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As building energy modeling becomes more sophisticated, the amount of user input and the number of parame-
ters used to define the models continue to grow. There are numerous sources of uncertainty in these parameters,
especially when the modeling process is being performed prior to construction and commissioning. Past efforts
to perform sensitivity and uncertainty analysis have focused on tens of parameters, while in this work, we
increase the size of analysis by two orders of magnitude (by studying the influence of about 1000 parameters).
We extend traditional sensitivity analysis in order to decompose the pathway as uncertainty flows through
the dynamics, which identifies which internal or intermediate processes transmit the most uncertainty to the
final output. We present these results as a method that is applicable to many different modeling tools, and
demonstrate its applicability on an example EnergyPlus model.
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1. Introduction

For the past 30-40 years, tools for energy simulation have evolved into a suite of detailed phys-
ical relations, both differential and algebraic, that describe the way various disturbances (from
weather, humans, control systems, etc.) influence the thermodynamic behavior of the building
itself. Within these equations, thousands of parameters exist, which are often assigned by best
educated guesses. Due to this, even though each component of the tool may be empirically
validated, its simulation output of a building design may be far from the performance of the
actual building. It is ironic that the time when the building simulation is most useful (e.g. the
initial design phase), the parameters of the simulation may be the least certain, which limits the
confidence of the simulation results.
To overcome these issues, uncertainty analysis is used to quantify how uncertainties in these

parameters influence the conclusions that are made from the model and quantify confidence
intervals of the output. In the case of building simulation, uncertainty analysis (UA) is a method
to resolve the dependability of model predictions due to uncertain user input (Moon, 2005). To
do this, a distribution is chosen for a number of inputs and numerous models are generated or
realised (model realisations) and simulated to determine statistics of important outputs.
Depending on the range of uncertainty in each parameter, the number of parameters, and

the required accuracy, numerous simulations are needed to determine the statistics. Whether
10, 100, or 1000 samples are desired within the range, it is important to decide exactly where
to choose these samples (an equidistant grid is often not the most efficient approach). Another
consideration is whether or not all parameters change individually (one at a time), or all at once
(which happens to be more efficient computationally). One of the ways the effectiveness of these
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samples is determined is to observe how statistics of the output vary or converge as the number
of samples increases. We present this convergence information for the output variables that we
analyze by displaying these trends as a function of the number of samples.
When choosing samples, there is a balance between computation time and accuracy, and there

have been many methods developed to create samples as efficiently as possible. The Monte
Carlo (MC) method is an approach which randomly samples the parameter space, but often
leads to clumps of samples in certain regions. The Latin hypercube sampling (LHS) approach
initially partitions the space into equally probable areas prior to taking random samples to
avoid this problem. Both of these approaches obtain convergence rates that are no better than
1/
√
N , where N is the number of samples. This type of parameter sampling has been performed

in building simulation in (Macdonald, 2009) where the performance of numerous Monte Carlo
sampling approaches were compared. In this study, it was concluded by studying a model with
2 uncertain parameters, only 100 samples are typically needed to obtain convergence. We find
that in a model with approximately 1000 uncertain parameters, after 100 samples we are within
15% of the statistics that would be calculated after 5000 samples (this convergence is discussed
further below). The accuracy at 100 samples may be sufficient for some conceptual studies while
more samples may be needed for greater accuracy. Latin hypercube sampling was also performed
in (Struck et al., 2009) to compare the performance of conceptual and detailed building models
during uncertainty and sensitivity analysis (discussed further below).
A more recent approach is to use a quasi-random sampling method (Saltelli et al., 2000), which

obtains a faster convergence rate bound of 1/N . This faster convergence rate means that fewer
simulations are needed to obtain the same accuracy that other methods offer, and because of
this, more uncertain parameters can be handled in the same amount of time. In our work we
use quasi-random sampling, and we are unaware of any previous use of quasi-random sampling
in the building simulation community.
The choice of parameter range and distribution type both influence the sampled behavior of

the building model which is to be studied. There have been many studies to determine the type of
distribution (normal, uniform, log-uniform, etc.) for typical parameter values in building models
(see (Dominguez-Munoz et al., 2009) where statistical properties of the thermal conductivity
of different materials were empirically identified, or (Cóstola et al., 2010) where uncertainty
in airflow rates were calculated, or the comprehensive report (Clarke et al., 1990), or thesis
(Macdonald, 2002) for other information). When the exact distribution is not known, a large
range is chosen and a uniform distribution is typically used.
In this study, since we are varying over 1000 parameters, we have not yet paired each of these

parameters with distribution types from literature (because it would be too time consuming). We
apply a uniform distribution to all nonzero parameters, and for those with zero nominal value, we
apply an exponential distribution so that the samples are centered closer to the nominal value of
zero. The most important parameters of the particular EnergyPlus building model are then iden-
tified and this information will allow us to go back and associate physically-based distributions
for these important parameters in future work (if they are different from the assumed uniform
type). In (Struck et al., 2009), there is a discussion between the different aspects of uncertainty
and sensitivity analysis in the detailed vs. conceptual design phase. It was found that during the
conceptual phase of building design, detailed tools are best suited for uncertainty and sensitivity
analysis. In this paper, we are using a detailed design tool that has only rudimentary parameter
information. In a sense, a portion of our approach is conceptual (parameters), and a portion is
detailed (modeling code and equations). Once one round of analysis is performed, further detail
could be gathered for the parameters that have been identified to be more important for further
analysis.
At times, uncertainty analysis is the sole statistical study in building system modeling (So-

