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a  b  s  t  r  a  c  t

As  building  energy  models  become  more  accurate  and  numerically  efficient,  model-based  optimization
of  building  design  and  operation  is becoming  more  practical.  The  state-of-the-art  typically  couples  an
optimizer  with  a building  energy  model  which  tends  to  be  time  consuming  and  often  leads  to  suboptimal
results  because  of  the  mathematical  properties  of  the  energy  model.  To  mitigate  this  issue,  we  present
an approach  that  begins  by  sampling  the  parameter  space  of  the building  model  around  its  baseline.  An
analytical  meta-model  is  then  fit  to  this  data  and  optimization  can  be  performed  using  different  opti-
mization  cost  functions  or optimization  algorithms  with  very  little  computational  effort.  Uncertainty
and  sensitivity  analysis  is  also  performed  to identify  the  most  influential  parameters  for  the  optimiza-
nergyPlus tion.  A  case  study  is  explored  using  an  EnergyPlus  model  of  an  existing  building  which  contains  over 1000
parameters.  When  using  a cost  function  that  penalizes  thermal  comfort  and  energy,  45%  annual  energy
reduction  is  achieved  while  simultaneously  increasing  thermal  comfort  by  a factor  of  two.  We  compare
the optimization  using  the  meta-model  approach  with  an  approach  using  the EnergyPlus  model  inte-
grated  with  the  optimizer  on  a smaller  problem  using  only  seven  optimization  parameters  illustrating
good  performance.

© 2011  Elsevier  B.V.  All  rights  reserved.
. Introduction

Currently, model-based analysis of buildings is predominately
sed for code compliance such as LEED certification, and some
inor scenario studies in architectural and engineering firms, or

n the research or academic community in a more detailed con-
ext. As building energy models become more advanced, accurate,
nd easy to use, model-based building design is becoming more
idespread. In order to be useful in an industrial context, the design

ycle iteration time for a building design and operation scenario
DOS1) must be very fast. This cycle includes not only simulation
ime, but analysis of its results and action based on these results.
One form of analysis that is currently performed with building
nergy models is optimization, which investigates how the DOS of

 building influences key measurables of the building (e.g. thermal

∗ Corresponding author.
E-mail addresses: bryane@engr.ucsb.edu (B. Eisenhower), ONeillZ@utrc.utc.com

Z. O’Neill), NarayaS@utrc.utc.com (S. Narayanan), vfonoberov@aimdyn.com (V.A.
onoberov), mezic@engr.ucsb.edu (I. Mezić).
1 We  use the term design and operation scenario (DOS) to describe the architec-

ural design of the building as well as specific strategies and considerations for its
peration (e.g. scheduling).

378-7788/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.enbuild.2011.12.001
comfort, energy consumption, life cycle costs) and seeks a DOS that
meets some optimal combination of these (often weights are used
to indicate different levels of importance of each variable in the
cost function). In the building energy modeling literature, there are
examples of this procedure using methods ranging from finding
this optimal in a detailed but ad hoc way  (e.g. [1,2]) to advanced
numerical methods that automatically find the optimum which are
reviewed below.

Numerical optimization of energy models first arose in the
1970s and continues to be an active research area. The anatomy of
the optimization process typically includes an optimizer and a func-
tion which it is trying to optimize. This function is usually an energy
model, that once given a certain building DOS, a cost or objective
value is produced through numerical simulation (usually for an
entire year of typical weather and environmental conditions). Soft-
ware environments for optimizing building energy models exist for
this purpose that are either specific to an energy simulator [3],  or
more generic [4].  The goal of the optimizer is to intelligently deter-
mine new DOSs (based on previous attempts), in such a way that
the final DOS has converged to an optimal value.
In the building energy modeling community, derivative-free
(DF) optimization routines [5],  which do not require gradient infor-
mation from the simulation model are typically used. The reason
that these methods are used is because derivative information, if

dx.doi.org/10.1016/j.enbuild.2011.12.001
http://www.sciencedirect.com/science/journal/03787788
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btained numerically from the model, is often not accurate because
 continuous or differentiable objective function does not exist
see [6–8]). This often results in the optimizer converging to local
ptimal points, for example in [9] where many optimal design alter-
atives were found in the optimization process. There are many
pecific types of DF methods and in the building energy commu-
ity, two types: genetic algorithms and pattern search are often
mployed in the buildings community and are discussed below.

