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Abstract We describe a dynamical mechanism of cascading failure in a system of
interconnected power grids. This mechanism is based on the discovery of (Susuki Y
et al. (2011) J Nonlinear Sci 21(3):403-439), an emergent and undesirable phe-
nomenon of synchronous machines in a power grid, termed the Coherent Swing
Instability (CSI). In this phenomenon, most of the machines in a sub-grid coherently
lose synchronism with the rest of the grid after being subjected to a local and finite
disturbance. By numerical analysis of a system of weakly interconnected power
grids, we present a phenomenon of coupled swing dynamics in which the CSI
happens for all of the power grids in a successive manner. We suggest that a small
disturbance in one grid can grow, spill to the other grids, and cause the whole system
to fail. This mechanism enables the development of dynamically relevant tools for
monitoring and control of wide-area disturbances, which become feasible when the
physical power network is overlaid with an information network, like the smart grid.

1 Introduction

Wide-area disturbances have been reported in large-scale power grids. Examples
include the 2003 blackouts in North America and Europe [1] and the 2006 system
disturbance in Europe [33]. Such disturbances are very costly to modern society
and have reminded us of the importance of stable and reliable electricity supply.
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Cascading failure is defined in [14] as a sequence of dependent failures of individual
components that successively weakens the power grid. It is regarded as a major
cause of disturbance propagation in a system of interconnected power grids. There
is a large amount of past and current work on mathematical modeling and numerical
simulations of cascading failures as reviewed in [14].

Understanding the dynamics of cascading failure is important for designing the
smart grid operation. In [11], the term Smart Grid refers to a modernization of the
electricity delivery system so it monitors, protects, and automatically optimizes
the operation of its interconnected elements, and it will be characterized by
a two-way flow of electricity and information to create an automated, widely
distributed energy delivery network. This new technology implies the integration
of information, communications, and power technologies. It is mainly driven by
the large penetration of renewables such as solar and wind power, the aging grid
infrastructure (especially in USA), and the emergence of wide-area disturbances as
mentioned above. Thus, it is necessary to explore the dynamics of power grids for
making the smart grid vision feasible.

In this chapter, we perform numerical analysis of coupled swing dynamics in
power grids, based on the notion of power grid instability developed in [28]. In the
previous paper, we studied a phenomenon in short-term' swing dynamics of multi-
machine power grids which we termed the Coherent Swing Instability (CSI), based
on [9, 10, 19]. This is an emergent and undesirable phenomenon of synchronous
machines in a power grid, in which machines in a subset of the grid coherently lose
synchronism with the rest of the grid after being subjected to a local disturbance.
CSI is a nonlocal instability> occurring in a high dimensional dynamical system
dominated by inertia in which one nonlinear mode is weak compared with many
linear oscillatory modes. It is interpreted as an emergent transmission path of energy
from the linear oscillatory modes to the nonlinear mode, which determines the
spatially averaged motion of a power grid. The purpose of this chapter is, based
on the result on CSI, to describe a dynamical mechanism of cascading failure in a
system of interconnected power grids. Here, we use the dynamical systems approach
to identify the mechanism: see related work [24,30, 35].

The contribution of this chapter is a collection of data on CSI and cascading dy-
namics in a grid configuration of strong inner-connection and weak interconnection.
Short-term swing dynamics are mainly studied using the nonlinear swing equations
[16], which are a relatively simple dynamical system of ordinary differential
equations. By numerical simulations of the swing equations, we analyze the CSI
phenomenon in a system of weakly interconnected power grids and exploit the
dynamics of CSI to identify the mechanism of cascading failure. The basic test

1Zero- to ten-seconds [16].