ratana and Marriott, 2010), while in most cases, sensitivity analysis (SA) is also performed in
conjunction with UA. Sensitivity analysis is a method which identifies how uncertainty in an
output can be allocated to uncertainty in the input parameters of a process or model. There
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are three basic approaches to sensitivity analysis which differ in their complexity and accu-
racy; screening methods, local sensitivity methods, and global methods. Parameter screening
is a coarse one parameter at a time (OAT) approach that investigates extreme values of the
parameters and quickly identifies how they influence the output by ranking them in order of
importance. This method is good for studying models with a few uncertain parameters and
have been used in building systems studies including (Rahni et al., 1997) where 23 parameters
were selected from an original set of 390 using 136 simulations, and in (Brohus et al., 2009b)
which used pre-screening techniques to reduce the number of uncertain parameters in a model
from 13 to 7 prior to detailed sensitivity analysis. Similarly, in (Brohus et al., 2009a), a screening
method was used to reduce a parameter set from 57 down to 10, upon which an Analysis of Vari-
ance (ANOVA) based analysis (described below) was performed to identify the most sensitive
parameters of a single-family home simulation model.
Local methods use numerical approximations of local derivatives between the output and input

to estimate parameter sensitivity. There are a few different approaches to calculate this derivative
(finite difference, direct methods, using Green functions, etc.), but each method typically requires
OAT sampling. Again, this method is good for studying a small number of uncertain parameters,
and has been used extensively in the building system community where (Spitler et al., 1989)
studied family housing with 5 uncertain parameters, and in (Struck et al., 2009) where 10
parameters were studied using 200 simulations, and (Lomas and Eppel, 1992) which used various
local methods on a model containing 70 uncertain parameters. In the paper (Lam et al., 2008),
10 parameters were studied using OAT (43 realisations each) for 10 different building types, and
(Firth et al., 2010) who studied 27 parameters in a household model using local methods as well.
As the name implies, local methods obtain only approximate sensitivity results at different

locations in the sampled space. As illustrated in Figure 1, outputs of building system models
may be multi-modal, which implies that local methods may not be the best way to analyse this
data. To account for this, global methods calculate how the variance of the output varies due to
the entire sampled range of the parameter space. Unlike local methods, the global approach does
not assume linearity or monotonicity in the data or the process which produces it. The Morris
method is one example of a global sensitivity analysis approach wherein randomised matrices
are constructed with one parameter varying at a time. The Morris method has been used in
sensitivity analysis for many building simulations models as in (de Wit and Augenbroe, 2002)
where 100 realisations for 89 uncertain parameters was performed on room air distribution, or
(Corrado and Mechri, 2009) where 10 parameters were found to be significant out of the 129
which were varied using LHS and the Morris method. In (Heiselberg et al., 2009), the Morris
method was used to calculate the elementary effects for a building model with 21 parameters
(88 realisations were performed).
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Figure 1. Output distribution of office electricity consumption at peak load for 5000 parameter realisations (simulations
details in Section 2). The two peaks illustrate that local variance may not be the best way to characterize this distribution.
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Analysis of Variance (ANOVA) is a global method that decomposes the variance of an output
into variance that is based on single parameters and variance that is due to uncertainty in com-
binations of parameters. Sobol’ illustrated that a square-integrable function can be decomposed
into a sum of functions (see (Sobol’, 2001) and references within)

f(x) = f0 +

k∑
i=1

fi(xi) +

k∑
j>i

fij(xi, xj) + · · ·+ f12···k(x1, . . . , xk), (1)

where f(x) is an arbitrary function (e.g. a building system simulation), and xi are the k un-
certain parameters of this model. If the samples are generated in an orthogonal way, the Sobol’
decomposition of a sampled function is then unique. Due to this, the variance of a complicated
function can be represented as a sum of variances of first order and higher order functions (by
first order we mean it is a function of one parameter, second order means a function of two
parameters, and so on). The variance of the output (D) can then be decomposed as

D =

k∑
i=1

Di +

k∑
j>i

Dij + · · ·+D12···k, (2)

where Di are first order, and D12···k are higher order variances. A sensitivity index is then
calculated from this expansion by dividing by the total variance. The first order sensitivity
indices are Si = Di/D, the second order sensitivity indices are Sij = Dij/D and so on (there
are 2k − 1 terms in the decomposition). The magnitude of the sensitivity index for a particular
parameter quantifies how sensitive a particular output is to variation of that parameter.
The total sensitivity index STm

is the sum of the all sensitivity indices for a particular param-
eter. The mth total sensitivity index for parameter xm is

STm
= Sm +

k∑
j>i

i or j=m

Sij +

k∑
l>j>i

i or j or l=m

Sijl + · · ·+ S1···m···k. (3)

