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Abstract An integrated 2-D model of a lithium ion battery
is developed to study the mechanical stress in storage parti-
cles as a function of material properties. A previously devel-
oped coupled stress-diffusion model for storage particles is
implemented in 2-D and integrated into a complete battery
system. The effect of morphology on the stress and lithium
concentration is studied for the case of extraction of lithium
in terms of previously developed non-dimensional parame-
ters. These non-dimensional parameters include the material
properties of the storage particles in the system, among other
variables. We examine particles functioning in isolation as
well as in closely-packed systems. Our results show that the
particle distance from the separator, in combination with the
material properties of the particle, is critical in predicting
the stress generated within the particle.
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1 Introduction

Ageing in lithium ion batteries has been a source of grow-
ing concern, given the rapid increase of their use, both in
numbers and variety of devices. Ageing manifests itself pri-
marily as capacity fade, power fade, increase in impedance
and an overall decrease in performance [1,2]. Most ageing
mechanisms are associated with reactions with the electro-
lyte and its organic solvent that cause decomposition, and
the production of volatile and combustible gases, along with
the generation of pressure that may rupture the cell container
[3–6]. In addition, there can be effects indirectly related to the
electrochemistry of the cell, such as corrosion of components
of the electrodes, including the current collector, oxidation of
conductive particles within the electrode and its binder, and
binder decomposition, especially at high charging voltages
[3–5].

The contribution of structural degradation to the ageing of
batteries has become important as an increase of the lifetime
of batteries is sought. There are two main causes of structural
degradation. At high rates of charging and discharging, struc-
tural disordering and phase changes in the electrode storage
materials may occur [6], resulting in slowing of the rate at
which lithium can be inserted and extracted, and also dimin-
ishing the capacity of the cell. The second source of dam-
age is the expansion and contraction of storage particles as
Li+ ions are extracted and inserted. In many storage materi-
als, usually transition metal oxides, the process of removing
or inserting lithium ions out of and into storage particles is by
intercalation, formally defined as the insertion of a guest spe-
cies into normally unoccupied interstitial sites in the crystal
structure of an existing stable host material [1]. Depending
on which material is used, as much as 100 % of the lithium is
depleted from cathodes during charging [4], leading to sig-
nificant shrinkage. For example, in LiMn2O4, depletion of
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lithium to 20 % of stoichiometry leads to a volume reduction
of 6.5 % [7]. Upon very fast charging, the first batch of lithium
extracted from the oxide particle will deplete from near its
surface, causing a high tensile hoop stress there as the outer
layer shrinks. The resulting stress can cause cracks to prop-
agate and damage the material. Thus, comminution of oxide
particles in the cathode can occur during charging [1,7,8], a
damage mechanism that can also accumulate by fatigue upon
repeated cycling of the battery. One way of approaching the
problem is to design newer materials with reduced valume
changes [9]. There have been several attempts at applying
fracture mechanics to these problems in order to predict con-
ditions conducive to cracking [10–14] and criteria suggested
to avoid it [15–18].

A good starting point for such studies is to consider a
storage particle in isolation. Christensen and Newman [7]
developed a multi-component diffusion model for estimating
the stress generated in Lix Mn2O4, where they included the
volume change during phase transformation. Pressure was
used to account for the stress generated by swelling within
the particle. Sastry and co-workers [19] developed a model
based on a thermal analogy for stress, and also took into
account the effect of different shapes of the particle as well
as phase changes [20]. Cheng and Verbrugge [21,22] formu-
lated analytical models within the particle for calculating the
diffusion induced stresses (DIS) based on lithium concen-
tration within the particle, but did not include any influence
of the mechanical stress on diffusion of the lithium. Bohn et
al. [23] developed a simulation for the diffusion within the
particle based on a model for the lithium chemical potential
encompassing the effect of stress and an excess Gibbs free
energy. As a result they are able to simulate the effect of
phase change and staging in storage particles.