Genetic algorithms (GA) are a class of mathematical optimiza-
ion approaches that imitate natural biological evolution in which
he process of inheritance, mutation, selection, and crossover is uti-
ized to determine the best solution. The likelihood of converging
o a suboptimal solution (local minima) is reduced in this method
ecause the search considers a population of solutions and not a
escent along a gradient. Examples of the use of GA-based opti-
ization in building energy modeling include [10] which seeks an

ptimal building envelope design based on life cycle costs, or [9]
hat studied a case where building form (12 orientations), mate-
ials (16 choices) and HVAC operation (6 load control steps) were
ptimized. Similarly, Wright et al. [11] used a GA-based optimizer
o optimize energy cost and occupant comfort by varying 63 control
ariables (for a single day). A simple model of a single zone with an
VAC system operating open loop using only outside air was  used

or this example.
The pattern search (PS) method is another valuable DF optimiza-

ion technique that searches along coordinates in an intelligent way
o find the minimum of an objective function. This method has been
sed in [12] where the software GenOpt [4] was used to investigate
ow 10 parameters (9 parameters relating to the hydronic system,
nd 1 envelope parameter) influence energy consumption, capital
ost, and comfort. Additionally, in [13] 30 design variables were
ptimized using pattern search (Hooke–Jeeves) through the simu-
ation of the model approximately 5000–10,000 times. In this case,
he model was a simple set of algebraic equations that did not take
ery long to simulate.

In a recent and very thorough study [14], both GA and PS based
ethods (with some modification) were compared on a large set

f test functions as well as an EnergyPlus building energy model.
he conclusion was that both methods find a similar objective func-
ion value (energy consumption), but with a different combination
f parameter values. This highlights that it is not always the best
ractice to use only one optimizer on a problem that has multiple
inima. This is especially relevant if the building model is complex

nd the number of optimization parameters is large.
In most of the cases listed above, the number of evaluations of

he numerical simulation of the energy model is in the 1000s for a
ingle cost function (another set of simulations would be needed
f for instance the weights in the cost function were changed even
lightly). As discussed in [10], the computational cost limits the
bility to study large sets of optimization parameters. For instance,
n [12], approximately 400 simulations were needed to find the
ptimal of 10 parameters, and this sequence was repeated 10 times
or different water supply temperatures. In addition to this, in [14]
he number of model simulations needed to find an optimum was
pproximately 3000, but 5 runs were performed to capture the
nfluence of different initial conditions (seeds) of the optimizer, and
n [7],  13 parameters were optimized taking on the order of 600
xtensive EnergyPlus simulations. Because of this, time becomes
n important issue and in many cases, a full model of a building
created in one of many simulation packages like eQUEST, Energy-
lus, or TRNSYS) is avoided and a simpler model is created (as in
15,13], among others).
To alleviate some of the issues with optimization time, in this
aper we present a method that begins by characterizing the build-

ng energy model by varying all of the input parameters of the
odel within a certain range around its baseline design. Once these
uildings 47 (2012) 292–301 293

simulations are complete, a meta-model (a ‘model of a model’) is fit-
ted to the simulated data and an optimization algorithm is applied
to either this model or a reduced form of it. This approach has been
performed in other building energy studies to predict energy usage
[16] and to perform sensitivity analysis [17]. The kernel method was
also used in [18] where over a year’s worth of building energy data
was used to create an accurate model that is capable of predicting
excursions that may  be due to faulty conditions.

In the meta-model scenario, the optimization itself takes on
the order of a minute on a typical desktop or notebook computer.
Because of this, many cost functions, optimization algorithms, or
subsets of optimization parameters can be investigated without
performing additional and exhaustive simulations.

A schematic of this approach is presented in Fig. 1, and the
following sections discuss in detail each step. Following this, we
demonstrate this approach using an EnergyPlus model as a case
study including the results for multiple optimization scenarios
(different cost functions, different parameter sets, and different
optimizers). Most of the steps in this flowchart were performed
using the integrated Global Sensitivity and Uncertainty Manage-
ment and Optimization software [19]. We compare the meta-model
approach with the traditional full order model approach in one
case where the number of parameters in the optimization set
is small (7 optimization parameters), and illustrate that compu-
tation time is decreased while maintaining similar convergence
properties.

