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Fundamental Formulation
for Transformation Toughening
in Anisotropic Solids
In this paper the problem of transformation toughening in anisotropic solids is addressed
in the framework of Stroh formalism. The fundamental solutions for a transformed strain
nucleus located in an infinite anisotropic elastic plane are derived first. Furthermore, the
solution for the interaction of a crack tip with a residual strain nucleus is obtained. On
the basis of these expressions, fundamental formulations are presented for the toughening
arising from transformations using the Green’s function method. Finally, a representative
example is studied to demonstrate the relevance of the fundamental formulation.
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1 Introduction

Phase transformations in ceramics such as martensitic meta-
morphoses can involve spontaneous strain, and ferroelastic
response occurs when such spontaneous strains are modified by,
for example, exchange of twin variants (see, e.g., [1–13]). Such
permanent strain, if heterogeneous, gives rise to self-equilibrating
residual stresses within the object. These transformation stresses
have a significant influence on the deformation and apparent
toughness of engineering ceramics. In the case of martensitic
transformation, experiments reveal that toughening is associated
with a stress-induced phase transformation in the vicinity of the
crack tip. When the stresses in the region near the crack tip reach
a critical value, the transformation occurs, typically from tetrago-
nal to monoclinic in zirconia ceramics, and is accompanied by a
volume increment of 4% and a shear strain of 16%, the latter
largely nullified by twinning. These strains induce constraint
stresses, and the crack tip stress intensity factor is reduced, usually
after some stable crack growth. Therefore, the fracture toughness
of the ceramic is effectively enhanced since it now takes higher
applied loads to raise the stress intensity factor back to the critical
level required to cause continued crack propagation. In contrast to
the martensitic case, ferroelastic transformations typically involve
only the deviatoric component of the permanent strain. Ferroelas-
tic toughening is attributed to domain switching of twins in the
crack front and in the crack wake, inducing stress intensity factor
reduction (see, e.g., [14–19]).

In order to explore the potential toughness benefits of phase
transformation and ferroelastic behavior, much effort has been
devoted to modeling in this field. Three main approaches to simu-
lating transformation and ferroelastic toughening have been
employed. One is an Eshelby technique (see, e.g., [14,20–24]).
Another is the finite element method (FEM) (e.g., [25–28]). The
third approach uses Green’s functions (e.g., [29–33]). In the
Eshelby technique, the spontaneous strain is treated as an eigen-
strain [34]. This approach offers a convenient way of analyzing

problems where transformation deformation exists within one
localized inclusionlike region in a large body. However, it is
somewhat less convenient when multiple inclusionlike transfor-
mation zones are involved or the zone of spontaneous strain is a
large fraction of the body being analyzed. FEM can be used effec-
tively for geometries of arbitrary size and shape with single or
multiple residual strain zones of a general configuration. How-
ever, FEM requires significant effort to cover the relevant parame-
ter range and to obtain broad parametric characterization. The
Green’s function method is convenient and straightforward when
used for simple transformation geometries. Hutchinson [29]
solved the plane problem of a semi-infinite crack in an infinite,
isotropic, linear elastic body with two transformed circular
“spots” symmetrically located relative to the crack plane. Based
on this solution, the transformation toughening problem of a zone
with spontaneous strain surrounding the crack tip has been studied
extensively (e.g., [30,31,33]). However, the results of that effort
are only valid for problems with transformed zones that are sym-
metrical with respect to the crack plane. Additionally, Rose [32]
represented the effect of both dilatant and deviatoric transforma-
tion strain components by a set of fundamental singular solutions
including a force doublet, similar to the work of Love [35]. Using
Rose’s solution, Karihaloo and Andreasen [36] conducted a
detailed study on transformation toughing. In addition, Li and
Anderson [37] used a method similar to that of Rose [32] to obtain
the solution for the effect of a cube of transformed material in an
infinite, isotropic body where they used singular solutions for dis-
locations to characterize the results. From the above body of
work, it is apparent that the Green’s function method is conven-
ient and easy to implement for the problem of transformation
toughening in an isotropic solid. For this reason, we adopt Green’s
functions to address the more general transformation toughening
problem associated with an anisotropic elastic solid. Such a situa-
tion arises in a cracked body that is a single crystal having an ani-
sotropic lattice, and in which a stress-triggered martensitic phase
transformation occurs, or in which ferroelastic behavior is
enabled, perhaps by domain switching of twin variants. The pres-
ent paper provides some of the basic analytical tools enabling the
analysis of such phenomena.
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It is important to note that the planar methodology proposed
here is derived from the concepts of a dislocation and a disloca-
tion dipole, as used for the isotropic case by Li and Anderson
[37]. To obtain our results, we use solutions for edge disloca-
tions that have their Burgers vectors confined to the plane of
the body, and that have no Burgers vector component in the
transverse direction. Such dislocations are not used here as crys-
tallographic defects, but are utilized for the convenience of
obtaining the desired solutions for the transformation toughening
problems we tackle. Consequently, our dislocations do not need
to be consistent with conditions imposed by the symmetry of the
lattice that real lattice defects would have to satisfy. Our disloca-
tions, in dipole pairs, are used merely to represent the effects of
nuclei of transformation strain, giving us fundamental elasticity
solutions corresponding to given distributions of spontaneous
strain.