Building on the model of Bohn et al. [23], we previ-
ously developed a set of non-dimensional parameters that
can be used to characterize the stress response of any particle
[24,25]. These parameters depend on material properties
such as Young’s modulus, lithium partial molar volume, and
storage particle radius, among others. Performance maps
generated for the case of extraction and insertion [24,25]
show that high stress actually aids the process of lithium
diffusion within the particle, acting in conjunction with the
lithium concentration profile. More importantly, the maps,
based as they are on dimensionless parameters, can be used
for any storage material, subject to the caveat that they were
developed only for spherical particles.

However, a storage particle in a lithium ion battery does
not exist in isolation, but is a component of a large complex
system of interacting species. Attempts to model the sys-
tem in its entirety generally invoke reductions in the system
complexity through the use of approximations in regard to the
microstructure and other properties. As an example, porous
electrode theory [26] has been extensively used to represent

the complex microstructure of the battery in a 1-D approx-
imation [7,27,28]. This has lead to ‘pseudo-2-D’ models,
in which a single particle is coupled to a battery simulator
based on porous electrode theory [23,29,30]. However, inter-
actions among particles are inevitably omitted in such treat-
ments. High local stress and lithium concentration caused
by such interactions can be critical to the development and
propagation of cracks [11,14,15].

Garcia et al. [31,32] studied stresses within an electrode
using a 2-D model, in which the entire electrochemistry of
the battery was modeled including storage particles, binder
and electrolyte pores. These simulations clearly show the
importance of particle position within the electrode, and cor-
roborate other work [30] that shows that the closer the particle
is to the separator the more stress it is likely to experience.
However the model of Garcia et al. [31,32] does not couple
diffusion with stress as a driving force. Furthermore, Wang
and Sastry [33] modeled an entire battery system in 3-D;
however they did not consider stress in their system.

In this work we extend our 1-D model to 2-D and apply it to
a battery system. In order to avoid multiple competing effects
we first consider an array of particles, equidistant from the
separator. Our goal is to study the effect of particles on each
other, and to investigate whether material parameters have an
influence on the stress response. We then modify the cathode
and add additional particles to the system. Our coupled model
with 2-D simulations allows us not only to analyze the effect
of different material parameters on the stress response within
the particle but also to investigate local variations of lithium
concentration and stress caused by particle interactions.

2 Model formulation

2.1 Lithium ion battery: operation

Figure 1 shows a schematic of the 2-D model we use for
a lithium ion battery. There are two electrodes, the anode
in the form of metallic lithium (Region I) and the cathode
(Regions III and IV), consisting of storage particles (IV) and
a composite, porous binder (III). The cathode is connected
to a metal plate known as the current collector. As the anode
comprises lithium metal, no current collector is needed for
it. A porous polymeric component known as the separator
lies between the two electrodes (Region II). The compos-
ite cathode consists of cylindrical storage particles (Region
IV) surrounded by a porous binder, with electrolyte in its
pores and in those of the separator. The entire system has
uniform thickness, including the particles, and so is planar.
Such geometry is artificial, as storage particles are usually
3-D, in spherical, ellipsoidal or acicular shapes. For the cath-
ode, these particles normally consist of layered oxides, such
as lithium manganate and lithium cobalt oxide. Compared
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Fig. 1 A schematic of the lithium ion battery with two particles show-
ing the different components

to the set-up in Fig. 1, cathode particles are usually more
densely packed, with weight fractions of around 85 %.

The cell comprises two different conducting paths, one
for lithium ions and the other for electrons. During battery
discharge, electrons flow in and from the anode through an
external lead (not shown in Fig. 1, but connecting a to e) to
the current collector, and thence towards the cathode storage
particles via a percolating network, usually carbon coated
on binder and storage particles. At the same time, lithium is
oxidized to Li+ ions at the anode-separator interface at b in
Fig. 1, and these ions are then transported through the elec-
trolyte in the separator and cathode pores until they reach the
surface of storage particles at f. There the ions are reduced
to lithium once more, enter the particles, and are diffused
through and stored within them. During charging of the bat-
tery, the motion of the electrons and the Li+ions is reversed.