2. Approach

2.1. Repeated sampling

The goal of the sampling is to expand the prediction of a building
energy model from one single baseline DOS to many cases around it.
This is done by varying the parameters of the model within a range
around their baseline value. There are multiple ways to specifically
define this variation, including the Monte Carlo method, which ran-
domly selects these samples. Unfortunately, when doing this, the
parameter space is sampled non-uniformly. To avoid this issue, we
use a quasi-Monte Carlo (deterministic) sampling approach that
provides samples that are more uniformly distributed throughout
the range of interest (see [20,21]). A benefit of selecting samples in
this way is that convergence rates are faster, which means that less
samples are needed to gain the same accuracy when compared to
random sampling approaches [20].

To define the sampling, a parameter range is defined as well
as the type of distribution for this variation (e.g. Gaussian, Uni-
form, Log-normal). In this study, we are varying 1009 parameters,
and although there does exist information in the literature about
typical distribution types and ranges for different classes of param-
eters in building energy models, it would be very time intensive to
go through every parameter and assign this specific information. In
light of this, a uniform distribution was chosen and a corresponding
range (±20%) of the baseline parameter value. When the baseline
value is zero, an exponential distribution is used so that more sam-
ples are adjacent to the baseline value itself. Once the samples are
created, multiple models are realized for these sample values and
simulated (preferably using parallel computation).

Once the simulations are complete, the data for each simu-
lation is processed to aggregate key features of the behavior of
the model for that particular DOS. Key features may include peak
energy demand, annual energy consumption (broken down by end

use), comfort, life cycle cost, etc. In this paper, we  present results
that analyze averaged predicted mean vote (PMV) of thermal com-
fort over all zones during occupied times, as well as annual energy
consumption of the facility. PMV  is an empirically developed scale
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Fig. 1. Flowchart of the meta-model based optimization and analysis approach, th

f typical comfort levels ranging from −3.0 as cold, to +3.0 as hot
ith 0.0 being neutral (most comfortable) [22].

.2. Meta-model calculation

The optimization experiments that will be performed depend on
 meta-model that captures the essential characteristics of a build-
ng energy simulator while retaining a tractable functional form.
he accuracy of the meta-model is important and because of this,
e use a data characterization and regression technique based on

tatistical learning principles. Statistical (or machine) learning is
 classification of algorithms that attempt to identify characteris-
ics within data without prior knowledge of these characteristics.

achine learning has many previous applications ranging from
bject detection, classification of biological data, speech or image
ecognition, to many of the technologies related to Internet or
atabase searching.

There are many specific approaches in machine learning (e.g.
rtificial Neural Networks, Genetic Programming, Bayesian Net-
orks), while one approach that leads itself nicely to model
tting is Support Vector Machines [23]. When implemented for

unction fitting or regression analysis, Support Vector Regression
SVR), provides a means to fit data using very few unknown
arameters that can be found by solving an optimization prob-

em which does not have multiple local minima. In [16] SVR was
sed to identify the performance of predicted energy consump-
ion of four buildings in Singapore, and different parameters of
he SVR were varied to quantify the performance of the algo-
ithm.

The SVR approach attempts to find a function (a meta-model)
hose deviation from data is at most a small constant (e.g. ε), which

n turn sets up a region where errors are accepted. An optimization
roblem is then formulated with a parameter that trades com-
lexity in the identified meta-model (the number of its support
ectors) and tolerance to deviations greater than ε. In this way, the
istorical process of choosing regressors in statistical analysis is
oth automated and optimized. The optimization can be written
s a constrained quadratic program for which many optimization
pproaches are available. The SVR approach is similar to learning
n Artificial Neural Networks (ANN), while one significant differ-
nce is that for ANN many local optimal solutions may  exist for
he optimization problem, while in SVR, only one global solution
xists. Along these lines, Brown et al. [18] noted that the kernel
ethod is superior in performance to Neural Networks and utilizes
arameters of physical significance.
Along with a few parameters in the SVR algorithm architecture

hat determine the closeness of fit, a Kernel is chosen as a basis for
his fit. Many different kernels exist (e.g. linear, polynomial).
ed line indicates an optional pathway. The numbering is for reference in the text.

Here we use Gaussian kernel, which is the most commonly
used one. In general, kernel selection depends on many things
including size and characteristics of data and we  will not explore
all the details of this selection process in this manuscript. Fur-
ther details and freely available code downloads can be found at
http://www.support-vector-machines.org.

2.3. Sensitivity analysis

Given a large set of input–output sampled data from the model,
uncertainty analysis (UA) can be used to identify how parameter
variation influences the statistics of key outputs, while sensitivity
analysis (SA) isolates which of these parameters influences output
variation the most. The reason that we perform SA in the context of
optimization is to identify which parameters are most influential to
the optimization process. That is, it is usually useful to know which
parameters influence the objective function the most so that they
can be chosen as optimization variables.

