� 1, in our experiments, the temporal

dependence of the temperature can be ignored in (11). We
obtain the electrical equation:

∇ · Ẽ = −∇σm + iω∇εm

σm + iωεm
· Ẽ. (13)

The equation for the real, ER, and imaginary, EI, parts of
Ẽ are

∇ ·
(

ER

EI

)
= −1

1 + (ωτ)2

(
a −b

b a

) (
∇T · ER

∇T · EI

)
(14)

where a = (cσ + (ωτ)2cε) and b = ωτ(cε − cσ ).
Expression (14) can be further simplified at low or high

frequencies.
If ωτ � 1 (which is the case for our experiments), (14)

can be reduced to

∇ ·
(

ER

EI

)
= −cσ

(
∇T · ER

∇T · EI

)
. (15)

If ωτ 	 1, (13) can be reduced to

∇ ·
(

ER

EI

)
= −cε

(
∇T · ER

∇T · EI

)
. (16)

In both cases, if no electrical boundary condition written
in complex notations introduces an imaginary part, then
EI = 0. The boundary condition representing the ac applied
voltage on the electrodes can be expressed using the complex
representation, Ṽ , with V = Re[Ṽ eiωt ] where Ṽ can have a
real and imaginary part. For most AC electrothermal devices,
there is either no time phase shift between electrodes or a
π/2 time phase shift between electrodes and consequently
Im[Ṽ ] = 0.

In terms of electrical potential (Ẽ = −∇Ṽ ), the electrical
equation becomes

∇2Ṽ = γ · ∇Ṽ , (17)

where γ = −cσ ∇T , if ωτ � 1, (and γ = −cε∇T , if
ωτ 	 1). The electrical potential is a solution of a convection-
diffusion equation with convection vector γ and diffusion
coefficient D = 1. The Peclet number for this equation is
given by PeET = cσ�T if ωτ � 1 (and PeET = cε�T

if ωτ 	 1). For a temperature elevation �T > 10 ◦C and
ωτ � 1, the voltage deflection by the gamma field, γ , becomes
non negligible as PeET > 0.2. Indeed, the ‘small temperature
gradient’ approximation of (6) is actually a small temperature
elevation approximation and is valid only if PeET � 1.

At high temperature in the fluid, the temperature
dependences of the fluid properties cannot be neglected either.
Aqueous solution dynamic viscosity, µm, is highly dependent
on temperature which can be described by a polynomial
equation [8]. Aqueous solution conductivity is inversely
proportional to the dynamic viscosity. For a temperature
rise of 10 ◦C, dynamic viscosity decreases, and the electrical
conductivity increases by about 20%. Thus their temperature
dependence is not negligible. Aqueous solution thermal
conductivity, km, only changes by 2% for a temperature
increase of 10 ◦C. Hence it can be assumed to be constant.

We hence model the ac electrothermal flows, assuming
ωτ � 1, using the following set of equations:


∇2Ṽ = cσ ∇T · ∇Ṽ , Ẽ = −∇Ṽ ,

∇ · (km∇T ) +
σm(T )

2
|Ẽ|2 = 0,

∇ · (µm(T )(∇u + (∇u)T)) + F = ∇P, ∇ · u = 0

(18)

and the boundary conditions presented in figures 1(c) and (d)
The force F can be either expressed as the ETH Force only
F = 〈FET〉 (enhanced model) or as the sum of ETH force and
the buoyancy force: F = 〈FET〉 + Fb (full enhanced model).

The time-averaged electrostactic body force is here
given by

〈FET〉 = εm(T0)

2

[
(cε − cσ ) (∇T · Ẽ)Ẽ − 1

2
cε∇T |Ẽ|2

]
.