2The phenomenon we study here does not happen upon an infinitesimally small perturbation
around an equilibrium of the dynamical system. However, it encompasses the situation when the
system escapes a predefined set around the equilibrium. In this way, the notion of instability that
we address here is nonlocal.
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system used in this chapter is the New England (NE) power grid [3, 23] that we
weakly interconnect into a larger power grid. The CSI phenomenon happens for all
“unit” NE grids due to a swing wave propagating from other parts of the system and
initiates the cascade of unit grid failures. Propagation of swing waves is studied in
real power grids (Italy [2], west Japan [31], Texas [21], and Northeast America [5]).
Swing dynamics have been reported as a cause of cascading failures in the 2003
blackouts in USA-Canada [34] and Italy [7]. We suggest that a small disturbance in
one unit grid grows, spills to the other unit grid as a swing wave, and finally causes
the whole system to fail. Throughout, we demonstrate that the CSI could be a part of
the dynamical mechanism of cascading failure in power grids. Note that similar data
on cascading dynamics in a system of nearly solvable ring power grids is reported
in [29].

The rest of this chapter is organized as follows. In Sect.2, we introduce the
phenomenon of CSI using numerical simulations of short-term swing dynamics
in the NE power grid. The contents are reported in [28]. In Sect.3, we provide
numerical analysis of a phenomenon of short-term swing dynamics in a system of
weakly interconnected NE grids. The system consists of seven “unit” NE grids
coupled via weak tie lines in series. In Sect.4, we discuss topics related to the
numerical result and conclude this chapter. Dynamics-based tools for monitoring
and control of wide-area disturbances is addressed.

2 Introduction to Coherent Swing Instability

We introduce the phenomenon of CSI using numerical simulations of the NE 39-bus
test system. The NE test system or grid is shown in Fig. I and is known as a bench-
mark system exhibiting coupled swing dynamics of synchronous machines [3]. The
grid consists of ten generation units (equivalent ten synchronous generators), 39
buses, and lossy AC transmission lines. Most of the buses possess constant active
and reactive power loads. The details of the grid, such as unit rating and line data,
are available in [23].

2.1 Nonlinear Swing Equations

First of all, we introduce the equations of motion for the NE grid. Assume that
generator | is the infinite bus® in order to explicitly represent the outside of the grid.
The short-term swing dynamics of generators 2—10 are modeled by the nonlinear
swing equations [16]:

3 A voltage source of constant voltage and constant frequency.
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Fig. 1 New England (NE) power grid [3,23]. The grid consists of ten generation units (equivalent
ten synchronous generators, which are denoted as circled numbers), 39 buses, and lossy AC
transmission lines

dé;
dt - [l
H; dow;
n_jl”bd_tl = —Diw;i + Pri
10
—VizG,’i — Z V,VJ {G,’j COS((S,’ — 81) + Bij sin(é’i — 51)} s
j=Lj#i
ey
where the integer label i = 2, ..., 10 denotes generator i. The variable §; represents

the angular position of rotor in generator i with respect to bus 1 and is in radians
(rad). The variable w; represents the deviation of rotor speed in generator i relative
to system angular frequency 27 f, = 27w x (60Hz) and is in radians per second
(rad/s). We set the variable §; to a constant, because bus 1 is assumed to be
the infinite bus. The parameters f,, H;, D;, Pwi, Vi, Gii, Gij, and B;; are in
per unit system except for f, in Hertz (Hz) and for H; and D; in seconds (s).
The mechanical input power Pp,; to generator i and the internal voltage V; of
generator i are normally assumed to be constant for short-term swing dynamics
[16]. The parameter H; denotes the per unit time inertia constant of generator i,
and D; denotes its damping coefficient. The parameter G;; denotes the internal
conductance, and G;; + iB;; (where i is the imaginary unit) denotes the transfer
admittance between generators i and j. They are the parameters that change as the
network topology changes. Electrical loads are modeled as passive admittances.
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2.2 Numerical Simulations