When the model is additive, and the higher order contributions are negligible, and the total
sensitivity is approximately equal to the first order sensitivity. If total sensitivity for a parameter
m is zero, it can be concluded that uncertainty in that parameter has no influence on the uncer-
tainty in the output. In this paper we present the total sensitivities (we have found that building
system models are primarily additive). Other ANOVA-based studies have been performed with
building simulation, for example in (Mara and Tarantola, 2008), ANOVA was used on a model of
a test cell using 35 parameters to classify the most important parameters for subsequent model
calibration, as well as in (Brohus et al., 2009a) which was described above. In (Capozzoli et al.,
2009) LHS and ANOVA was used to calculate sensitivity indices for 6 architectural parameters
using 100 realizations for 5 different buildings in Italy.
The drawbacks to ANOVA analysis is its computational cost and that it is based on variance

of the output alone. When the output of the simulation is not normally distributed, a variance-
based approach may not characterize the sensitivities well. As illustrated in Figure 1, it is not
uncommon that output from building simulation tools are not normally distributed. This can be
explained because the inputs are not always identically distributed and because of nonlinearities
in the model. Due to this, not only will there be issues with the ANOVA analysis, but convergence
is no longer guaranteed even after many simulations. To account for this, we use a meta-model
based sensitivity analysis, and present data of the output statistics as the number of samples
increases to illustrate convergence in our data.
Response surface methods (also known as a meta-model among other names) are often used

to generate approximate information in the place of full model data. High Dimensional Model
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Realisation (HDMR) (Li et al., 2002) is an approach that approximates the output surface in this
way. In this approach, a series of weighted orthonormal polynomials are used to approximate the
component functions of Equation 1. With this method, not only can you analyse the variance of
the output, the model response at parameter locations that differ from the sampling points can
also be identified.
The generation of a meta-model provides a means for additional sensitivity tools including

global derivative-based methods. As we mentioned above, screening-type methods approximate
local derivatives by simple finite difference type techniques. On the other hand, if an analytical
meta-model is developed, global derivatives can be calculated (Campolongo et al., 2007). Deriva-
tive based global sensitivity can be calculated from functions such as (Sobol and Kucherenko,
2009)

µm =

∫ ∣∣∣∣ ∂f

∂xm

∣∣∣∣ dx or νm =

∫ (
∂f

∂xm

)2

dx, (4)

where the integration is performed over all dimensions of the sampling points. Both of these
estimates are norms of the derivative of the meta-model (f), where µm is an L1 norm, and νm
is an L2 norm of the derivative of f .
Wrapper applications have been created to facilitate numerous, or even parallel simulations

in building system software such as EnergyPlus (Zhang, 2009). In addition to this, there are
numerous existing UA / SA software packages that are available either for purchase or under
open license agreements (e.g. Simlab (Simlab, 2010)). There are even some HDMR software
packages available, for instance (Ziehn and Tomlin, 2009) which provides a GUI-based software
tool, but is limited to the use of polynomials up to 10th order (see (Saltelli et al., 2010) for other
algorithms that can be implemented). Many studies that perform SA use polynomials for the
response surface (e.g. (Li and Rabitz, 2006) and (Mara and Tarantola, 2008)).
We have developed our own approach that best addresses the unique dynamics found in

building system simulation. As we mentioned above, we use quasi-random sampling to generate
the samples and subsequent models to be simulated. To calculate the response surface, instead
of using polynomials, we use support vector regression as described in (Smola and Scholkopf,
2004) using Gaussian kernels. In this work, we calculate both ANOVA and L2 norm derivative-
based sensitivities, while for brevity we only present L1 norm (µm) derivative-based sensitivities.
The software we use to compute the samples and calculate sensitivities is available at Aimdyn
GoSUM Software (2010).

1.1 Sensitivity Decomposition

All literature that we are aware of relating to both uncertainty and sensitivity analysis inves-
tigates the behavior of a system from an input-output viewpoint alone. For example, envelope
parameters of a building may be varied to investigate how they influence the total energy used in
a building. For output variables, heating and cooling consumption has been studied in (Capoz-
zoli et al., 2009), (Brohus et al., 2009b), (Brohus et al., 2009a), and (Heiselberg et al., 2009).
In (Spitler et al., 1989) energy performance was studied. Energy rating was studied in (Corrado
and Mechri, 2009), while other efforts investigate other environmental variables such as CO2

concentrations in (Firth et al., 2010), or room air temperature (Mara and Tarantola, 2008).
Studying the input-output behavior of building system models is insightful, but more informa-

tion can be gained by decomposing the path in which uncertainty passes through the dynamics
of the model. For example, the energy consumed by a building may be derived from a combina-
tion of many different HVAC subsystems. It is insightful to identify which of these subsystems
contribute most to the uncertainty at the building level. In particular, it is useful to have this
type of information when trying to calibrate the model to better fit data, or to design optimizing
controllers. We present this sensitivity decomposition in Section 5.
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1.2 Outline

The remainder of this paper describes analysis performed on an example EnergyPlus model.
Section 2 describes the test building and the EnergyPlus model of it. Within this description
we describe the parameters which are varied and the outputs that we analyse. In Section 3 we
present how uncertainty in a few key outputs of the model is influenced by different levels of
uncertainty in the input. After this, we perform sensitivity analysis in Section 4, and present the
decomposition in Section 5. The paper concludes with a summary of the findings and methods.