(19)

4. Experimental setup

Experiments are performed in a 250 µm deep PDMS well.
The ac electric field is generated between three 35 µm thick
gold electrodes (figure 1). Each electrode is deposited above
1.1 mm thick PCB board (FR4). The separation between
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Figure 1. (a) Side view of the experimental set-up: flow velocities are measured in the horizontal plan at a height hz above the electrodes.
(b) Top view of the velocity flow in the horizontal plane. The plotted velocity u is spatially averaged above the two gaps. (c) Side view of
half of the device with the thermal limit boundaries. (d) Zoom of half of the microfluidic room with the fluid and electric limit boundaries.

electrode is 100 µm. The central 150 µm wide electrode is
grounded, while a sinusoidal voltage of 1 MHz with amplitude
ranging from 0 to 40Vpp (peak to peak) is applied to the
side electrodes. High frequency signal is chosen to limit low
frequency effects (e.g. electrolysis, ac electro-osmosis). The
microfluidic chamber is covered by a 150 µm thick glass cover
slip. The room temperature is set slightly below Troom =
23 ◦C. To homogenize the temperature in the horizontal plane
and to provide a reference temperature for the model, the
temperature under the PCB board is set at TPCB = 25 ◦C
via a thermoelectric device thereby keeping a temperature
difference (�T0 = TPCB − Troom ≈ 2 ◦C) small enough to
avoid natural convection when no current is applied

In this set-up the Joule heating creates a hot spot above
the center electrode and the interaction of the gradient of
permittivity and conductivity with the electric field generates
vortices. Flows ranging from 10 to 500 µm s−1 are measured
by µPIV [9] using a microscope Eclispe TE600 (Nikon,
Melville, NY, US) and two pulsed lasers MiniLase II-30 (New
Wave research, Fremont, CA, US) synchronized with a camera
PIVCAM 13.8 (TSI, Shoreview, MN, US). The velocities of
1 µm latex beads are extracted at hz = 190 or 250 µm above
the electrodes using a custom PIV interrogation software [10].

The particle images are taken using an infinity-corrected
objective lens (Nikon, M = 20, NA = 0.45). A relay
lens with magnification 0.5× was used to reduce the system
magnification to M = 10, thereby providing a larger field of
view. The depth of the PIV measurement is estimated to be
δz = ±7.5 µm [11].

The relatively large, dp = 1 µm, diameter particles
were chosen to dampen Brownian motion without exhibiting
significant DEP forces. The CCD camera pixel size is
dpix = 6.7 µm. Accounting for geometric, diffraction and
small variations from the object plane [12], the particle-image
diameter is estimated to be de ≈ 17.5–65 µm. This results in a
ratio of de

dpix
= 2.5–9.3. Following Prasad et al [13], for de

dpix
>

3–4, the uncertainly in locating the peak is approximately
1/10th of the particle-image diameter [14]. When projecting
back into the flow, the measurement uncertainty is δx ≈ de

10M
,

which corresponds to δx ≈ 3.8
100 = 38 nm.

The particle density was chosen such that there was
a sufficient number of particle images in an interrogation
window, without creating a very large background noise due
to out-of-focus particle images. In the current experiments,
we have approximately Np = 2 particles for each 64 × 64
pixel interrogation windows. At low voltage conditions,
Nens = 100 correlation functions were ensemble averaged
for each interrogation region. The resulting correlation
functions were fitted with Gaussian functions to determine the
particle-image displacement peaks. This interrogation strategy
significantly reduces pixel-locking bias and provides highly
reliable velocity data.

Because of the electrode configuration, the flow is 2D,
symmetric and perpendicular to the electrodes. The velocity
vectors is thus averaged over Ns = 50 independent velocity
vectors above each gap (figure 1(c)). Perturbation flows are
removed by subtracting the offset velocity field at zero.