To perform sensitivity analysis, we calculate total sensitivity
indices (see [17,24]) for each parameter using a derivative-based
approach [25]. The sensitivity index is an indicator of how influ-
ential a parameter (or combination of parameters) is on the
output uncertainty. In this case, this index quantifies how sensi-
tive an optimization result is to each parameter which facilitates
many aspects of the optimization process including model reduc-
tion.

2.4. Meta-model reduction

The meta-model that is generated is dependent on numerous
parameters (in this case 1009) which offer useful insight, but adds
unnecessary complication in some optimization cases. For instance,
it may  be mathematically interesting to find the global minimum
of a building DOS (for energy consumption as the cost for instance)
based on all parameters, but it is unlikely that a designer will
have the luxury to manipulate all of these model parameters in
practice.

To alleviate this concern, a reduced form of the meta-model is
created by omitting the influence of a chosen set of parameters
when fitting the meta-model. There are different ways to choose
which parameters to remove. One way is to remove parameters in
the model that have small total sensitivity indices. In doing this,
the optimization will be performed using a subset of parameters
that have the most influence on optimization cost. Another obvious

approach is to choose a subset of parameters that have specific
physical significance to the designer (e.g. all material properties, all
chiller performance properties, or all HVAC schedule parameters)
even if only some of these parameters have significant influence

http://www.support-vector-machines.org


 and B

o
f
m
s

2

a
c
o
i
o
a
i
r
c
c
m
d
o
f
o
c

m
1
p
o
c
o
a
s
o
t
fi
a
c
u
m
S
t
r
c
a
t

m
m
o
b
c
i
m

o
r
a
m
w
w
e
m
s
p

B. Eisenhower et al. / Energy

n the optimization cost. In any case, no additional data is needed
rom the computationally intensive energy model. A new meta-

odel is simply fit to the original data with a different parametric
tructure.

.5. Optimization

Optimization of the building DOS involves multiple criteria
nd the goal is to find a single solution that minimizes the
ombined criteria or objective. This well known multi-objective
ptimization problem has been addressed in many other build-
ng energy modeling studies. Typically there are three classes
f objectives that are to be optimized; thermal comfort, oper-
tional costs, and life cycle costs. Comfort has been optimized
n [1,11] and can either loosely be defined by temperature, or
igorously using a comfort index (e.g. PMV). Optimization that
onsiders energy consumption is the most common optimization
ost variable [14,12,15,26,11,9,13,27,7,28].  Energy consumption
ay  include total facility energy use, subsystem energy use, peak

emand, and seasonal or annual consumption. Life cycle cost on the
ther hand considers the costs of manufacturing and disposal of dif-
erent components or materials in the building (typically financial,
r at times environmental impact). Optimization that considers life
ycle costs has been performed in [12,10,29].

In this paper, optimization is performed on many different
eta-models of the original baseline energy model that began with

009 optimization parameters. Entering life cycle data for these
arameters would be very time consuming and so we limit our
bjective function to thermal comfort (PMV) and annual energy
onsumption for the facility. Since energy is used in the operation
f a building to condition it and make it more comfortable, energy
nd comfort are naturally competitive. In Fig. 2, the probability den-
ity of comfort and energy usage is displayed from a parametric run
f 5000 different building DOS iterations (the model used to create
his data is described in Section 3). In the upper left subplot of this
gure, DOSs which are close to the most comfortable (PMV ∼=0.0)
re selected (note that PMV  within ±0.5 is deemed acceptable by
riterion ASHRAE-55). These same DOSs are then highlighted in the
pper right hand plot showing that a comfortable DOS can consume
ore or less energy than the baseline DOS (the dot in the figure).

imilarly, in the lower right plot, DOSs that consume a small frac-
ion of energy are selected along with the corresponding comfort
esults for these same DOSs in the lower left sub-plot. Again, it is
lear that a low energy building DOS can have a range of comfort,
nd it is the objective of the optimizer to find the best comfort for
he least amount of energy.