Our model of Region III in the cathode, consisting in real-
ity of binder particles, pore space with electrolyte, and a
carbon coating on the binder and storage particles, is that of
storage particles surrounded by electrolyte, as if the binder
particles are not present. Such an arrangement is a convenient
simplification, and inert binder particles will be introduced
in future. However, overlaid on the electrolyte pool in our
model, but electrically isolated from it, is a homogenized
path to give electrons access to the storage particles, this
being a substitute for the percolating carbon network coated
on binder and storage particles. This electron path is given
a homogenized, effective conductance, as described below.

The electrolyte, normally consisting of a mixture of a binary
salt, e.g. LiPF6, dissolved in an organic solvent, is assumed
to have zero net velocity, as for a solid electrolyte.
Nomenclature: In the next few sections we describe the for-
mulation for transport of the various species in the battery.
Since there are many different components we identify them
as follows:

• The major regions of the battery (anode, separator etc.)
are numbered with Roman numerals I, II etc. Terms
belonging only to a particular region are indicated by a
Roman numeral as a subscript

• The sides of the battery to which periodic boundary con-
ditions are applied are numbered with decimal numbers
1, 2 etc.

• The boundaries between the different regions are labeled
using lower case letters a, b, c etc. Terms used to describe
quantities at the boundary regions are designated by a
lower case letter as a subscript.

• Points within the system are referred to by capital letters
A, B, C etc.

• Terms that are underlined are vectors.
• The subscripts + and − refer, respectively, to positively

and negatively charged species.

2.1.1 Lithium transport in the electrolyte

We first consider the formulation governing transport of the
various species in the electrolyte. We start with the transport
equations for a binary salt in a solvent [26], given by

N+ = −ν+ D̃∇c + to+i

z+F
+ c+vo (1a)

N− = −ν− D̃∇c + to−i

z−F
+ c−vo (1b)

where N+ is the flux of the positive ions in moles per unit
area per unit time, N− is the flux of the negative ions, ν+ is
the number of positive ions that are ionized from one mole-
cule of salt, ν− is the number of negative ones. In the case of
the monovalent salts that we assume here for the electrolyte,
ν+ = ν− = 1. The effective diffusion coefficient is

D̃ = cT

co
D

(
1 + d ln f+−

d ln c

)
(2)

where the concentration cT is the total concentration of the
electrolyte in moles per unit volume, given by

cT = co + c+ + c− (3)

where co is the concentration of the solvent, c is the con-
centration of the salt, and therefore, the concentration of the
positive ions is given by c+ = ν+c and that of the negative
ones by c− = ν−c. The parameter f+− is an activity coeffi-
cient for the ionized, dissolved salt, associated with non-ideal
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Table 1 Geometrical parameters [28,31,33]

Parameter Value (µm)

Anode length 50

Separator length 50

Cathode length 174

Current collector length 10

solution thermodynamics, and D is the diffusion constant of
the salt in the solvent. In Eq. (1), i is the current density given
by

i = −κ∇� + νto−
ν+z+

(
1 + d ln f+−

d ln c

)
RT κ

Fc
∇c (4)

and to
j is the transference number of species j in the solvent,

giving the fraction of the current carried by that species. Thus,
the sum of the transference numbers of all charged species
in a solution is unity. In addition, z+ is the charge number
for a single positive ion and z− is the charge number for one
negative ion. Due to charge neutrality of the salt,

ν+z+ + ν−z− = 0 (5)

in all cases for a binary salt. The symbol F is Faraday’s
constant, giving the charge on 1 mole of protons, and v o
is the mass average velocity of the electrolyte, taken to be
zero in our simulations. In Eq. (4), κ is the conductance of
the electrolyte, � is its potential as measured by a reference
electrode, the parameter ν is such that

ν = ν+ + ν− (6)

R is the gas constant, and T is the absolute temperature.
Conservation of charge in the electrolyte provides