The uncertainty in velocity primarily results from
unbiased errors due to uncertainty in peak location and random

4
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v ∼ V 4�2
pp

v ∼ V 4�7
pp

v ∼ V 5�2
pp

m
0

m
0

m
0

Figure 2. Plot of the fluid velocities for conductivities σm = 0.4, 2.5, 4.0 mS cm−1 according to the applied voltage Vpp. Experimental
measurement (black cross), standard model (8) without buoyancy force (black dotted line), standard model with buoyancy force (black
dotted–dashed line), enhanced model (red line), full enhanced model (blue dashed line), full enhanced model with thermal convection (thin
blue line with dots). A positive velocity corresponds to vortices flowing down above the central electrode whereas the negative velocities
corresponds to vortices flowing up above the central electrode. (a) shows the velocities at low voltages on a linear scale. (b) shows the
velocities at high voltages on a linear scale and a log–log scale.

walk of the particles due to Brownian motion [14]. Accounting
for ensemble correlation and spatial averaging, yields,

δuB =
√

2D

2�tNensNs
≈ 30 nm s−1, (20)

δuPD = 0.1de

M�t
√

2NensNs
≈ 40 nm s−1. (21)

These two errors are statistically independent and

contribute to the total unbiased error: δ =
√

δ2
uPD + δ2

uB ≈
50 nm s−1. The error is smaller than the root mean square
(rms) measured error (see errorbars in the figure 2) due to the
finite distribution of the actual flow.

5. Numerical simulations

Numerical simulations are performed using the commercial
finite element software Comsol Multiphysics v4.2a (COMSOL
Inc., Stockholm, Se) in a 2D model including PCB board,
electrodes, PDMS chamber and cover slip as described in
figures 1(c) and (d). Comparing the 2D thermal model to a
3D model of the full device, PCB heat conductivity kPCB and
the heat transfer coefficient hPCB have been increased by a
shape factor of 7 so as to take into account 3D heat dissipation.

The 2D domain is meshed using a fine triangular mesh of
over 13 000 elements with a growth ratio of 1.3. The highest
gradient of the electrical, thermal and fluid solutions appears in
the liquid chamber and in the electrodes for |x| < 500 nm s−1.

The maximum element size used in this region is 7 µm.
Elsewhere the maximum element size is 1 mm. A much coarser
grid is needed to observe a grid dependence.

The three equations, (18), were first solved sequentially
without coupling and with fixed coefficient (standard model
solution). This solution was then used as initial condition for
our enhanced model. The accuracy constraint was set by using
a 10−3 relative error.

To be compared with experiments, the velocities obtained
from simulation are averaged in a 2D region above each
gap, (x, z) ∈ [50 µm; 150 µm] × [hz − 7.5 µm; hz +
7.5 µm]. The results are shown in figure 2 for conductivities
σm = 0.4, 2.5, 4.0 mS cm−1. Following the velocity
measure described in figures 1(a) and (b), a positive
velocity u corresponds to vortices flowing down above the
central electrode (i.e. ACET). Conversely, a negative velocity
corresponds to vortices flowing up above the central electrode
(i.e. buoyancy).

The standard model was simulated with and without
buoyancy. The enhanced model was simulated with buoyancy
force using the temperature dependent function for the
electrical conductivity, σm(T ), and the dynamic viscosity
µm(T ) with no thermoelectric coupling (γ = 0) (enhanced
model). Then it was solved with the correct expression for the
γ field (full enhanced model). The measured velocities at high
voltage, for σm = 2.5, 4.0 mS cm−1, have amplitudes above
100 µm s−1 leading to a PeT > 0.5. We tested the effect
of thermal convection on our enhanced model (thin blue line
with dots). The error introduced by neglecting the convection

5
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term in our case is negligible compared with the error resulting
by the use of the standard model at high voltage and high
conductivities.

6. Results and discussion

The magnitude of the velocity is plotted against Vpp in
figure 2. Experimental measurements for conductivities σm =
0.4, 2.5, 4.0 mS cm−1 are plotted as black crosses. The
measurements at high applied voltages are fitted to a V k

pp curve.
For the low conductivity experiments, k ≈ 4 but at higher
conductivities where Joule heating is more significant, k tends
to 5. This shows a discrepancy between the standard model (8)
that predicts scaling of velocity as V 4

pp and the fluid velocity
measured. At high conductivity, and high voltage, the Joule
heating in the fluid is significant, which leads to a deviation of
the observed ac electrothermal fluid flow from that predicted
by the small temperature gradient approximation. Moreover,
we also observe that for low applied voltage, the vortices rotate
in the opposite direction as ACET flows (i.e. flowing up above
the central electrode) and have a dependence in V 2

pp.
According to figure 2, our experimental measures (black

cross) of the fluid velocities for all three conductivities fit the
numerical solution of our full enhanced model, (18), with
the buoyancy effect for the full range of applied voltages.
The standard model, (8), underpredicts velocities at high
voltage. Slight differences occur at low voltages, which can
be explained by the uncertainties due to the unbiased error in
the µPIV measurements (20), (21).