Since we have an analytic meta-model of the building energy
odel, we no longer have the constraints that necessitate a DF opti-
ization algorithm. With an analytical function, a gradient-based

ptimizer (e.g. an interior point (IP) method) may  perform much
etter (in terms of accuracy and convergence time). As a means of
omparison, we elect to use both methods; the DF method which
s typically used in building energy research, and a gradient-based

ethod which may  use less optimization iterations.
The IP method solves linear or nonlinear convex or non-convex

ptimization problems by traversing the interior of a feasible
egion. The implementation we use is a Primal-Dual Interior Point
lgorithm with a filter line-search method for nonlinear program-
ing (IPOPT) [30]. For comparison, we use the DF method (NOMAD)
hich contains the Mesh Adaptive Direct Search (MADS) algorithm,
hich is a direct search algorithm with rigorous convergence prop-
rties [31]. In each case, once the optimization is performed on
eta-model, the parameters that define optimized DOS are sub-

tituted into the baseline energy model and a single simulation is
erformed to verify the result.
uildings 47 (2012) 292–301 295

3. Case study

3.1. The building and model

As a proof of concept, we exercise the meta-model based opti-
mization methodology on a specific EnergyPlus model of a full-scale
building. The Atlantic Fleet Drill Hall (building 7230) at the Naval
Station Great Lakes (Great Lakes, IL, USA) is a two-storey facility
with a gymnasium-like drill deck as well as a section primarily
comprised of offices. The total area of the building is approximately
6430 m2 (69 kft2).

The building is conditioned using four air handling units (AHUs)
and has variable area volume (VAV) boxes as terminal units in the
occupied zones. The gymnasium uses two  AHUs, a classroom uses
one AHU and the offices use the final AHU. Cooling comes from
two 110-ton air cooled chillers and heating is from a district supply
(which also provides the domestic hot water).

An EnergyPlus model was  generated for this building (using ver-
sion 4.0.0.024), and TMY3 (typical meteorological year) weather
data for Chicago, O’Hare airport was  used for environmental
reference. To keep the size of the model manageable, 30 con-
ditioned zones were considered (12 for the gymnasium, and 18
for the conditioned office spaces). The model takes about 15 min
to simulate on a standard desktop computer with 2.8 GHz CPU
(further detail about the building and its model can be found in
[32]).

3.2. Sampling, simulation, and meta-modeling

In order to calculate the meta-model of the full EnergyPlus
model its parameters were varied to determine how it behaves
away from its baseline DOS. The parameter values in baseline
model were chosen from information gathered from available as-
built drawings, actual building operation (schedules), as well as
some manufacturer data for the subsystems and components. Ener-
gyPlus has many different parameters that are associated with
an energy simulation including numerical solution techniques,
architectural/geometry, envelope material operation, operation
(e.g. scheduling of HVAC, lights, people), and mechanical/electrical
equipment performance parameters (e.g. chiller rated capacity,
pump efficiency). Of these, we varied all parameters in the final
three (materials, operation, and equipment). When combined,
there are 1009 of these parameters that were varied by ±20% of
the baseline. Using the quasi-Monte Carlo approach and varying all
parameters at once (which is more computationally efficient), we
created 5000 different DOS realizations and simulated these in par-
allel on a 184-core Linux cluster. This number of realizations was
chosen by investigating the convergence of statistical properties of
the output variables ([24] includes detailed information about the
convergence analysis).

The total facility energy was calculated by adding the district hot
water consumption and the facility electricity for an entire year.
The PMV  value was  calculated for each conditioned zone during
occupied hours and averaged over the zones for each time-step
and then over the year to get a single representation of comfort for
each parametric DOS. The SVR approach was then used to calculate
the meta-model. A comparison of the raw EnergyPlus data with the
meta-model prediction (for the same inputs) is presented in Fig. 3
with a comparison of the statistics in Table 1.

We note that the fit illustrated in Fig. 3 is a true model of
the system and not a line fit to the distributions illustrated.

That is, the meta-model is a multi-dimensional model with 1009
inputs and two  outputs that produce the results in Fig. 3 when
the inputs are varied in the same way  as the full EnergyPlus
model.
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Fig. 2. Probability density of both comfort and energy usage for 5000 DOS iterations for a proposed building DOS. In the upper row, DOSs with high comfort (PMV ∼= 0) are
selected, and the corresponding energy use for these DOSs is presented in the upper right. In the lower right sub-plot, DOSs with minimal energy expenditure is selected and
the  corresponding comfort is displayed. The dots are the values of the nominal DOS.
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Fig. 3. Data from EnergyPlus and SVR meta-model for 5000 different DOS iterations within 20% of the baseline (nominal) DOS case.

Table  1
Comparison of the statistics of the EneryPlus simulations and meta-model calculations (using the same inputs for both cases).