2. Modeling and Simulations

2.1 Simulation Platform

A whole-building EnergyPlus simulation model representing the performance of the envelope,
HVAC, lighting, water, and control systems was developed in EnergyPlus (Crawley et al., 2000),
which is a whole-building simulation program developed by the United States Department of
Energy. It models heating, cooling, lighting, and ventilating processes, as well as water usage in
buildings, and includes many simulation capabilities such as time steps of less than one hour,
modular systems, multizone airflow, thermal comfort, water use, and natural ventilation. An
EnergyPlus model takes as input a description of the building (e.g., geometry, materials, roof
type, window type, shading geometry, location, orientation), its usage and internal heat loads
(as a scheduled function of time), and the HVAC equipment and system description (e.g., chiller
performance, air and water loop specifications), and then computes the energy flows, zonal
temperatures, airflows, and comfort levels on subhourly intervals for periods of days to years.
There are other similar simulation packages, and the methods in this paper can be applied to
most of them.

2.2 Building Specifics

For this study, we chose building number 7230 (the Atlantic Fleet Drill Hall) at the Naval Station
Great Lakes, Great Lakes, Illinois which is owned by the United States Department of Defense.
The EnergyPlus model is being used as the reference model for automated commissioning of
this building and at the time of this study, it was being calibrated with realtime data (ESTCP,
2010). The drill hall is a two-storey facility with a drill deck, offices, and administrative rooms.
The gross area of this building is approximately 6430 m2 (69 K ft2).
The drill hall HVAC system consists of four airside subsystems and two separate waterside

subsystems. The drill deck is supplied by two variable-air volume (VAV) air handling units
(AHU) with heating and cooling capability, and a classroom on the second floor is served by one
VAV air handling unit. Operation of these units depends on the occupancy of the drill deck space.
Double-walled sheet metal ductwork with a perforated liner and drum louvers distribute the air
throughout the space. The office and administrative area is served by one VAV air handling unit
with VAV terminal units (with hot water reheat). The chilled water system consists of two 110-
ton air-cooled rotary-screw type chillers with fixed-speed primary pumping and variable-speed
secondary pumping. Heating is supplied from the existing campus-wide steam system through a
steam-to-water heat exchanger. The hot water serves unit heaters, VAV box reheating coils, and
air handling unit heating coils. There is an instantaneous steam-to-domestic hot water generator
for domestic hot water service. The server room and communication service room are served by
dedicated duct free split systems. Table 1 lists major HVAC equipment used in building 7230.
A distributed Direct Digital Control (DDC) control system is installed in this building which

monitors all major environmental systems. Building electric and water meters are also read by
the DDC system. Operator workstations provide graphics with real-time status for all DDC
input and output connections.
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Table 1. Table 1 Major Equipment Used in Building

7230.
Equipment Number
Duct free split system 2
Air cooled screw chiller 2
Variable volume air handler unit 4
Suspended unit heater 7
Cabinet unit heater 3
VAV box with hot water reheat coil 8
Pumps 7

2.3 EnergyPlus Model

The EnergyPlus geometry interface used for this analysis is DesignBuilder (DesignBuilder, 2010)
which allows for a graphical display of all the three-dimensional geometry. After the geometry
is entered into DesignBuilder, an IDF file (the file in which EnergyPlus uses) with all geometry
information is exported, and then the IDF Editor is used to create the HVAC system model.
The EnergyPlus model used in this study is version 4.0 (build 4.0.0.024), and the weather

file used in this simulation is the TMY3 (typical meteorological year) data for Chicago, O’Hare
airport. The structure of the HVAC system in the EnergyPlus model is a series of modules
connected by air and water fluid loops that are divided into a supply and a demand side. Ener-
gyPlus assumes ideal controls for all the subsystems and components. Within the HVAC system
capacity, the demand side is always balanced with the supply side. If due to the limited capacity,
the supply side cannot provide enough output, EnergyPlus will correct the zone temperature
based on the actual output from supply side.
In order to keep the size of the model and computation time manageable, zoning simplifications

were made when entering the building geometry. The building model consists of 30 conditioned
zones (12, 12, and 6 zones for the drill deck, first, and second floors respectively). Some zones
represent a physical room in the building while other zones represent adjacent multiple rooms
operating under similar energy usage/requirements. Each zone includes an ”internal mass” that
represents the thermal storage capacity of the room(s) (e.g., interior walls, furnishings, books,
etc.).

2.4 Parameter Variation and Simulation

Almost all numeric parameters in the EnergyPlus input file were selected as uncertain, a few
of the parameters were chosen to be held constant in the analysis like architectural parameters
(size, shape, and orientation of the building), as well as parameters related to equipment perfor-
mance curve coefficients. Categorial, or text-based parameters (e.g. whether certain equipment
is auto-sized, or other calculation methods), as well as the weather data was also not changed.
The nominal values for parameters are chosen from 1) as-built architectural, mechanical and
control drawings (e.g., thermal properties of envelope and windows); 2) actual building oper-
ation (e.g., lighting and AHU operation schedules); and 3) manufacturer’s catalog data (e.g.,
chiller coefficient of performance (COP)).
The resulting 1009 parameters were varied ±%20 of their nominal value (we also include

data illustrating how uncertainty is influenced when this range is only ±%10). For nonzero
parameters, a uniform distribution was imposed, while for parameters with zero nominal value
(and which are constrained to be positive), an exponential distribution was used to keep the
mean of the sampled values closer to nominal. Many of the parameters were constrained; for
instance, fractional parameters with a nominal of 0.9 would be varied between 0.72 and 1.0. The
heating and cooling setpoints had to be limited to 6.5% variation because otherwise they would
overlap, which created conflict in the dual-setpoint management. All parameters were varied
concurrently using a quasi-random approach. In this way, 5000 model realisations were created
which were ultimately parallelized and simulated on a 184-CPU Linux cluster.
From the numerous outputs that are available, 10 different outputs were chosen for analysis as
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Table 2. Consumption outputs chosen for the analysis.