The formulation is constructed using the following steps. First,
Stroh formalism and displacement potentials for an edge disloca-
tion in an infinite anisotropic plane are introduced in Sec. 2. Based
on these results, the fundamental solutions for a transformation
strain nucleus located within an infinite anisotropic elastic plane
are derived in Sec. 3. Thereafter, a fundamental formulation for
transformation toughening, namely, the interaction of a transfor-
mation strain nucleus with a semi-infinite crack in an anisotropic
body is studied in Sec. 4. In Sec. 5, two representative examples
of transformation toughening in an anisotropic body are studied
by the Green’s function method. Finally, conclusions are drawn in
Sec. 6.

2 Stroh Formalism and Displacement Potential

for an Edge Dislocation

2.1 Stroh Formalism. In a Cartesian coordinate system xi

(i¼ 1, 2, 3), the equations of linear infinitesimal elasticity are [38]

rij ¼ cijklekl (2.1)

eij ¼
1

2
ui;j þ uj;i

� �
(2.2)

rij;j ¼ 0 (2.3)

where rij, ekl, ui, and cijkl (i, j, k, l¼ 1, 2, 3) are the stress tensor,
the strain tensor, the displacement vector, and the elasticity tensor,
respectively. A comma followed by an integer i indicates differen-
tiation with respect to xi. The elasticities satisfy the following
symmetry relation:

cijkl ¼ cjikl ¼ cijlk ¼ cklij (2.4)

For planar behavior, where ui (i¼ 1,2,3) depend on x1(¼ x) and
x2(¼y) only, the displacement vector u¼ [u1 u2 u3]T and the
generalized stress function vector u¼ [/1 /1 /1]T can be
expressed as

u ¼ 2 Re½Af zð Þ�; u ¼ 2 Re½Bf zð Þ� (2.5)

and the stress components as

r1 ¼ r11 r21 r31½ �T¼ �u;y ¼ �2 Re½BPf ;z zð Þ�

r2 ¼ r12 r22 r32½ �T¼ u;x ¼ 2 Re½Bf ;z zð Þ�
(2.6)

Here

A ¼ a1 a2 a3½ �; B ¼ b1 b2 b3½ � (2.7)

are complex constants, and we have functions given by

f zð Þ ¼ f1 z1ð Þ f2 z2ð Þ f3 z3ð Þ½ �T ;
zi ¼ xþ piy; Im pið Þ > 0 i ¼ 1; 2; 3ð Þ (2.8)

where the superscript T indicates transposition, fi(zi) (i¼ 1, 2, 3)

are arbitrary analytic functions of zi, and i ¼
ffiffiffiffiffiffiffi
�1
p

. The notation
f,z(z) indicates that fi is to be differentiated with respect to zi,
whereas u,x indicates partial differentiation of u with respect to x,
and u,y with respect to y. The column vectors ai (i¼ 1, 2, 3) of
matrix A, and the entries in P¼ diag [p1 p2 p3] are determined by
the following eigenrelation:

Qþ pi Rþ RT
� �

þ p2
i T

� �
ai ¼ 0 i ¼ 1; 2; 3ð Þ (2.9)

where Q, R, and T are 3� 3 matrices whose components are

Q ¼ ci1k1½ �; R ¼ ci1k2½ �; T ¼ ci2k2½ � (2.10)

Matrix B in (2.5) is related to matrix A in (2.5) by the following
relationship:

B ¼ RTAþ TAP (2.11)

Matrices A and B also satisfy the following orthogonality relation
if they are properly normalized:

A A

B B

" #
BT AT

B
T

A
T

" #
¼

I 0

0 I

� �
(2.12)

or, expressed in a different way,

ABT þ A B
T ¼ I ¼ BAT þ B A

T

AAT þ A A
T ¼ 0 ¼ BBT þ B B

T
(2.13)

where I is the unit matrix. From (2.13), the Barnett–Lothe tensors
are defined as

H ¼ 2iAAT ; L ¼ �2iBBT ; S ¼ i 2ABT � I
� �

(2.14)

where H, L, and S are real, and H and L are symmetric positive
definite. They depend only on the material constants cijkl.