We numerically simulate coupled swing dynamics of generators 2—10. All numerical
simulations discussed in this chapter were performed using MATLAB: for example,
the function ode4 5 was used for numerical integrations of (1). The voltage V; and
the initial condition (§;(0), w; (0) = 0) for generator i are fixed using power flow
computation. The inertia constant H; is the same as in [23]. For the simulation, we
use the following load condition: P, and constant power loads are 50% at their
rating. The damping D; is fixed at 0.005 s for each generator.* The elements G;;,
G;j, and B;; are calculated using the data in [23] and the result on power flow
computation. Also, we use the following fault condition: each generator operates
at a steady condition at t = 0s. Then a three-phase fault happens at point F near
bus 16 at7 = 1s —20/(60Hz) = 2/3s & 0.67s, and line 1617 trips at = 1s.
The fault duration is 20 cycles of a 60 Hz sinusoidal wave. The fault is modeled by
adding a small impedance (1077i) between bus 16 and the ground.

Figure 2 shows the time responses of angular position §; and relative rotor speed
w; of generator i. Before t ~ 0.67 s (this is the onset time of fault), each generator
operates at a steady condition. In the fault duration from # ~ 0.67 to 1s, all the
generators 2—10 accelerate from their steady conditions. After the line trip at# = 1,
they respond in an oscillatory manner. These oscillations are bounded during the
period from# = 1 to 8 s. Atabout time 8 s, they begin to grow coherently and finally
diverge. That is, every generator loses synchronism with the infinite bus at the same
time. This corresponds to the growth of amplitude of inter-area mode oscillation
between the NE grid and the infinite bus, namely, the outside of the grid. This is
typical of the CSI phenomenon.

In the following, we demonstrate two methods for elucidating dynamical features
of the phenomenon. First, we use the notion of collective variables for characterizing
the spatially averaged motion of a power grid. The collective variables are well
known as the COA (Center-Of-Angle) variables [3]. For the NE grid, the COA §coa
and its time derivative wcoa are defined as

10 10
H; ddcoa H;
Scoa == Z ﬁ&w WeoA 1= — = Z 7o 2
i=2 i=2
where H = le iz H;. The variables (§coa, wcoa) describe the averaged motion

of all the generators in the grid. Figure 3 plots the trajectory of (1) showing the CSI
phenomenon in Fig. 2 on §coa—wcoa plane. The trajectory starts near the origin at
time 0 s, makes a couple of almost periodic loops around the initial point, and finally
diverges.

“In the case that the relative rotor speed w; is in per unit system with base quantity 27 f;, the
damping coefficient D; = 0.005s is equal to 1.88 in per unit system with its base quantity

1/(27 fo).
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Fig. 2 Coupled swing dynamics in the NE power grid. The upper two plots are for angular
positions §; of the nine generators, and the lower plots are for the relative rotor speed w;

Second, we use the Proper Orthonormal Decomposition (POD) in order to
decompose the phenomenon in Fig. 2, which has been used in the context of power
system analysis [17, 24]. POD provides a basis for the modal decomposition of
an ensemble of functions, such as data obtained in the course of experiments, and
provides energy-wise, the most efficient way of capturing the dominant components
of the process [12, 13]. Consider finite simulation outputs of angular positions,
{6;(nTg)} G = 2,...,10,n = 0,..., Ny — 1), where T is the sampling period
of outputs, and N; is the number of samples. The outputs are represented by

9
§i(nT) =Y eja;(nT,). 3)

j=1
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We require the time-invariant basis vectors {e;; } (i = 2, ..., 10) to be orthonormal

and closest in energy norm to the output, and call them the Proper Orthonormal
Modes (POMs). Every vector {e;; } is obtained by computing the correlation matrix
R from {6;(nT;)} and by finding the orthonormal eigenvectors of R: see [12] for
details. The time-varying coefficient a; (j = 1,...,9) in the POD holds the
following correlation property: (a;ax) = (a?) (if j = k) or O (otherwise), where

POMs are obtained using Ny = 5341 snapshots in the simulation outputs
partially shown in Fig. 2. The time interval is [1 s, 90 s], and T is equal to 1/(60 Hz).
Figure 4 shows the projection of the trajectory of (1) onto subspaces spanned
by every POM. The projected trajectory (a;(nTs).b;(nT)) for the j-th POM
(j =1,...,9)is computed as

(o) represents a time average of {e}. POMs are ordered by (a?) > (a§+l).