Number Name
1 DistrictHeating:Domestic Hot Water Energy [J]
2 DistrictHeating:HVAC [J]
3 Electricity:Facility [J]
4 DistrictHeating:Facility [J]
5 InteriorEquipment:Electricity [J]
6 InteriorLights:Electricity [J]
7 Cooling:Electricity [J]
8 Pumps:Electricity [J]
9 Fans:Electricity [J]
10 Chillers:EnergyTransfer [J]

listed in Table 2. These outputs are related to building energy consumption, including electricity
and steam (i.e. district heating) from the facility level, to subsystems such as pumps, fans,
equipment, and lights. Annual total energy consumption and peak demand (hourly peak in one
year or season) were two metrics used in this study. We chose these outputs because they best
reflect the drill hall building performance and energy end-use pattern. In Section 5 we limit
our analysis to two outputs; output Facility Electricity and District Heating. These two outputs
characterize all of the energy consumed by the building.
The convergence behavior of these ten consumption outputs is presented in Figure 2 (when

parameters were varied by ±20%). The trends in this figure were obtained by calculating the
percent difference between the mean at the ith simulation and the mean after 5000 simulations.
The percentage of absolute value of the error for each of the ten annual consumption and peak
demand outputs were then averaged to create two convergence response curves. In this figure,
the slope at which the error converges is calculated using a least squares fit and included in
the legend. Note that the exponent of the line fit for the annual consumption and peak demand
variables is on the order of -0.7 (using the quasi Monte Carlo approach). This same exponent for
a 1√

N
convergence rate, which is common for standard Monte Carlo methods, would be -0.5.

3. Uncertainty Analysis

In this section, we present the uncertainty (both in actual and normalised units) for 10 output
variables (Figures 3 and 4) and the actual distributions of two consumption variables (Figure 5)
for both annual consumption and peak demand.
As illustrated in Figures 3, 4, and 5, the variance and coefficient of variation (standard de-

viation divided by the mean) increases by increasing the uncertainty in the input parameters.
Specifically, in most cases, the increase in a factor of two on the input parameter standard de-
viation amplifies the uncertainty in the output by a factor of two as well, indicating linearity in
the dynamics.
The way in which the model either amplifies or attenuates the uncertainty in the input is also

evident in Figures 3 and 4. The coefficient of variation (in percent) for a uniform distribution
with a range of 10% of its mean is about 6.0 and about 11.0 for a range of 20%. We find that
cooling electricity is always amplified the most (whether considering the peak or sum from the
year). The uncertainty in the peak pump usage is significantly amplified as well. The uncertainty
in energy consumption from both interior equipment and interior lights is attenuated by about
a factor of two in both the peak and sum usages. All other output variables have uncertainty
which is similar to the input uncertainty.

4. Traditional Sensitivity Calculation: Input-Output Results

After gaining insight into how uncertainty in input parameters influences the uncertainty in the
outputs, we now proceed to calculate the sensitivity indices. We first calculate the sensitivity
indices for the two main seasonal outputs of the model; the district hot water consumption in
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Figure 2. Convergence properties of the averaged relative error in mean of 10 outputs. The averaged relative error in mean
(with respect to the values after 5000 simulations) is presented for both peak demand and annual consumption.

winter (October 15 to April 14), and the facility electricity in summer (April 15 to October 14).
In the next section, we will also calculate sensitivity of these outputs along with intermediate
sensitivities for variables throughout the energy consumption process. Figure 6 illustrates the
aggregated total sensitivity indices for the 10 parameter types described in Table 3.
To generate these numbers, the total sensitivity (calculated from µm in Equation 4) for each of

the 1009 parameters was calculated. If the sensitivity index was less than 0.08, it was considered
negligible and ignored (138 of the 1009 parameters remained after this selection). We came
up with this number by observing a cutoff in the number of influential parameters vs. the
sensitivity index amplitude. All parameters with an sensitivity index greater than this were then
collected and labeled with respect to their parameter type (as in Table 3). Once collected, the
total sensitivities for each parameter type were then added to generate a single number for the
aggregated total sensitivity between a parameter type and an output type. It should be noted
that since we are using derivative based sensitivities (Equation 4), the summation may be larger
than 1.0.
Starting from the bottom of Figure 6, we highlight the parameters which contribute most to

the parameter type for those outputs.

(1) For the Heating Source parameter type, two parameters are influential, but one parameter
stands out as dominant: HW loop max temperature (hot water loop maximum tempera-
ture).