In the presence of material elastic anisotropy a separation into
purely in-plane and purely out-of-plane deformation states may no
longer be possible, i.e., in-plane stressing may induce out-of-plane
strains and displacements, unless the plane of consideration is one
of material symmetry. Since here we wish to consider a two-
dimensional formulation, we will accept this limitation, bearing in
mind that (i) we wish to preserve the simplicity of analysis associ-
ated with a crack that preserves the planar nature of the problem,
and (ii) the formulation will provide insights on the effects of
material anisotropy for such planar behavior.

2.2 Edge Dislocation. The displacement potentials for a dis-
location characterized by the Burgers vector b ¼ b1 b2 b3½ �T
¼ b cos w sin w 0½ �T of magnitude b, and also for a line force
e¼ [e1 e2 e3]T, colocated at the origin within an infinite plane
solid, can be expressed in the form

fd zð Þ ¼ ln zh iq (2.15)

where ln zh i ¼ diag ln z1 ln z2 ln z3½ �, and the complex coeffi-
cient vector q¼ [q1 q2 q3]T is to be determined in terms of b and e
by the displacement and force conditions
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þ
c

du ¼ b;

þ
c

du ¼ e (2.16)

for any curve C enclosing the origin. Inserting (2.15) into (2.5)
and then into (2.16) we get

A A

B B

" #
q

�q

� �
¼ 1

2pi

b

e

� �
(2.17)

Using (2.12) we can solve for q as

q

�q

" #
¼ 1

2pi

A A

B B

" #�1
b

e

" #
¼ 1

2pi

BT AT

B
T

A
T

" #
b

e

" #

¼ 1

2pi

BTbþ ATe

B
T
bþ A

T
e

" #
(2.18)

If e¼ 0, we obtain the dislocation solution

q ¼ 1

2pi
BTb ¼ 1

4p
B�1Lb (2.19)

Thus, substituting (2.19) into (2.15), we find that the displacement
potential for an edge dislocation located at the origin within an
infinite plane solid is

fd zð Þ ¼ 1

4p
ln zh iB�1Lb (2.20)

It is easy to prove that the expressions A �h iB�1 and B �h iB�1 are
independent of the factor introduced for normalization mentioned
in conjunction with Eqs. (2.12) and (2.13), and are only dependent
on the elastic material constants cijkl. Hence direct substitution of
(2.20) into (2.5) uniquely determines the deformation and stress
fields of a dislocation at the origin with Burgers vectors b in an in-
finite solid.

3 Fundamental Solution for a Transformation Strain

Nucleus Located in an Infinite Plane Solid

In this section we seek the Stroh formalism potential for a trans-
formation strain nucleus located in an infinite plane solid. These
nuclei will be represented by superposition of edge dislocations.

3.1 Stroh Potential for a Transformation Strain Nucleus.
Consider an infinitesimal element with an area dA (¼ dx0dy0),
which undergoes an unconstrained transformation deformation
with two principal strains ex0 and ey0 expressed in local principal
coordinates x0, y0 as shown in Fig. 1. The origin of the local coor-
dinate system x0, y0 lies at the location represented symbolically
by z0 in the global coordinate system x, y, and w is the orientation
angle of the x0 axis (associated with the principal strain ex0) with
respect to the global x-coordinate axis. Note that z0i¼ x0þ piy0. In
view of the physical meaning of the edge dislocation, the region
of infinitesimal transformation strain can be represented by an as-
sembly of four dislocations, as shown in Fig. 1. Dislocations 1
and 3 form a dislocation dipole, as do dislocations 2 and 4. The
two dipole systems are perpendicular to each other and lie around
the point z0. The Stroh potential for these four dislocations can be
derived in a stepwise fashion, as described below.