10 10
a;(nTy) =) eyd(nTy), b;(nT) =) ejjo;(nTy), “)
i=2 i=2
where n = 0,..., Ny — 1 (because of the smallness of the damping term we use

the same modes for the angles and their time derivatives). In the first POM, the
trajectory shows a transition from periodic motion to divergent one. The trajectory
of the first POM coincides with the trajectory projected onto the COA plane in Fig. 3
by rotating it by 180° around the origin. On the other hand, in the other POMs, each
trajectory shows a periodic or quasi-periodic motion. This is confirmed by looking
at the results on power spectra (see [28]). The emergent phenomenon shown in
Fig. 2 happens in the dynamical system with one nonlinear mode and many linear
oscillatory modes.

These results enable us to explain the CSI phenomenon. In the dynamical system,
the linear oscillator modes are strong because the interconnection term in (1) is
strong (see [28]) due to the structure of interaction between generators, where
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Fig. 4 Projected trajectories onto Proper Orthonormal Mode (POM) planes of the time series of
coefficients a; during [1 s, 90 s] with sampling frequency 60 Hz

many generators affect the dynamics of any single one. Compared with the linear
modes, because the local term in (1), which represents the interaction between any
generator and the infinite bus, is weak, the nonlinear mode is also weak. The linear
oscillations then act as perturbations on the nonlinear mode. The perturbations are
normally small due to the weakness of the coupling between the modes, but they
become large if any linear mode and the nonlinear one satisfy a condition of internal
resonance (see [10]). In this way, the amplitude of the first nonlinear POM in Fig. 4,
or equivalently the projected COA trajectory in Fig.3 can escape the region of
bounded motions in the dynamical system of the first POM. This is the dynamical
mechanism causing the CSI. It implies that the coupling of grid architecture and
dynamics of the system matters the most.
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Note that the NE grid is a test benchmark system, being a slight simplification of
the real NE grid. Although the mathematical models are derived under reasonable
assumptions for short-term rotor swing stability, they do not necessarily represent
the true dynamics of the NE grid. Here, it is valuable to discuss whether the CSI in
Fig.2 can occur in a real power grid. The fault duration, which we set at 20 cycles
in the simulation, is normally less than ten cycles. Such a long duration may imply
the malfunction of protection systems, and hence the CSI in Fig. 2 may be regarded
as a rare event in short-term swing dynamics. However, in Sect.3 we will show
that in a system of interconnected power grids, CSI is observed in the case of fault
duration eight cycles. Furthermore, in the simulation we ignore the effect of load
dynamics. The effect is normally negligible because it does not affect short-term
swing dynamics [16] and will not cause any drastic change of simulation results.
Thus, we suggest that CSI is a phenomenon that can occur for various configurations
close to real power grids.

3 Dynamical Mechanism of Cascading Failures

In this section, we study a phenomenon of short-term swing dynamics in a system
of Weakly Interconnected NE (WINE) grids. The system is shown in Fig.5 and
consists of the N(= 7) NE grids (each of which we call the unit grid), the infinite
bus, and weak interconnections. Each unit grid in Fig. 5 has equal specification of
synchronous generators, loads, ac transmission lines, and network topology. The N
unit grids are joined to each other in series via weak interconnections. Bus 24 in
unit grid # (i = 1,..., N — 1) and bus 39 in unit grid #(i + 1) are joined by a
transmission line. We make the three assumptions: (i) generator 1 in unit grid #1
is the infinite bus; (ii) there is no generator 1 in the other unit grids; and (iii) the
impedance of lines joining two different unit grids is three times as large as those
of line joining buses 26 and 29. The reason why we chose line 26-29 is that it has
the largest value of impedance in each unit grid. Thus, we weakly interconnect the
seven unit grids, in each of these unit grids, nine synchronous machines are strongly
connected.