(2) For the Cooling Source parameter type, out of nine total, two parameters stand out the
most: Chiller on at OAT (chiller is on when outside temperature reaches a threshold)
and CW loop temp schedule (chilled supply water temperature setpoint schedule).
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(3) The Air Handling Unit parameter type is comprised of 22 parameters in this case, but is
predominately defined by Min OA schedule fraction (minimal outside air fraction) and
SAT reset temp (AHU supply air temperature setpoint).

(4) The Primary Mover: Air Loop parameter type contains 20 parameters which are domi-
nated by AHUS1 and AHUS2 fan parameters (fan efficiency and pressure rise).

(5) The Primary Mover: Water Loop parameter type only has five significant parameters in
it. The most dominant of these parameters are the Rated pump consumption parameters,
while one pump efficiency, from the primary chilled water pump does play a small role.

(6) The Terminal Unit parameter type is comprised of nine parameters, with approximately
equal contributions from Zone max flow rate (drill deck) and VAV max flow rate (of-
fice area) parameters.

(7) The Zone external parameter type has 14 significant parameters in it. There is no small
set of parameters which stand out in this set. The contributions come from material types
in building construction as well as ground surface temperature and ground reflectance.

(8) The parameter type Zone internal contains 48 significant parameters, with People

schedule (fraction of number of people) and Lighting Schedule (fraction of lighting
load) parameters dominating this group.

(9) The Zone setpoint parameter type has 3 significant parameters. These are associated with
high-use time periods of the Zone cooling setpoint and one Zone heating setpoint

schedules. They influence the facility electricity and district hot water respectively.
(10) The Domestic hot water parameter type has 6 significant parameters. The Water

equipment target temperature is a large contributor, followed closely by four parame-
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Figure 4. Uncertainty in the 10 consumption variables (annual consumption) when varying the input parameters by either
10% or 20%.

ters that define the domestic hot water use fraction.

Figure 6 also shows that 1) summer electricity peak demand is mainly influenced by cooling
source (i.e., chiller); 2) summer electricity consumption is mainly influenced by the air loop
primary mover (i.e. supply and return fans); 3) winter district heating peak demand is mainly
influenced by the AHU (i.e., AHU heating coils, and the AHU supply air temperature setpoints);
and 4) winter district heating consumption is mainly influenced by domestic hot water (i.e., water
usage) and the AHU (i.e., AHU heating coils, and the AHU supply air temperature setpoints).

5. Sensitivity Decomposition

The standard input-output sensitivity analysis described above is useful to identify which pa-
rameter type influences the two facility-wide consumption variables the most. In this section, we
further break this down to illustrate how uncertainty in the input parameters influences inter-
mediate consumption variables which eventually make up the total consumption (either district
hot water, or building electricity).
In Figure 7, the sensitivity decomposition for facility electricity is presented. In this plot, the

nodes are subsystem energy variables, which are described in Table A1, and the connecting
wires are sensitivity indices. For instance, in Figure 7 the right most node is the electricity use
at the building level. The 5 nodes to the left of this are the 5 major electrical subsystems in the
building (lighting, interior equipment, fan total, pump total, and cooling). To the left of this,
an even greater decomposition is presented for electrical consumers (individual fans and pumps,
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Figure 5. Example distributions for cooling(top) and heating (bottom) when varying the input parameters by either 10%
or 20%. The black dot is the nominal simulation results.

etc.). The left-most axis contains the input parameter types which influence the entire dynamics
of the model (as in Table 3). For each node, a circle is drawn around it which represents the
coefficient of variation. There is no appropriate scale for these circles, they are intended to be
viewed relative to other circles in the figure.
The thickness of the wires corresponds to the magnitude of the sensitivity index. Where there is

no wire, the sensitivity index is negligible, and the thickest wires represent the strongest influence
between the variables. The decomposition was only performed for seasonal consumption as the
peaks for each consumption variable at the subsystem and component level did not always occur
at the same time of year.
As seen in the decomposition of facility electricity consumption, the uncertainty in facility

electricity is driven mostly by uncertainty in fan and cooling source (chillers) electricity con-
sumption. These in turn are influenced mostly by AHU1S and AHU2S fan consumption, and
CHILLER1 electricity consumption respectively. This makes sense because 1) AHU1 and AHU2
are serving all the zones in the drill deck which is the largest area in the building (80%), and 2)
CHILLER1 was set as the primary chiller in the model.
Similar analysis has been performed on the district water consumption (Figure 8). In this

figure, we find that uncertainty in the total hot water consumed is spread relatively evenly
between domestic and HVAC consumption. Beyond this, we find that uncertainty in the domestic
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Table 3. Parameter Types.

Number Type Note: examples in this Drill Hall system 1
1 Heating source District heating system (normal capacity, maximum hot water

system temperature, loop flow rate, etc.)
2 Cooling source Air cooled chiller (chiller reference capacity, reference COP,

reference leaving chilled water temperature, etc.)
3 AHU AHU (supply air temperature setpoint, cooling coil design flow

rate, design inlet water temperature, design inlet air temper-
ature, etc.)