3.1.1 Potential of Dipole 1-3 (Fig. 1). The potential in global
coordinates for the dislocation dipole formed by dislocations 1
and 3 can be obtained by summing the contribution of the two

dislocations forming the dipole. Since the transformation zone is
infinitesimal and the dipoles have opposite Burgers vectors, such
a process can be carried out by differentiating the potential of dis-
location 1 with respect to the coordinate vector from the center of
the transformation zone to dislocation 1 and multiplying the result
by the corresponding dipole length dy0. The potential for disloca-
tion 1 in Fig. 1 is

fd1 zð Þ ¼ 1

4p
ln z� s1ð Þh iB�1Lb1 (3.1)

where

b1 ¼ ex0dx0n wð Þ; n wð Þ ¼ cos w sin w 0½ �T (3.2)

s1i ¼ z0i þ y0 sin w� pi cos wð Þ (3.3)

where y0 is the magnitude of the distance from the center of the
transformation zone to dislocation 1 when taken to be not infini-
tesimal. The potential of dislocation dipole 1-3 formed by disloca-
tions 1 and 3 is then found from

fdipole1�3 ¼
@fd1

@y0 jy0¼0

dy0

¼ 1

4p
ex0

� sin wþ p cos w
z� z0ð Þ

	 

B�1Ln wð Þdx0dy0

¼ 1

4p
ex0

� sin wþ p cos w
z� z0ð Þ

	 

B�1Ln wð ÞdA (3.4)

3.1.2 Potential of Dipole 2-4 (Fig. 1). Similarly, in global
coordinates, the potential for dislocation dipole 2-4 formed by dis-
locations 2 and 4 can be obtained by differentiating the potential
of dislocation 2 with respect to x0, and multiplying by dx0, where
x0 is the magnitude of the distance from the center of the transfor-
mation zone to dislocation 2, when the distance is taken to be not
infinitesimal. The potential for dislocation 2 is

fd2 zð Þ ¼ 1

4p
ln z� s2ð Þh iB�1Lb2 (3.5)

b2 ¼ �ey0dy0m wð Þ; m wð Þ ¼ � sin w cos w 0½ �T (3.6)

s2i ¼ z0i � x0 cos wþ pi sin wð Þ (3.7)

Fig. 1 An infinitesimal element with transformation strain
located in an infinite plane solid
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The potential of dislocation dipole 2-4 is then given by

fdipole2-4 zð Þ ¼ @fd2 zð Þ
@x0jx0¼0

dx0

¼ � 1

4p
ey0

cos wþ p sin w
z� z0ð Þ

	 

B�1Lm wð Þdx0dy0

¼ � 1

4p
ey0

cos wþ p sin w
z� z0ð Þ

	 

B�1Lm wð ÞdA (3.8)

Consequently, the potential of the four-dislocation nucleus in the
global coordinate system is obtained by summing (3.4) and (3.8),

f0 ¼ fdipole1-3 þ fdipole2-4 (3.9)

Therefore, the potential for a nucleus of transformation strain
located at z0 in an infinite anisotropic solid is

f0 zð Þ ¼ dA

4p
ex0

� sin wþ p cos w
z� z0ð Þ

	 

B�1Ln wð Þ

�
�ey0

cos wþ p sin w
z� z0ð Þ

	 

B�1Lm wð Þ

�
(3.10)

Solution (3.10) is the fundamental solution for a nucleus of strain
obtained in this study.

4 Formulation of the Transformation Toughening

Problem

It is assumed that the size of the transformation strain region
is small compared with the crack length and other problem
dimensions. Hence, in this section we will concentrate on the

basic problem of a transformation strain nucleus interacting with a
semi-infinite crack in an infinite plane.

4.1 Stroh Potential for a Transformation Strain Nucleus
Interacting With a Semi-Infinite Crack. Consider a transforma-
tion strain nucleus as described above, located at point (xs, ys) so
that its location is defined by the complex parameter z0 which is
now evaluated through z0i ¼ xs þ piys. The orientation angle is w,
and the spot interacts with a semi-infinite crack occupying the
negative half of the x axis and with its tip at the origin, as shown
in Fig. 2. By the superposition principle, the problem shown in
Fig. 2 can be decomposed into two subproblems shown in
Figs. 3(a) and 3(b).

For convenience we express the second equation of (2.6) as

r2 ¼ u;x ¼ 2Re½Bf ;x zð Þ� ¼ 2Re½h zð Þ�; i:e:; h zð Þ ¼ Bf ;z zð Þ
(4.1)

Using this notation, the subproblems in Fig. 3 can be solved as
follows.