∇·i = 0 (7)

and after this is taken into consideration, and given zero
velocity of the electrolyte and uniform electrolyte proper-
ties, conservation of mass leads to

∂c

∂t
= ∇·

(
D̃∇c

)
(8)

Equations (1) through (8) are combined in order to determine
the concentration of the salt, the potential in the electrolyte,
and the current density. The values of material parameters
used are provided in Table 1. The electrolyte, i.e. the salt
and the solvent, is assumed to have the same conductance
in the cathode, and in the separator, so that their differing
porous nature is not taken into consideration at this point.
Thus, Eqs. (1)–(8) apply seamlessly to both Regions II and
III.

The solution of Eq. (1)–(8) for Regions II and III requires
initial and boundary conditions. At the outset, the salt

concentration and electrolyte potential are taken to be uni-
form at open circuit conditions, and the current density is
zero.
Boundary conditions: At the boundary b of Regions I and
II, i.e. between the lithium anode and the separator, the But-
ler–Volmer equation governs the flux of lithium ions, J+,b,
into the electrolyte, and thus the component of F N+ in the
outward normal direction on the surface of the anode is equal
to J+,b, given by

J+,b = i0,b

{
exp

(
αA,bηb F

RT

)
− exp

(
αC,bηb F

RT

)}
(9)

where the overpotential between Regions I and II at boundary
b is

ηb = �I,b − �I I,b − ULi (10)

The parameter i0,b is the exchange current density for the
anode surface, and ULi is the open circuit potential (OCP)
of the anode. Note that J+,b is defined as a current density.
As the anode is lithium metal and is used as the datum, or
ground electrode, its OCP is zero. For this interface we take
the exchange current density i0,b to be constant, although
generally it is a function of the lithium concentration in
the electrode and the adjacent electrolyte [33]. In a metallic
anode, the lithium concentration is essentially invariant, and
in the adjacent electrolyte remains nearly constant. Hence
taking i0,b as a constant value for the anode is a reasonable
approximation. αA,b and αC,b are defined as apparent trans-
fer coefficients, kinetic parameters that govern the influence
of the applied potential on reactions [26]. For this work we
assume them to be equal with value 0.5.

The Butler–Volmer equation also governs the reaction
occurring at boundary f, namely the insertion and extrac-
tion of lithium ions into and out of storage particles. The Li+
ion flux into the electrolyte relative to the electrode surface
overpotential is given by

J+, f = i0, f

{
exp

(
αA, f η f F

RT

)
− exp

(
−αC, f η f F

RT

)}
(11)

η f = �I V, f − �I I I, f − UStorage Material (12)

It follows that the component of F N+ in the outward nor-
mal direction from the storage particles is equal to J+, f . The
exchange current density, i0, f , in this case depends on lithium
concentration in the following way

i0, f = FkR
(
cI V,max − cI V, f

)αA, f
(
cI V, f

)αC, f (13)

where kR is a constant and cI V,max is a saturation value for the
lithium concentration in the storage particle. Thus the flux of
lithium is dependent on its concentration at the particle sur-
face, and saturation and depletion act as limiting factors to
further intercalation or de-intercalation, respectively. As a
consequence, the lithium concentration in the particle is nat-
urally deterred from violating limiting values, and thus from
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Fig. 2 A plot of the ideal OCP used for the material of the cathode
storage particles

entering the range of concentrations where phase changes can
occur. Note that if the particle surface is completely depleted
of lithium, and insertion is taking place, entropy differences
between the particle and the electrolyte are sufficiently large
to overcome the sluggish aspect introduced to kinetics by the
exchange current density dependence on the lithium concen-
tration in the particle. A similar effect occurs upon extraction
of lithium from a saturated particle surface.

In this work, we do not use the OCP of any particular
storage material. Instead the ideal OCP as developed pre-
viously is used [24]. This OCP, U s , is related to the ideal
chemical potential, μLi , of lithium in a storage particle via
the following two equations.