2—:‘—39 24L: L39 24L; 139 24L; 139 24.L; 139 24L; L39 24L; 139 24!

unit grid #1 unit grid #2 unit grid #3 unit grid #4 unit grid #5 unit grid #6 unit grid #7

Fig. 5 System of Weakly Interconnected New England (WINE) grids. The system consists of the
N(= 7) NE power grids and weak tie lines joining them. Generator 1 in unit grid #1 is assumed to
be the infinite bus
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3.1 Nonlinear Swing Equations

In the same manner as the single NE grid in Sect.2, we use the nonlinear swing
equations for modeling and analysis of coupled swing dynamics in the WINE
system. The short-term swing dynamics of generator j in unit grid #i (j =
2,...,10,i =1,..., N) are represented by

d&j
bt/ R
dr /
H; da)i»
n—;bd—t] = Pnij — Djwj;
—Vii Vi1{Gij11 cos(8i; — 811) + Bjj 11 sin(8;; — 811)} Q)

N 10

_Vijz'Gij_ Z Z Vii Vil Gij ki cos(8;; — 8kir)
k=1 ki 1=21%]

+Bij ki sin(8; — 8k1) -

The variable §;; represents the angular position of rotor in generator j in unit grid
#i with respect to the infinite bus and is in radians (rad). The variable w;; represents
the deviation of rotor speed in generator i relative to system angular frequency 27 f;,
and is in radians per second (rad/s). The variable §;; is the angular position of the
infinite bus and becomes constant from its definition. The parameters H;, Ppn;;, D,
Vij, Gijij» and Gy 1 +1B;j i are in per unit system except for H; and D in seconds
(s). The constants H; and D; are introduced in Sect. 2.1. The constant Py,;; is the
mechanical input power to generator j in unit grid #i, and V;; is the internal voltage
of generator j in unit grid #i. They are assumed to be constant in the same manner
as in Sect. 2. The constant G;; ;; denotes the internal conductance of generator j in
unit grid #7, and G;; x; + 1B;; 1/ denotes the transfer admittance between generators
J in unit grid #i and [ in unit grid #k. The constant V/; is the voltage of the infinite
bus, and Gjj 11 + 1B;j 11 is the transfer admittance between generator j in unit grid
#1 and the infinite bus. The admittance G;; x; + 1B;; «; is the parameters that change
as the network topology changes.

3.2 Numerical Simulations

We numerically simulate coupled swing dynamics of 63 generators. Basically, the
system parameters are based on the data provided in [23] and in Sect. 2. The voltages
V; and initial conditions (8;;(0), w;;(0)) = (47;,0rad/s) are fixed using power
flow computation. The constant 8;‘} is the value of angular position §;; at a steady
operating condition before the fault. The parameter H is the same as in Sect. 2. The
mechanical input power Py, ;; and constant power loads are also the same as in [23].
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The damping D; is fixed at 0.01s for each generator. The elements G;;;;, Gijii,
and B;; x; are calculated using the data in [23]. We use the following fault condition:
each generator operates at the steady condition at t < 1s — 8/(60Hz) ~ 0.87s, a
three-phase fault happens near bus 39 in unit grid #1 at ¢+ ~ 0.87s, and line 1-39
trips at + = 1s. The fault duration is eight cycles of a 60 Hz sinusoidal wave. The
fault is simulated by adding a small impedance (107i) between bus 39 in unit grid
#1 and the ground.