(i) Subproblem (a): The solution to this problem can be
obtained from Eq. (3.10) by differentiation with respect to
z so that the relevant function h is given by

ha zð Þ ¼ � dA

4p
ex0B

� sin wþ p cos w

z� z0ð Þ2

* +
B�1Ln wð Þ

(

�ey0B
cos wþ p sin w

z� z0ð Þ2

* +
B�1Lm wð Þ

)
(4.2)

(ii) Subproblem (b): To find the complex function hb(z) for
subproblem (b), we note from subproblem (a) that in an
infinite plane, the traction on the x axis induced by the
transformation strain nucleus according to Eq. (4.1) is
stated as

r20 xð Þ ¼ r12 r22 r32½ �T¼ u0;x
xð Þ ¼ 2Re½ha xð Þ� (4.3)

To ensure a traction-free crack for the problem in Fig. 2, the
tractions on the crack surface of subproblem (b) must be �r20 (x).
The general solution for this subproblem is [39,40]

hb zð Þ ¼ � 1

2p
1ffiffi
z
p
ð0

�1

r20 tð Þ
ffiffiffiffi
tj j

p
t� zð Þ dt (4.4)

Fig. 2 A transformation strain nucleus interacting with a semi-
infinite crack in an infinite body

Fig. 3 Two subproblems forming the decomposition of the original problem in Fig. 2. (a) Trans-
formation strain nucleus in an infinite plane without a crack. (b) Application on the semi-infinite
crack surfaces of the negative of the tractions due to the transformation strain nucleus.
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Substituting (4.2) into (4.3) and then (4.3) into (4.4), we obtain
the solution of subproblem (b) as

hb zð Þ¼ dA

2pð Þ2
1ffiffi
z
p
ð0

�1
Re

ex0B
�sinwþpcosw

t�z0ð Þ2

* +
B�1Ln wð Þ

�ey0B
coswþpsinw

t�z0ð Þ2

* +
B�1Lm wð Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;

2666664

3777775
�

ffiffiffiffi
tj j

p
t�zð Þdt

¼� dA

2pð Þ2
1ffiffi
z
p
ð1

0

Re

ex0B
�sinwþpcosw

tþz0ð Þ2

* +
B�1Ln wð Þ

�ey0B
coswþpsinw

tþz0ð Þ2

* +
B�1Lm wð Þ

2666664

3777775
�

ffiffi
t
p

tþzð Þdt (4.5)

Consequently, by superposing the solutions of the above two
subproblems together, the solution for the problem of a transfor-
mation strain nucleus interacting with a semi-infinite crack shown
in Fig. 2 is finally obtained as

h zð Þ ¼ ha zð Þ þ hb zð Þ (4.6)

From (2.6), the stress field is obtained as

r2 ¼ u;x ¼ 2Re½Bf ;x zð Þ� ¼ 2Re½Bf ;z zð Þ� ¼ 2Re½h zð Þ� (4.7)

r1 ¼ �u;y ¼ �2Re½Bf ;y zð Þ� ¼ �2Re½BPf ;z zð Þ�
¼ �2Re½BPB�1h zð Þ� (4.8)

4.2 Influence Function for the Calculation of Stress
Intensity Factors. According to the traditional stress intensity
factors’ definition, the stress intensity factors at the crack tip due
to the presence of the transformation strain nucleus can be com-
puted as follows:

dK ¼ lim
y¼0;x!0þ

ffiffiffiffiffiffiffiffi
2px
p

r2

¼ lim
y¼0;x!0þ

ffiffiffiffiffiffiffiffi
2px
p

2Re½h zð Þ�

¼ lim
x!0þ

ffiffiffiffiffiffiffiffi
2px
p

2Re½ha xð Þ þ hb xð Þ�

¼ lim
x!0þ

ffiffiffiffiffiffiffiffi
2px
p

2Re½hb xð Þ�

(4.9)

Inserting (4.5) into (4.9) gives

dK ¼ lim
x!0þ

ffiffiffiffiffiffiffiffi
2px
p

2Re
�dA

2pð Þ2
1ffiffiffi
x
p
ð1

0

Re

ex0B
� sin wþ p cos w

tþ z0ð Þ2

* +
B�1Ln wð Þ

�ey0B
cos wþ p sin w

tþ z0ð Þ2

* +
B�1Lm wð Þ

2666664

3777775
ffiffi
t
p

tþ xð Þdt

8>>>>><>>>>>:

9>>>>>=>>>>>;

¼ � dA

p
ffiffiffiffiffiffi
2p
p Re

ð1
0

Re

ex0B
� sin wþ p cos w

tþ z0ð Þ2

* +
B�1Ln wð Þ

� ey0B
cos wþ p sin w

tþ z0ð Þ2

* +
B�1Lm wð Þ

2666664

3777775
ffiffi
t
p

t
dt

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ �dA

2
ffiffiffiffiffiffi
2p
p Re ex0B

� sin wþ p cos wð Þ

z
3
2
0

* +
B�1Ln wð Þ � ey0B

cos wþ p sin wð Þ

z
3
2
0

* +
B�1Lm wð Þ

264
375 (4.10)

where dK ¼ dKII dKI dKIII½ �T are infinitesimal contributions
to the stress intensity factors for mode II, mode I, and mode III,
representing in-plane shear, tension, and antiplane shear, respec-
tively, relative to the positive x axis near the crack tip.