μLi = μ0
Li + RT ln

cI V, f

cI V,max − cI V, f
− �Liσh

0 ≤ cI V ≤ cI V,max (14)

FU s (t) = μ̃Li − μLi (r0, t) (15)

where μ0
Li is a reference chemical potential, cI V, f is the

concentration of lithium at the particle surface, cmax is the
maximum permitted concentration, �Li is the partial molar
volume of lithium in the storage particle, σh is the hydrostatic
stress at the particle surface and μ̃Li is the chemical potential
of lithium in a metallic electrode at ground potential. In Fig. 2
we illustrate the OCP as derived from Eq. (15), subject to
Eq. (14), as a function of the state of charge (SOC) for a par-
ticle having a uniform lithium concentration, and therefore
zero stress. The average value of cI V /cI V,max in the cathode
storage particle will be termed the SOC. Strictly speaking,
this terminology should be applied only to the anode, as it
is filled with lithium during battery charging and depleted
during discharge. Nevertheless, we will adopt this terminol-
ogy for individual storage particles indiscriminately, using
the term SOC as defined above for any storage particle. We
take the OCP defined in Eq. (15) and illustrated in Fig. 2 as

that for the cathode storage particles. As such, it is free of
complicating phenomena such as phase changes, and there-
fore is a suitable starting point for this study.

As noted above, Li+ ions are permitted to freely pass
through interface c between the cathode and the separator.
However, the surface of the current collector at d is imper-
meable to Li+ions so that the flux there is zero, and as a
consequence, the component of N+ normal to the current
collector in the y direction is zero. Periodic boundary con-
ditions are imposed on ion transport connecting boundaries
2–6 and 3–7. As a consequence, there is no Li+ flux through
all these boundary segments, and the component of N+ in
the x direction is thus zero. In addition, parameters including
potential and Li+ concentration are required to have common
values at equivalent points on boundaries 2 and 6 and 3 and 7.

The negative counterions within the electrolyte are kept
entirely within Regions II and III. Therefore, interfaces b, d
and f and boundaries 2, 3, 6 and 7 are all impermeable to
them. Therefore, the component of N− normal to each of
these boundaries and interfaces is zero.

2.1.2 Electron transport

The current collector, shown as Region V in Fig. 1, is the loca-
tion where, during discharge, electrons flow into the cathode
from the external lead. The current density in this region is
governed by Ohm’s law

i V = −κV ∇�V (16)

where i V is the current density, κV is the conductance of the
current collector and −∇�V is its electric field. We attribute
a net conductance, κI I I , to our composite model of Region
III in the cathode, representing the effective property of the
percolating pathway of carbon that conveys electrons from
the current collector to the storage particles. Thus, Ohm’s
law for electrons in the cathode is

i III = −κIII∇�III (17)

Ohm’s law for electrons in the anode (Region I), composed
of lithium metal, is

i I = −κI ∇�I (18)

The separator, Region II, is a non-conductor of electrons,
and so its electron conductance is zero. As always, charge
conservation requires the divergence of the current density
throughout electron conducting regions, namely Regions I,
II and III, to be zero.

Boundary conditions: Since the battery is an electrical cir-
cuit, the currents normal to boundaries a and e have the same
value, designated iapp, taken to be positive when the battery
is being charged; i.e. the current is in the positive y direc-
tion in Fig. 1 when iapp is positive. Lithium metal serves
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as the datum electrode for the battery and therefore bound-
ary a is set to ground, i.e. zero potential. Interfaces b and c
are impermeable to electrons, so the electron current in the
positive y direction is zero. However, conditions on interface
b are complicated by the presence of a redox reaction there, as
addressed below. Interface d is such that the electron current
normal to it is continuous. Periodic conditions on boundaries
1, 3, 4, 5, 7 and 8 require the electron flux through them to
be zero, so that the component of the electron current normal
to all of these boundaries in the x direction is zero. These
boundary conditions also impose equivalence between the
potential for electrons on the paired boundaries 1 and 5, 3
and 7 and 4 and 8.