Figure 6 shows the time responses of angular positions d;;. The notation #i -G j
in the figure indicates that the corresponding colored line shows the time response
of §;; for generator j in unit grid #i. The local fault happens in unit grid #1. The
angular positions in unit grid #1 show swings at the onset time of fault # ~ 0.87s.
On the other hand, the angular positions in unit grids #2 to #7 do not show any
swings at the onset time and do remain at their steady conditions. After a while,
the swings in unit grid #1 propagate through the WINE system and reach the last
unit grid #7 at about time ¢+ = 4s. This propagation causes secondary swings in
every unit grid. After reaching the last unit grid, it propagates through the grid in
the backwards direction. During this initial swing propagation, the angular positions
in each unit grid show coherent oscillations similar to that of the single NE grid in
Sect. 2. The oscillations in unit grid #1 are damped due to both nonzero damping
and dispersion effect caused by weak interconnections. The oscillations in the other
unit grids are also damped and then show slight growth as time passes. Although
the slight growth of angular positions is undesirable, it is still bounded and does not
represent the loss of transient stability of synchronous generators in these unit grids.
When the swings return to unit grid #1 at time = 9s, the angular positions J;;
begin to grow in a coherent manner and finally diverge. After the first divergence,
the angular positions §,; in unit grid #2 next begin to diverge in a coherent manner.
This cascade of coherent divergences continues up to the last unit grid. The coherent
divergence in a unit grid corresponds to the loss of transient stability. This result
indicates that a local disturbance in one unit grid grows, spills to the other grids, and
finally causes the whole system to fail.

In the single NE grid, the motion of a hidden nonlinear mode was captured by
projecting the full-system dynamics onto the phase plane of COA variables. Since
the POD approach leads to the same nonlinear mode as the COA approach, we now
investigate the cascade of unit grid failures using the notion of COA. Here, it is not
effective to define the COA for the full-system dynamics of 63 generators, because
it does not provide any insight of the interaction of different unit grids. In this case,
we define the COA for each unit gridi (i = 1,...,N) as

10 10

H; H;
Si(con) 1= Z ?}51‘]’, ;(COA) := Z #wija (6)
j=2 j=2

where 8;coa) denotes the COA of unit grid #i and w;(coa) its time derivative.
The variables represent the spatially averaged motion of all the generators in unit
grid #i. Figure 7 plots the trajectory of (5) showing the cascade in Fig.6 on
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Fig. 6 Coupled swing dynamics in a system of WINE grids. The notation # -G j denotes the time
response of angular position §;; of generator j in unit grid #i
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Fig. 7 Collective dynamics in a system of WINE grids. These plots correspond to the projected
trajectories onto the planes of the COA variables (6) for the phenomenon shown in Fig. 6

8i(coa)—wi(coa) planes. In unit grid #1, the trajectory executes damped oscillations
for a while. However, the swings which return to unit grid #1 interrupt the trajectory
and kick it. This kicking induces the divergence of trajectory in unit grid #1. In unit
grid #2, the trajectory is kicked twice and finally diverges. The first kick is due to the
swings propagating from unit grid #3, and the second kick is due to the divergence
of unit grid #1. Similar behaviors for the trajectories of unit grids #3 and #4 are
identified in Fig. 7. On the other hand, the trajectories of unit grids #5 to #7 show
different behaviors. They do not show clear periodic motions and do drift to right
when the swings kick them twice, and finally they diverge.

4 Summary and Discussion

In this chapter, we have studied the emergent instability phenomenon, termed the
CSI, in power grids. Section 3 was devoted to numerical analysis of coupled swing
dynamics in the WINE system shown in Fig. 5. The analysis suggests that the CSI
phenomenon happens for all of the unit grids due to a swing wave propagating from
other parts of the system and initiates the cascade of unit grid failures. In this section,
we discuss several topics related to the result and close this chapter.

The analysis in Sect.3 was performed by introducing the COA variables for
each unit grid with coherent generators. The COA variables were useful for the
dynamical analysis performed in this chapter, because the WINE system possessed a
trivial set of strongly inner-connected grids, in each of which generators may exhibit
coherent motions. Generally speaking, it is not easy to find such a set of coherent
generators for real power grids. Identifying coherent generators is necessary for
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applying the developed theory to data on cascading failures in real power grids. Such
identification techniques have been reported by many researchers, for example, the
Lyapunov function method [22], the singular perturbation method [4, 6,36], and the
Koopman mode analysis (KMA) [27] that is introduced in the last of this section.
These methods can identify a set of unit grids consisting of coherent generators, so
that one can investigate the COA dynamics for each identified grid.