5 Examples: Tetragonal Crystals

The anisotropic elastic constitutive law for tetragonal crystal-
line materials, e.g., tetragonal zirconia, can be expressed using six
independent material constants as

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

26666664

37777775
e11

e22

e33

2e23

2e13

2e12

26666664

37777775 ¼
r11

r22

r33

r23

r13

r12

26666664

37777775 (5.1)

where the x3 axis is the tetragonal direction and other two axes are
taken to be the in-plane x1 and x2 coordinate directions. Note that
in tetragonal symmetry the elastic constant c66 is independent of
the other elasticities; in contrast to transverse isotropy, where
c66¼ (c11� c12)/2. Whereas transverse isotropy around the x3 axis

leads to plane strain elasticity problems in the x1�x2 plane that
can be solved by methods valid for isotropic materials, this is not
the case for tetragonal symmetry, and Stroh formalism becomes
necessary. With the elastic matrix given by Eq. (5.1), we then find

Q ¼
c11 0 0

0 c66 0

0 0 c44

264
375; R ¼

0 c12 0

c66 0 0

0 0 0

264
375;

T ¼
c66 0 0

0 c11 0

0 0 c44

264
375 (5.2)

Substituting (5.2) into (2.9) we get

c11 þ c66p2 c12 þ c66ð Þp 0

c12 þ c66ð Þp c66 þ c11p2 0

0 0 c44 1þ p2ð Þ

264
375a ¼ 0 (5.3)

and the characteristic equation
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det

c11 þ c66p2 c12 þ c66ð Þp 0

c12 þ c66ð Þp c66 þ c11p2 0

0 0 c44 1þ p2ð Þ

264
375 ¼ 0 (5.4)

From (5.4) we may find the three complex characteristic roots
[Im (pi)> 0]

p1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2� g

p
þ i

ffiffiffiffiffiffiffiffiffiffiffi
2þ g

p� �
;

p2 ¼
1

2
�

ffiffiffiffiffiffiffiffiffiffiffi
2� g

p
þ i

ffiffiffiffiffiffiffiffiffiffiffi
2þ g

p� �
; p3 ¼ i (5.5)

where g ¼ ðc2
11 � c2

12 � 2c12c66Þ=c11c66, and the pair of matrices
A* and B* is given in a non-normalized form by

A� ¼

� p2
1c11 þ c66

p2
1c11 � c12

� p2
2c11 þ c66

p2
2c11 � c12

0

p1 c12 þ c66ð Þ
p2

1c11 � c12

p2 c12 þ c66ð Þ
p2

2c11 � c12

0

0 0 1

266666664

377777775

B� ¼

�c66p1 �c66p2 0

c66 c66 0

0 0 ic44

2664
3775

(5.6)

Matrix L can then be directly evaluated as [38]

L ¼ Re iA�B
�1
�

� �� ��1¼
c12 þ c11ð Þb 0 0

0 c12 þ c11ð Þb 0

0 0 c44

264
375
(5.7)

with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c66 c11 � c12ð Þ
c11 c11 þ c12 þ 2c66ð Þ

s
.

5.1 Example 1: Interaction Between an Infinite Crack and
a Transformed Spot Having an Area Change. Here we wish to
study an infinite crack interacting with a small, circular cylindrical
transformation strain region whose cross-sectional area changes,
but has no deviatoric component to the transformation (Fig. 4). A
similar case was investigated within the framework of isotropic
elasticity by McMeeking and Evans [20].

If the radius of the cylinder is much smaller than its distance
from the crack tip (R� r), and since ex0¼ ey0¼ e0, then from
(4.10) we obtain as the contribution to the stress intensity factors
due to the zone as

DK ¼
DKII

DKI

DKIII

264
375

¼ � pR2e0

2
ffiffiffiffiffiffi
2p
p Re

B
� sin wþ p cos wð Þ

z

3
2
0

* +
B�1Ln wð Þ

� B
cos wþ p sin wð Þ

z

3
2
0

* +
B�1Lm wð Þ

2666664

3777775
(5.8)