Mean PMV  Mean (energy) [GJ] Variance PMV  Variance energy [GJ]

EnergyPlus 0.48 4713.09 0.11 115,841.48
Meta-model 0.49 4712.24 0.11 109,154.00

%  Difference 2.15 −0.02 −3.41 −5.77
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Table  2
Optimization results for the full meta-model with 1009 parameters. The comfort and energy calculated for the baseline and optimization cases using the three different cost
functions in Eq. 1 are presented using the interior point (IP) method IPOPT and the derivative free (DF) method NOMAD. The costs are: C1 (optimize thermal comfort only),
C2 (optimize annual energy consumption only), C3 (optimize both C1 and C2).

Baseline IP, C1 DF, C1 IP, C2 DF, C2 IP, C3 DF, C3

 

 

3

f
f
b
T

w
a
i
o
a
p
a
(

a
p
T
m
b
t

t
p
p
r
o
o
I
t
t

e
o
t
l
e
b
e
t
b
e
t
t
p
t
s
p
t
p

t

parameter sensitivity indices can be seen in Fig. 5.
Using the information in Fig. 5, three more reduced order meta-

models are created that contain: (5) the top 20 most influential
parameters (see Table 4), (6) the top 7 most influential parameters

Table 3
Number of function evaluations for the various optimization experiments using both
the IP (IPOPT) and the DF (NOMAD) methods. Note that the function evaluations
were limited to 1,000,000. Also, note that function evaluations for the meta-model
take on the order of a fraction of second, while those for the EnergyPlus model take
on  the order of 15 min.

Optimization experiment IPOPT NOMAD

Full model [1009,C1] 6048 113,766
Full  model [1009,C2] 23,184 1,000,000
Full  model [1009,C3] 42,336 1,000,000
Top  20 [20,C3] 380 4944
Influence both PMV  and energy [5,C3] 36 436
Schedule parameters [180,C3] 10,203 1,000,000
Material properties [142,C3] 35,814 854,212
Comfort [PMV] 0.52 0.0 −0.02
Energy [GJ] 4.91 4.80 5.46

.3. Optimization

As indicated in Fig. 1 (block 5a), once a meta-model is derived
or the original building energy model, optimization can be per-
ormed. This optimization was performed using a cost function that
alances the influences of both comfort and energy consumption.
he cost function was defined as

C1 = PMV2

C2 = energy − min(energy)
max(energy − min(energy))

C3 = C1 + C2

(1)

here PMV  was squared to drive it toward zero without taking the
bsolute value (continuous cost functions have better mathemat-
cal properties than discontinuous ones in this case). Since PMV  is
n the order of 1.0, the energy was normalized to vary between 0.0
nd 1.0. The cost was broken up into two parts to identify the best
ossible comfort or energy solution and then a solution that bal-
nces both. The results for optimizing all parameters of the model
1009) are presented in Table 2.

For each of the optimization cases, the optimizer was  executed
nd an optimal solution was calculated in seconds (for the interior
oint method) and in minutes (using the derivative free method).
o ensure a proper comparison of all optimization cases, the opti-
al  parameter choices for each case were substituted into the

aseline EnergyPlus model and a single simulation was performed
o calculate energy usage and average comfort over the year.

As seen in Table 2, when penalizing only comfort (using C1),
he optimization drives comfort to nearly neutral. Similarly, when
enalizing only energy (using C2), the derivative free and interior
oint methods reduce the energy consumption to 40% and 45%
espectively. These cases show the best possible isolated comfort
ptimization or energy reduction while the more appropriate case
f considering both (using C3) offers energy reduction of 45% for the
P method and 41% for DF optimization. In this combinatorial case,
he comfort is also optimized as well. The comfort index is reduced
o −0.09 and −0.22 using the IP and DF approaches respectively.

Although some of the performance difference seen in Table 2 is
xpected because one method uses gradient information while the
ther does not, some of these differences may  also be due a limita-
ion in the number of function evaluations for the DF method (we
imited the evaluations to 1,000,000, the exact number of function
valuations is presented in Table 3). Ideally, a comparison would
e made between this series of optimization experiments and an
quivalent set using EnergyPlus in the optimization loop instead of
he meta-model. Unfortunately, the number of evaluations would
e approximately 1,000,000 for this experiment with 1009 param-
ters, and at approximately 15 min  per EnergyPlus evaluation, this
est would be too computationally expensive. This highlights one of
he inherent benefits of using a meta-model for optimization pur-
oses; problems with many parameters can be handled in short
ime (current optimization in the buildings optimization literature
tudies on the order of tens of optimization parameters). We  do
erform a comparison of the meta-model approach with respect to

raditional methods using a manageable case having 7 optimization
arameters (described in Section 3.6).