Due to the redox reactions at interfaces b and f, these sur-
faces act as sources or sinks for electrons, with conditions
determined by the Butler–Volmer formulae in Eqs. (9) and
(11) for interfaces b and f, respectively. As a consequence, the
electron current orthogonal to interface b in the direction of
the outward normal to the anode is given by J+,b. Similarly,
the electron current orthogonal to interface f in the direc-
tion of the outward normal to the storage particle is equal to
−J+, f . The surface potential of storage particles at interface
f is required to be equal to the electric potential determined at
that location from the electron flow computations in Region
III.

2.1.3 Lithium diffusion and stress in storage particles

The flow of lithium ions in storage particles is governed by a
coupled diffusion-stress model [23]. We provide a summary
of the equations below but a more detailed description can
be found in [24,25].

Our model for the chemical potential of lithium interca-
lated in storage particles, already referred to in Eq. (14), is

μLi = μ0
Li + RT ln

cLi

cmax − cLi
− �Liσh

0 ≤ cLi ≤ cmax (19)

We do not explicitly identify Region IV as the subject
domain, as it is the only component of the battery where solid-
state diffusion occurs. The lithium flux, JLi , in the storage
particles is determined by [23]

J−Li = −cLi D0

RT

(
− cLi

cmax

)
(∇μLi + SLi∇T ) (20)

where D0 is the diffusion coefficient of lithium in the parti-
cle, and SLi is the partial molar entropy of lithium, i.e. the
negative of the coefficient of T in Eq. (19). When combined
with Eq. (19), this leads to

J Li = −D0

{
∇cLi −

(
1 − cLi

cmax

)
�Li cLi

RT
∇σh

}
(21)

Conservation of mass then provides

∂cLi

∂t
= D0∇·

{
∇cLi −

(
1 − cLi

cmax

)
�Li cLi

RT
∇σh

}
(22)

given that D0 is uniform. Swelling strains occur due to vol-
ume changes that arise during intercalation/deintercalation of
lithium in the storage particle. When these strains are heter-
ogeneous, elastic stress will also arise, so that the total strain
is given by

ε = 1

E

[
(1 + ν) σ − 3νσh I

] + �Li
(
cLi − c0

Li

)
3

I (23)

where ε is the strain tensor, E is Young’s modulus, ν is Pois-
son’s ratio, σ is the stress tensor, I is the identity tensor, and
c0

Li is a datum concentration at which the swelling strain is
considered to be zero. The equation for equilibrium of stress
is given by

∇·σ = 0 (24)

Plain strain conditions are used for calculating the stress.

Boundary conditions: Boundary conditions for lithium flux
are governed by the Butler–Volmer condition in Eq. (11).
Thus, the outward flux of lithium at the surface of the parti-
cle is such that

n·J Li = J+, f

F
(25)

For the equations governing stress, rigid body modes are
eliminated by constraining the center of the particle to have
zero displacement and rotation, and the surface of storage
particles is traction free.

2.1.4 Charging cycle for the battery

In typical experimental studies, galvanostatic charging is
implemented until a particular value of potential difference
across the battery is reached, followed by potentiostatic
charging. Galvanostatic charging involves a steady battery
current, iapp, applied to the system, whereas potentiostatic
charging involves the application of a steady potential dif-
ference across the battery. As noted earlier, the OCP and
the exchange current density for cathode storage particles is
dependent on the lithium concentration at the particle surface.
Therefore, through correlation of the SOC and the potential
difference during galvanostatic charging, one can make a
good estimate of how much lithium is present at the sur-
face of cathode storage particles. This feature can be used
to decide when to switch from galvanostatic to potentiostat-
ic charging to avoid overfilling surface regions of storage
particles that can cause damage through side reactions and
phase changes. To simulate this process, we choose to carry
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out computations for galvanostatic charging until a speci-
fied potential difference across the battery is reached and to
then invoke potentiostatic charging until a specified SOC is
reached. In the case of our simulations, as with experiments,
it is the battery current and the battery potential difference
that are controlled, rather than the lithium flux rate and elec-
tric potential at the surface of storage particles, as is often
the case in numerical simulations [7,19,31].