4 Primary Mover: Air loop Fans (efficiency, pressure rise, etc.)
5 Primary Mover: Water loop Pumps (rated flow rate, rated head, rated power consumption,

etc.)
6 Terminal unit VAV boxes (maximum air flow rate, minimum air flow frac-

tion, etc.), maximum zonal flow rates
7 Zone external Building envelope(material thermal properties such as con-

ductivity, density, and specific heat, window thermal and op-
tic properties, etc.), outdoor conditions (ground temperature,
ground reflectance, etc.)

8 Zone internal Internal heat gains design level (lighting load, number of peo-
ple, people activity level, etc.), schedules

9 Zone setpoint Zone temperature setpoint (space cooling and heating set-
points)

10 Domestic hot water Domestic hot water usage (peak flow rate, target temperature,
etc.)

0 0.5 1

Heating source

Cooling source

Air Handling Unit

Primary mover: Air loop

Primary mover: Water loop

Terminal unit

Zone external

Zone internal

Zone setpoint

Domestic hot water

Sum of Total Sensitivities
Peak Demand

0 0.5 1
Sum of Total Sensitivities

Annual Consumption

 

 

District HW
Facility Elec.

Figure 6. Sensitivity indices for two facility consumption variables.

hot water is driven by only one variable (the domestic water equipment usage variable), while for
the HVAC hot water usage, uncertainty is driven by three large heating coils in AHU1, AHU2,
and AHU3.
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Domestic hot water
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Figure 7. Sensitivity decomposition of the electricity consumed by the facility (total consumption over the summer months).
The labels on the vertical axis describe the parameter types, while the other node/levels of this plot are tabulated in Table
A1.

Param. 3 2 1
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Primary mover: Air loop

Primary mover: Water loop

Terminal unit

Zone external
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Zone setpoint

Domestic hot water

District Hot Water (Total Consumption, Winter Months)
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Figure 8. Sensitivity decomposition of the district hot water consumed by the facility (total consumption over the winter
months). The labels on the vertical axis describe the parameter types, while the other node/levels of this plot are tabulated
in Table A2.

We would like to highlight that the sensitivity analysis in no way quantifies the amount of
consumption at each node. That is, the data in Figure 7 or 8 does not imply that the nodes
on the third level which have no wires leading to level two do not contribute significant portion
to the total consumption. It specifically identifies when uncertainty in these variables influences
uncertainty in variables on other levels.
This decomposition process highlights which subcomponents of the model need the most en-

gineering attention when deriving design specifications for building construction, or in model
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calibration (if the building has been built and the model needs to be tuned). Based on the re-
sults from this study, we were able to better calibrate the drill hall EnergyPlus model to match
acquired data.

6. Summary

In this paper we presented uncertainty analysis of an EnergyPlus model with a large number of
uncertain parameters. In addition to this we presented input-output sensitivity analysis which
illustrates which parameter type influences the uncertainty in the two main outputs of the
building model. Taking this a step further, we performed a decomposition to quantify which
intermediate processes were contributing the most to this uncertainty. This type of analysis,
including the decomposition, is valuable for identifying which subcomponents of a model need
more attention during building design or model calibration. In addition to this, this method
highlights subsystems within a building that would have the most impact on energy reduction
when optimizing building operation (e.g. for diagnostics and control).
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Appendix A. Variables captured in the nodes of Figure 7 and Figure 8

Table A1. Variables for the nodes of the sensitivity decomposition of Facility Electricity (Figure 7).

Level 3 Level 2 Level 1
Equipment: Office area [J]
Equipment: Drill Deck [J]
Lights: Office area [J]
AHU4RFAN:Fan Elec. Cons. [J]
AHU3RFAN:Fan Elec. Cons. [J]
AHU2RFAN:Fan Elec. Cons. [J] InteriorLights:Elec. [J]
AHU1RFAN:Fan Elec. Cons. [J]
AHU4SFAN:Fan Elec. Cons. [J] Int.Equip.:Elec. [J]
AHU3SFAN:Fan Elec. Cons. [J]
AHU2SFAN:Fan Elec. Cons. [J] Fans:Elec. [J] Facility Elec. [J]
AHU1SFAN:Fan Elec. Cons. [J]
DHWPUMP:Pump Elec. Cons. [J] Pumps:Elec. [J]
PRIMARYPUMP:Pump Elec. Cons. [J]
HWPUMP:Pump Elec. Cons. [J] Cooling:Elec. [J]
SECONDARYPUMP:Pump Elec. Cons. [J]
CHILLER2:Chiller Cond Fan Elec. Cons. [J]
CHILLER2:Chiller Elec. Cons. [J]
CHILLER1:Chiller Cond Fan Elec. Cons. [J]
CHILLER1:Chiller Elec. Cons. [J]
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Table A2. Variables for the nodes of the sensitivity decomposition of District Heating (Figure 8).

Level 3 Level 2 Level 1
Water Use Equipment Heating Energy
Baseboard10 HW Consumption [J]
Baseboard9 HW Consumption [J]
Baseboard8 HW Consumption [J]
Baseboard7 HW Consumption [J] DHW Energy [J]
Baseboard6 HW Consumption [J]
Baseboard5 HW Consumption [J] DistrictHeating:Facility [J]
Baseboard4 HW Consumption [J]
Baseboard3 HW Consumption [J] HVAC [J]
Baseboard2 HW Consumption [J]
Baseboard1 HW Consumption [J]
Water Heating Coil4 HW Cons. [J]
Water Heating Coil3 HW Cons. [J]
Water Heating Coil2 HW Cons. [J]
Water Heating Coil1 HW Cons. [J]
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Cóstola, D., Blocken, B., Ohba, M., and Hensen, J., 2010. Uncertainty in airflow rate calculations
due to the use of surface-averaged pressure coefficients. Energy and Buildings, 42, 881–888.