By directly substituting B*, L, n, and m into (5.8), it simplifies to

DK ¼
DKII

DKI

DKIII

24 35 ¼ � pR2 c11 þ c12ð Þbe0

2
ffiffiffiffiffiffi
2p
p Re

p2

z
3
2
02

þ p1

z
3
2
01

0B@
1CA

� 1

z
3
2
02

þ 1

z
3
2
01

0B@
1CA

0

2666666666664

3777777777775
(5.9)

where

xs ¼ r cos h; ys ¼ r sin h

z01ð Þ
3
2 ¼ xs þ p1ysð Þ

3
2¼ r

3
2 cos hþ p1 sin hð Þ

3
2

z02ð Þ
3
2 ¼ xs þ p2ysð Þ

3
2¼ r

3
2 cos hþ p2 sin hð Þ

3
2

(5.10)

or

DKI ¼
pR2 c11 þ c12ð Þbe0

2
ffiffiffiffiffiffi
2p
p Re

1

z
3
2
02

þ 1

z
3
2
01

0B@
1CA

264
375

DKII ¼ �
pR2 c11 þ c12ð Þbe0

2
ffiffiffiffiffiffi
2p
p Re

p2

z
3
2
02

þ p1

z
3
2
01

0B@
1CA

264
375

(5.11)

Since the solution (5.11) is independent of the Stroh matrices A
and B, and the generalized stress function f(z), it depends only on
the relevant material parameters, including how they influence the
eigenvalues controlling z01 and z02. Therefore Eq. (5.11) can be
specialized to the isotropic solution by use of

c11 ¼ c33 ¼
E 1� �ð Þ

1þ �ð Þ 1� 2�ð Þ ; c44 ¼ c66 ¼
E

2 1þ �ð Þ ;

c12 ¼ c13 ¼
E�

1þ �ð Þ 1� 2�ð Þ (5.12)

in which case z01 ¼ z02 ¼ z0 ¼ xs þ iys ¼ reih. As a result,
Eq. (5.11) gives

DKI ¼
pR2 c11 þ c12ð Þbe0ffiffiffiffiffiffi

2p
p Re

1

z
3
2
0

264
375 ¼ Ee0

1� �2ð Þ
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2
ffiffiffiffiffiffi
2p
p
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3h
2

r
3
2
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2p
p Re

i

z
3
2
0

264
375 ¼ � Ee0

1� �2ð Þ
pR2

2
ffiffiffiffiffiffi
2p
p

sin
3h
2

r
3
2

(5.13)
Fig. 4 A circular transformation strain zone in an anisotropic
solid with a semi-infinite crack
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This outcome is consistent with the results of McMeeking and
Evans [20].

It can be seen in Eq. (5.9) to Eq. (5.13) that (DKI, DKII) are pro-
portional to r�

3
2 for both isotropic and anisotropic material models.

On the other hand, the influence of the angle h on the stress inten-
sity factor for the anisotropic and isotropic cases is different. We
assess this by a normalization of the stress intensity factors,
designed to produce a result that is unity at h¼ 0 in the case of
DKI when the isotropic material is considered. The results are
from (5.13) for the isotropic case

D eKI ¼
2
ffiffiffiffiffiffi
2p
p

1� �2ð Þr
3
2

Ee0pR2
DKI ¼ cos

3

2
h

D eKII ¼
2
ffiffiffiffiffiffi
2p
p

1� �2ð Þr
3
2

Ee0pR2
DKII ¼ � sin

3

2
h

(5.14)

and from (5.11) for the anisotropic case

D eKI ¼
ffiffiffiffiffiffi
2p
p

r
3
2DKI

pR2 c11 þ c12ð Þbe0

¼ 1

2
Re

1

cos hþ p2 sin hð Þ
3
2

þ 1

cos hþ p1 sin hð Þ
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24 35
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p
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2DKII

pR2 c11 þ c12ð Þbe0

¼ � 1

2
Re

p2

cos hþ p2 sin hð Þ
3
2

þ p1

cos hþ p1 sin hð Þ
3
2

24 35
(5.15)

The contrasting dependence on h in Eqs. (5.14) and (5.15) makes
it clear that the anisotropy influences how a transformed spot
experiencing area change produces an alteration to the stress in-
tensity factor that depends on the angular location of the spot rela-
tive to the crack tip. To bring this point into greater focus, we
have obtained numerical results for the case of an area changing
transformation in zirconia to demonstrate the influence of the
angle h on the stress intensity factors. The elastic constants of
tetragonal zirconia in units of GPa are c11¼ 327, c12¼ 100,
c13¼ 62, c33¼ 264, c44¼ 59, c66¼ 64 [41]. This gives the values
p1¼ 1.937i, p2¼ 0.5161i, and b¼ 0.2829. The resulting variation

of the stress intensity factors with the angle h for both anisotropic
and isotropic materials is plotted in Fig. 5. It can be seen that ani-
sotropy influences the variation, and makes a modest, though sig-
nificant, difference to the stress intensities produced by the spot.