We use the OCP curve given by − (RT/F) ln[SOC/

(1 − SOC)] determined at room temperature. This curve
derives from Eqs. (14) and (15) and has a similar profile
as Fig. 2, but expressed in dimensions of volts. For our study,
we carry out galvanostatic charging until a limiting potential
of 0.22 V is reached, which correlates with a surface SOC of
0.00035. However, the concentration of lithium in the parti-
cle is non-uniform so that the average SOC tends to be much
higher, at least as high as 0.01. Indeed, the surface SOC in the
most severely depleted particle may lie significantly above
0.00035 at the time of transition due to polarization effects
in the cell. As a result, a significant amount of lithium can
remain to be extracted after the transition to potentiostatic
charging. Therefore, we set 0.22 V as the limit to galvano-
static charging, and after it is reached, we reduce the current
in order to maintain that potential; i.e. we switch to poten-
tiostatic charging. Potentiostatic charging is carried out until
the average SOC in the storage particles reaches 0.01.

In the following simulations we apply relatively high rates
of charging to the particle. As a result of this the transi-
tion from galvanostatic to potentiostatic charging is reached
quickly, leading to a sudden decrease in current as the charg-
ing process switches. As a result, even for small computa-
tional time steps, the potential overshoots the specified limit,
leading to a termination of the simulation. In order to get
through the transition, we introduce a smoothing function
for the current. In lieu of reducing the current to zero, it is
reduced over a range of 0.22 ±0.002 V, which, in terms of
SOC, represents an incremental charge of 10 parts per mil-
lion. The smoothing function used is inbuilt in COMSOL 4.2
[34].

3 Methodology of simulations

These simulations were performed using COMSOL v4.2
[34], a commercially available finite element analysis soft-
ware, which can be used to solve coupled partial differential
equations (PDE) systems.

For the problems tackled in this work, the time-depen-
dent solver is used. While different PDE’s are used to solve
for variables in different regions of the geometry, we will
consider the PDE for the concentration within the storage
particle. The concentration varies in time and space and can
be represented by the following

da
∂c

∂t
+ ∇·� = F on � (26)

c is the concentration, � is the domain and da is the coeffi-
cient of time derivative. � is a vector and F is a scalar that
can be functions of other dependent variables and time. The
boundary conditions are a combination of flux or Neumann
boundary conditions, which are represented by the variable G
and the Dirichlet boundary conditions are represented by the
variable R. COMSOL re-organizes the boundary conditions
in the following manner

−n·� = G + ∂ R

∂c
μ on ∂� (27)

R = 0 on ∂� (28)

μ represents the Lagrange multipliers, n is the normal and
∂� is the boundary of the domain.

COMSOL converts all equations to the weak form [35].
The benefit of the weak form is that less regularity is required
of the vector �. The solution vector is discretized using inter-
polation i.e. mapping out the solution to the nodes in the
domain.

cl =
∑

i

Ciϕi (29)

Ci represents the value of cl at each of the nodes and forms
the components of the solution vector C . ϕi are the shape
functions for the variable cl . Each component ϕi is defined
as being equal to the value of cl when Ci is unity and all other
Ci are zero [35].