At low voltages, our µPIV measurement processing
permits to extract small velocities out of the Brownian motion.
The measured low negative velocities are explained by adding
the buoyancy effect to the model. The amplitude of the velocity
increases following a V 2

pp law till a critical voltage at which the
direction of the vortices change. As expected, the standard
model with buoyancy force fit at low voltages. The ratio of
ACET force over buoyancy can be approximated by

FET

Fb
≈ εm|cε − cσ |V 2

pp

8ρmβgL3
. (22)

At low voltage and mesoscale, the competition between ACET
and buoyancy effects is apparent. The critical voltages
at which ACET flows start dominating over buoyancy are
almost identical for all conductivities, thereby confirming
that the ratio of ACET force over buoyancy force (22) does
not depend on conductivity. The slight shift occurring at
0.25 mS cm−1 compared with the two other plots is explained
by the difference of PDMS height in the experiment for this
conductivity. However, at smaller scale, the critical voltage
will quickly decrease since the ratio of ACET over buoyancy
depends on L−3.

The strong thermoelectric coupling and the temperature
dependence expression of parameters µm and σm explain
the fluid velocity dependence in V k

pp with k > 4 for
high conductivity solutions at high voltages. The electrical
conductivity increases by 20% for a temperature rise of 10 ◦C
which will rise the temperature in the fluid by the same amount.

Figure 3. Contour plots of the electrical potential V and normalized
arrow surface of the gamma field, γ, in the fluid for low voltage
1 Vpp and high voltage 37 Vpp at high conductivity 8.5 mS cm−1. For
high temperature gradient, isopotential lines are advected away from
the center electrodes.

The dynamic viscosity decreases by 20% for a temperature rise
of 10 ◦C which will additionally rise the velocity.

The thermoelectric coupling changes the electrical
potential distribution according to the convection-diffusion
equation (17). Two contour plots of the electrical potential
superimposed with normalized arrow surface of the gamma
field, γ, are presented for σm = 8.5 mS cm−1 and two
different peak-to-peak voltages 1Vpp and 37Vpp (figure 3).
At high voltage, the electrical potential contours move along
the gamma field away from the center electrode according to
(17). This deflection can be understood as the advection of the
isopotential lines which occurs at high temperature where the
electrothermal Peclet number PeET is not negligible.

In our case, the variability of the conductivity and viscosity
has more influence to the change in power-law exponent
than the potential advection. With our mesoscale device
(L ≈ 100–200 µm), higher voltage is required to obtain
significant flows (Vpp > 10V , figure 2). Consequently
electrolysis usually occurs before any significant potential
advection. However, as high temperature is reached mainly
because of high voltages and weak thermal conductivity of
the PCB board, the temperature dependence of conductivity
and viscosity are significant. Conversely, for smaller devices
such as microelectrodes deposited on silicon wafer, (L ≈
10–20 µm), gradients may increase up to a factor of 10. In
that case, small spatial changes to the electrical potential have
a high impact on the calculations of the gradients, requiring to
take into account the advection of the potential. However, the
temperature rise may not be as significant since lower voltages
are required and the temperature is more easily dissipated.

Our approach of the ACET modelling successively
shows how the standard ACET model (8) is affected by
high Joule heating (corresponding to high conductivities
and high voltages). The full enhanced model presented
here using a electrical thermal coupling and temperature
dependent expression for the electrical conductivity and
dynamic viscosity should be used for a general temperature rise
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above ≈ 5 ◦C. Furthermore, the importance of the competition
between ACET and buoyancy driven convective flow at low
voltages was observed experimentally and theoretically.
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