Crawley, D.B., Pedersen, C.O., Lawrie, L.K., and Winkelmann, F.C., 2000. EnergyPlus: Energy
Simulation Program. ASHRAE Journal, 42, 49–56.

de Wit, S. and Augenbroe, G., 2002. Analysis of uncertainty in building design evaluations and
its implications. Energy and Buildings, 34, 951–958.

DesignBuilder, 2010. Design Builder Building Simulation [online]. Gloucestershire, UK: Design-
Builder Software Ltd.. Available from: http://www.designbuilder.co.uk/ [Accessed 19 July
2010].

Dominguez-Munoz, F., Anderson, B., Cejudo-Lopez, J., and Carrillo-Andres, A., 2009. Uncer-
tainty in the thermal conductivity of insulation materials. In: Eleventh International IBPSA
Conference, 1008–1013.

ESTCP, 2010. Automated Continuous Commissoning of Commercial Buildings. Department of
Defense Environmental Security Technology Certification Program Project SI-0929. .

Firth, S., Lomas, K., and Wright, A., 2010. Targeted household energy-efficiency measures using
sensitivity analysis. Building Research and Information, 38 (1), 25–41.

Heiselberg, P., et al., 2009. Application of Sensitivity Analysis in Design of Sustainable Buildings.
Renewable Energy, 34, 2030–2036.

Lam, J., Wan, K., and Yang, L., 2008. Sensitivity analysis and energy conservation measures
implications. Energy Conversion and Management, 49, 3170–3177.

Li, G. and Rabitz, H., 2006. Ratio Control variate method for efficiently determining high-
dimensional model representations. Journal of Computational Chemistry, 27, 1112–1118.

Li, G., et al., 2002. Global uncertainty assessments by high dimensional model representations
(HDMR). Chemical Engineering Science, 57, 4445–4460.

Lomas, K.J. and Eppel, H., 1992. Sensitivity Analysis Techniques for Building Thermal Simu-
lation Programs. Energy and Buildings, 19, 21–44.

Macdonald, I., 2002. Quantifying the effects of uncertainty in building simulation. Thesis (PhD).
University of Strathclyde, Department of Mechanical Engineering.

Macdonald, I., 2009. Comparison of sampling techniques on the performance of Monte Carlo
based sensitivity analysis. In: Eleventh International IBPSA Conference, 992–999.

Mara, T. and Tarantola, S., 2008. Application of Global Sensitivity Analysis of Model Output



January 14, 2011 11:42 Journal of Building Performance Simulation EisenhowerSentToPublisher

18 REFERENCES

to Building Thermal Simulations. Building Simulation, 1, 290–302.
Moon, H., 2005. Assessing Mold Risks in Buildings under Uncertainty. Thesis (PhD). Georgia
Institute of Technology.

Rahni, N., Ramdani, N., Candau, Y., and Dalicieux, P., 1997. Application of group screening to
dynamic building energy simulation models. Journal of Statistical Computation and Simula-
tion, 57 (1), 285–304.

Saltelli, A., Chan, K., and Scott, E.M., 2000. Sensitivity Analysis. Wiley.
Saltelli, A., et al., 2010. Global Sensitivity Analysis, The primer. Wiley.
Simlab, 2010. Simlab: A professional tool for model developers, scientists and professionals, to
learn, use and exploit uncertainty and sensitivity analysis techniques [online]. European Com-
mission: Unit of Econometrics and Applied Statistics of the Joint Research Centre. Available
at: http://simlab.jrc.ec.europa.eu/ [Accessed 4 May 2010].

Smola, A. and Scholkopf, B., 2004. A tutorial on support vector regression. Statistics and Com-
puting, 14, 199–222.

Sobol’, I., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and computers in simulation, 55, 271–280.

Sobol, I. and Kucherenko, S., 2009. Derivative based global sensitivity measures and their link
with global sensitivity indices. Mathematics and Computers in Simulation, 79, 3009–3017.

Soratana, K. and Marriott, J., 2010. Increasing Innovation in Home Energy Efficiency: Monte
Carlo Simulation of Potential Improvements. Energy and Buildings, 42 (6), 828–833.

Spitler, J., Fisher, D., and Zietlow, D., 1989. A Primer on the Use of Influence Coefficients in
Building Simulation. Building Simulation ’89 Transactions, 299–304.

Struck, C., Hensen, J., and Kotek, P., 2009. On the Application of Uncertainty and Sensitivity
Analysis with Abstract Building Performance Simulation Tools. Journal of Building Physics,
33 (1), 5–27.

Zhang, Y., 2009. ”Parallel” EnergyPlus and the Development of a Parametric Analysis Tool. In:
Eleventh International IBPSA Conference, July 27-30.

Ziehn, T. and Tomlin, A.S., 2009. GUI-HDMR - A software tool for global sensitivity analysis
of complex models. Environmental Modelling and Software, 24, 775–785.