5.2 Example 2: A Semi-Infinite Crack Enclosed by a
Transformed Wake. Consider a semi-infinite crack enclosed by
a transformed wake A as shown in Fig. 6. Suppose the radius of
the transformed circular area in front of crack tip is R, the wake is
infinite, extending to x¼�1, and the transformation involves
area change without a deviatoric component (ex0¼ ex0¼ e0). Note
that there is no out-of-plane transformation strain. We assume that
the elastic properties of the transformed material are identical to
those of the untransformed material that surrounds it, a reasonable
assertion in the case of a purely area changing transformation
without change of orientation of the tetragonality. Note that the
assumption of homogeneous elasticity is suspect if the crystallog-
raphy changes, as in a phase change from monoclinic to tetrago-
nal. Inserting B*, L, n, and m into (4.10), we obtain

dK ¼ �e0dA

2
ffiffiffiffiffiffi
2p
p Re B

� sin wþ p cos wð Þ
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* +
B�1Ln wð Þ
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p Re

p2

z
3=2
02

þ p1

z
3=2
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� 1

z
3=2
02

þ 1

z
3=2
01

 !
0

26666664

37777775 (5.16)

By use of the Green’s function method, the changes to the stress
intensity factors due to the transformed wake zone can be eval-
uated by performing integration on the zone A as

DK ¼ � c11 þ c12ð Þbe0

2
ffiffiffiffiffiffi
2p
p

ð
A

Re

p2

z
3=2
02

þ p1

z
3=2
01

 !

� 1

z
3=2
02

þ 1

z
3=2
01

 !
0

266666664

377777775dA (5.17)

By performing a straightforward integration, we can simplify
Eq. (5.17) to

Fig. 6 A crack is enclosed by a transformed wake

Fig. 5 Normalized stress intensity factor contributions due to
a cylindrical transformation strain zone at angle h
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DKIII ¼ 0

(5.18)

When we substitute the characteristic roots obtained in example 1
into Eq. (5.18), namely p1¼ 1.937i, p2¼ 0.5161i, we obtain

DKI ¼ �2:267
c11 þ c12ð Þbe0

ffiffiffi
R
pffiffiffiffiffiffi

2p
p

DKII ¼ 0

(5.19)

As in the isotropic case, a transformation involving in-plane
expansion of the material reduces the stress intensity factor
[20,30]. Note that Eq. (5.19) can be specialized to the isotropic
case through use of Eq. (5.12). We then obtain

DKI ¼ �0:452
Ee0

ffiffiffi
R
p

1� �2
(5.20)

Now consider a dilatant transformation that includes a transforma-
tion strain in the out-of-plane direction, letting the volume strain
of the transformation be eT

v . After the out-of-plane strain of the
transformation has been suppressed to maintain plane strain, we
find that in the isotropic case e0 ¼ 1þ �ð ÞeT

v =3. Thus, Eq. (5.20)
becomes

DKI ¼ �0:151
EeT

v

ffiffiffi
R
p

1� � (5.21)

This differs from the result of McMeeking and Evans [20] because
the shape of the zone used here is not the same as that used by
McMeeking and Evans [20]. The zone used here is a semicircle
ahead of the crack tip, whereas that used by McMeeking and
Evans [20] extends further beyond the crack tip for the same zone
width. This difference in zone shape fully explains the difference
between Eq. (5.21) and the result of McMeeking and Evans [20],
where the coefficient 0.151 in Eq. (5.21) is replaced by 0.22.
While the shape of the transformation zone is particularly simple
in the case analyzed by us to obtain Eq. (5.19) to (5.21), in princi-
ple the formulation can be used for more complex zone shapes,
such as those controlled by a transformation criterion of an appro-
priate form, e.g., a critical hydrostatic stress as used by McMeek-
ing and Evans [20] and Budiansky et al. [30].

6 Conclusions

Fundamental solutions for a transformation strain nucleus
located in an infinite plane, and in a plane containing a semi-
infinite crack, have been derived in the framework of plane
anisotropic elasticity theory. Two simple examples for tetragonal

zirconia are studied to demonstrate that the formulation paves the
way to the possibility of a systematic study of transformation
stress problems in anisotropic solids.
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