Since optimization using the meta-model approach takes lit-
le computation time, we perform many other tests to identify
0.63 0.61 −0.09 −0.22
2.69 2.94 2.73 2.89

optimal building DOSs that require optimizing fewer parameters.
This highlights the second benefit of this approach; many differ-
ent experiments can be performed with the meta-model without
requiring exhaustive simulation. These optimization cases will be
discussed in Section 3.6 after the sensitivity analysis (which drives
the selection of the most influential parameters) and model reduc-
tion is discussed.

3.4. Sensitivity analysis

To guide in parameter selection for model reduction, sensitivity
analysis is performed to identify which parameters offer the most
leverage with respect to optimizing a certain cost. To do this, the
total sensitivities are calculated as described in Section 2.3. Fig. 4
illustrates the total sensitivity indices for both PMV  and total facility
energy for the 1009 parameters.

As illustrated in Fig. 4, there are only on the order of 10 param-
eters that significantly influence either energy or comfort in this
model. This suggests that an optimized solution may  be achieved
without necessarily changing all parameters of the building energy
model.

3.5. Model reduction

Optimized performance using seven different reduced order
models (including the full model discussed above) will now be con-
sidered. The first four reduced models are generated by selecting
a subset of parameters based on class: (1) all schedule parameters
(180 parameters), (2) all envelope material properties (142 param-
eters), (3) outdoor air controller properties (16 parameters), and
(4) AHU fan parameters (48 parameters).

The second subset of parameters is selected based on their influ-
ence as calculated from sensitivity analysis. To identify the most
influential parameters, the parameters that were presented in Fig. 4
are ordered in terms of their importance. This sorted vector of
Outdoor air controller [16,C3] 345 2130
Variable volume fan [48,C3] 2256 89,403
Top 7 [7,C3] 84 1312

Top  7 [7,C3] E+in the Loop NA 726
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labeled B in Table 4), and (7) 5 of the top 20 parameters that
nfluence both comfort and energy simultaneously (labeled C in
able 4). This last category was selected because many of the top
0 parameters influence only comfort or energy.

.6. Optimization

To obtain optimization results, the single full order and seven

educed order meta-models were integrated with both the IP
IPOPT) and the DF (NOMAD) optimization algorithms. Many dif-
erent cost functions and weighted combinations of the cost in
he three equations of 1 were investigated. For brevity we present
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 web version of this article.)

results when using the cost function C3 for all models, and cost
functions C1 and C2 for the full model (with all 1009 parame-
ters).

The results of the optimization for all these meta-models are
illustrated in Figs. 6 and 7 , and compared to one case where the
full EnergyPlus model was used instead of the meta-model (the
data in Table 2 is also included here for comparison).
3.7. Discussion

In terms of discussing the results presented in Figs. 6 and 7,
there are five topics that are worth emphasizing; the importance

0
2

10
 3

10
 4

f Parameters

dices versus the number of parameters.
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• By comparing all of the different optimization cases which use
a different number of parameters, it is evident that optimizing
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priately, will offer respectable results compared to optimizing
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Table 4
The twenty most influential parameters on both comfort and energy consumption.

Reduced
parameter
number

Label Parameter description

1 B Minimum outside air fraction in occupied hours
2 B,C AHU1/2 winter (1/1 to 4/15) supply air temp. setpoint
3 B,C AHU1/2 summer (4/16 to 8/15) supply air temp. setpoint
4  B,C AHU1/2 winter (8/16 to 12/31) supply air temp. setpoint
5  C Hot water supply temperature setpoint
6 C Weekday zone temp. setpoint from 12:00 am to 6:00 am
7 B People activity level (in W)  in office area
8 B  People activity level (in W)  in Drill Deck
9  AHU4 summer (4/16 to 8/15) supply air temp. setpoint

10  Domestic hot water supply temperature setpoint
11 B Water equipment target temperature setpoint
12 Domestic hot water usage fraction from 11:00 to 12:00
13 Domestic hot water usage fraction from 12:00 to 13:00
14 Domestic hot water usage fraction from 13:00 to 14:00
15 Domestic hot water usage fraction from 16:00 to 17:00
16 AHU2 return fan maximum flow rate
17 AHU1 minimum outside flow rate
18 AHU2 minimum outside flow rate
19 AHU3 minimum outside flow rate