As introduced in Sect. 1, cascading failures are fairly complicated phenomena
emerging in interconnected dynamical systems. It would be impossible to obtain a
simple mechanism that can explain all dynamics and events in a cascading failure.
For a power grid consisting of many sub-grids, the instability shown in Sect.2
describes a failure of one sub-grid caused by the loss of transient stability. In this
chapter, we show that a sequence of sub-grid failures is induced by a sequence of
CSIs. Thus, we suggest that the CSI could be a part of the dynamical mechanism of
cascading failure of large-scale power grids.

Also, it is often said that causes of cascading failures include correct/incorrect
relay operations and hidden failures [32] that are discontinuous actions in the
dynamics of power grids. This is naturally modeled by a hybrid dynamical system.
In [30], the authors use a hybrid dynamical system for modeling and analysis
of the cascading failure leading to the 2003 blackout in Italy. Analysis of the
hybrid model shows that the swing dynamics, especially desynchronization of
individual generators, result from a network switching with a simple relay feedback
controller. On the other hand, in this chapter we describe another scenario of
swing dynamics leading to desynchronization of individual generators without any
network switching. This is a counterexample to the standard argument as stated
in the beginning of this paragraph. Of course, the dynamic phenomenon that we
studied in this chapter may be an extreme example for cascading failures. Our
mechanism of cascading failure will need further research in more realistic test
systems and for practical data on cascading failures.

It was suggested that cascading failures are partly due to the loss of transient
stability based on real data, for example, the September 2003 blackout in Italy [7].
Our study suggests that such instability could happen via a swing wave propagation
mechanism. To the best of our knowledge, there is yet no real data proving that the
swing wave propagation is an initiation of cascading failure. In order to identify
our mechanism in real power grids, a measurement system that can simultaneously
monitor global dynamics of large-scale power grids is needed. This can be carried
out with the emerging technology of wide-area measurement with the aid of
synchronized PMUS’ (see e.g. [8,25]).

The cascading dynamics that we studied in Sect.3 are, needless to say, an
undesirable phenomenon of power grids and should be prevented by grid design
or avoided by control. Figure 6 shows that the difference of COAs increases as
time passes. This large difference may trigger the action of protection systems that
are normally equipped with a tie line. A key point for control is how to detect the

SPhasor Measurement Units.
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propagation of swing waves in a power grid. One possible solution is again the
emerging wide-area measurement-based control and analysis (see e.g. [15]). Wide-
area measurement is expected to stabilize spatiotemporal dynamics in large-scale
power grids.

In the current analysis, we used the dynamical systems approach to elucidate
a core cause of wide-area disturbances. As a next step, it is necessary to consider
how to apply the dynamical perspective to monitoring and control of power grids.
Currently, we are developing methodology and tools for monitoring of power grids
based on the result. A key method in our development is the Koopman mode
analysis (KMA) that is based on a fully nonlinear spectral theory and represents an
extension of linear oscillatory mode analysis [18]. KMA is dynamically consistent
with underlying (possibly nonlinear) physics and provides a new approach to model
validation and reduction [18, 20]. We show that KMA provides a method for
identifying coherent generators from sensor data [27] and defines a precursor to CSI
with its computation method based on sensor data and mathematical modeling [26].
The precursor is based on the discovery of emergent transmission path of energy
from many linear oscillatory modes to the nonlinear mode as mentioned in Sect. 2.
Both the methods need data collected in a real power grid and computation based
on a mathematical model. Hence, they would be suitable as tools implemented
to the future smart grid in which the physical power network is overlaid with an
information network.
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