•

•

•

20 Chiller reference COP (coefficient of performance)

E+in the Loop with Full Model [1009,C3]). The key is performing
sensitivity analysis which highlights which parameters influence
the cost function the most. This notion highlights the need to
integrate other analytical tools (like uncertainty and sensitivity
analysis) into any optimization experiment. Rigorous parame-
ter selection based on sensitivity analysis allows the designer to
choose parameters, which may  otherwise not be intuitively obvi-
ous, and rank them as to those which will have the most impact
on the optimization process.
By comparing the optimization experiments Top 7 [7,C3],  and Top
7 [7,C3] E+in the Loop, it is evident that the optimization using the
meta-model offers nearly equivalent results to those obtained by
performing DF optimization with EnergyPlus in the loop (in terms
of numerical quality).
In almost all cases, it is apparent that the gradient-based method
IPOPT performs similarly to the derivative free method (NOMAD),
with the exception when the number of function evaluations
were limited to 1,000,000 (as seen in Table 3). Beyond the opti-
mization accuracy, as illustrated in Table 3, there is a large
difference in the number of function evaluations between the two
methods. This is not a significant issue when using a meta-model
as we have constructed (its evaluations are very rapid), but may
become a concern in other situations.
One traditional concern that has not been mentioned until now is
the choice of the seed (or initial condition) for each optimization
experiment. That is, both the gradient-based and the DF optimiza-
tion approaches produce different (even if only slightly) results
based on initial guesses of the optimization parameters. We  found
this variation to be so small that we do not report it for each case.
For example, in the case where the optimization is performed
with EnergyPlus in the loop (Top 7 [7,C3] E+in the Loop), four
experiments were performed resulting in a variance in optimized
energy of 0.00057% of mean in [GJ], and 0.28% of mean in PMV.
The total number of function evaluations (15-min simulations)
for these four experiments was 4688 (1172 CPU hours of sim-
ulation). Thankfully, the NOMAD algorithm is parallelized, and
is run on many CPU’s at once, but this series of experiments in
itself (using only 7 parameters) was computationally expensive.

Optimization using a gradient based-method (IPOPT) coupled to
the full EnergyPlus model was not performed because expected
discontinuities would have resulted in poor performance (see
[7]).
uildings 47 (2012) 292–301

• It is challenging to make a direct comparison of computational
cost between the traditional optimization approach (full Energy-
Plus model in the loop) and the meta-model approach because the
latter offers different possibilities than the former. To be specific,
one optimization experiment on the EnergyPlus model with 7
parameters (Top 7 [7,C3] E+in the Loop) took on average 1000 sim-
ulations. Creating the meta-model took 5000 simulations which
is much larger, but once the meta-model is calculated, more opti-
mization experiments can be performed. In other words, the
meta-modeling approach becomes more computationally effi-
cient as more optimization experiments are introduced. Given
that the weighting or form of a particular cost function, or param-
eters of the optimization algorithm that one may  be using are not
always well known prior to testing (which means more than one
optimization experiment is almost always needed), the meta-
modeling approach becomes very attractive as a time saving
measure when the entire design cycle is considered.

4. Concluding remarks

In this paper we presented an approach to perform optimiza-
tion of building energy models using a meta-model generated
from sample design and operation scenarios of the building around
its baseline. The advantage of this approach is that once the
meta-model is generated, many different cost functions, choices
of parameters, or optimization algorithms can be exercised with-
out repeating time-intensive energy simulations. The numerical
quality of the solution using this approach was  compared to the
traditional approach using a full energy model showing good agree-
ment and performance.

A case study was  performed using an EnergyPlus model of an
existing building illustrating that optimal comfort and energy min-
imization can be achieved using only a few appropriately selected
parameters of the building design and operation scenario consid-
ered. It was found that sensitivity analysis on data generated for the
meta-model provided valuable information about which parame-
ters are best suited for optimization. Specifically, we  have found
that optimization of schedules (e.g. schedules for internal load pro-
files, outside air fraction schedules, supply air temperature setpoint
schedules) has a substantial impact on both the comfort and the
energy consumption in the building. This paper focuses on the
optimization methodology and we  leave a detailed analysis of the
optimization results for future publication.

The cost function in this study was defined to minimize energy
consumption while maintaining or improving comfort. A cost func-
tion can also be derived to minimize the difference between
quantities calculated from the model and associated real world
measurements. In this way, the methodology presented in this
paper can be extended to model calibration.
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