A function v is chosen on � that belongs to a class of well
behaved functions V. v is discretized following the Galerkin
method i.e. using the same finite element shape functions as
for the dependent variable [35].

vl =
∑

i

Viϕi (30)

Multiplying Eq. (26) with v and integrating over the domain
we get∫
�

dal,k
∂ck

∂t
vld A +

∫
�

∇·�lvld A =
∫
�

Flvld A (31)

Applying Green’s theorem to Eq. (31) and combining with
Eq. (27) we get∫

�

dal,k
∂ck

∂t
vld A =

∫
∂�

(∇vl ·�l + Flvl)d A

+
∫
�

vl

(
Gl + ∂ Rm

∂cl
μm

)
d S (32)

The Lagrange multipliers can be eliminated by choosing test
functions vl such that

∂ Rm

∂cl
vl = 0 on ∂� (33)
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This implies that the functions cl + vl satisfy the linearized
versions of the Dirichlet boundary conditions. Equation (32)
can be discretized as

L(C, Ċ, t) − NF (C, t) = 0 (34)

where

L =
∫
∂�

(∇vl ·�l + Flvl)d A +
∫
�

vl Gld S

−
∫
�

dal,k
∂ck

∂t
vld A (35)

NF (C, t) =
∫
�

vl
∂ Rm

∂cl
μmd S (36)

C is the solution vector, Ċ is the time derivative, t is the time,
NF is the constraint force Jacobian and  are the Lagrange
multipliers.

We make a note about the system of constraints Rm . In the
above equations we have considered the Dirichlet boundary
conditions given by Eq. 28. COMSOL further discretizes the
Lagrange multipliers by modifying Eq. 28. These constraints
are multiplied either by the Lagrange points (pointwise con-
straints) or by another set of test functions (weak constraints).
This is akin to considering the Lagrange multipliers them-
selves as a field variable.

Therefore the equations of constraints modifies to

Rmνm = 0 (37)

where νm represents the multipliers. These equations are col-
lected into an equation of constraints, or the ‘constraint resid-
ual’ given by

M(C, t) = 0 (38)

The components of L remain the same, the components of
NF and  will be modified accordingly by modifying the
steps starting from Eq. 32.

The Jacobian of the constraints is defined as

N = −∂ M

∂C
(39)

For ideal constraints

N = NF (40)

The IDA solver is used to solve this system [36,37] using
a variable-order variable-step-size backward differentiation
formula (BDF). For our problems the maximum order was set
to 5 and the minimum to 1. The step size taken by the solver
is unconstrained, other than by a limit of 0.5 s on the max-
imum step size. As the time-stepping schemes are implicit
a nonlinear system of equations is solved at each time step
with use of the non-linear solver inbuilt in COMSOL. The
equations are linearized as follows,

DẆ + K W = L − NF (41)

N W = M (42)

where K = − d L/dC is the stiffness matrix and D =
−d L/dĊ is the damping matrix. W is the linearization of
the solution C that is being iterated over. As the solver goes
through more iteration it gets closer to the solution. For a lin-
ear problem, you would have W = C. Once the convergence
criteria is satisfied the next step is taken, the details of which
are described below.

The nonlinear solver uses an affine invariant form of the
damped Newton method [38]. The discrete form of the equa-
tions can be written as f (C) = 0 where f (C) is the residual
vector. The algorithm uses an initial guess C0 as a lineariza-
tion point and then extracts δC from f ′(C0)δC = − f (C0)

using a linear solver. A new estimate is computed as C1 =
C0 + λδC where 0 ≤ λ ≤ 1 is the damping factor. The error
E is assessed by solving f ′(C0)E = − f (C1). If the relative
error corresponding to E is larger than the relative error in the
previous iteration, the code reduces the damping factor and
recomputes C1. The algorithm repeats until the relative error
reduces from that in the previous step or until the minimum
damping factor is reached. After a successful step, the next
Newton iteration occurs.

The convergence criterion governing the solver is given
by the value of the error. The software stops the iterations
when the relative tolerance exceeds the relative error, which
is the weighted Euclidean norm.

e =
(

1

N

N∑
i=1

( |Ei |
Wi

)2
)1/2

(43)

N is the number of degrees of freedom and Wi = max(|Ci |,
Si ),where Si is a scale factor determined by the solver. If
Wi = 1 then e is an estimate for the absolute error. For these
calculations the relative tolerance was set at 10−4 and the
absolute tolerance was set at 10−5. While relative error is a
dimensionless number, the absolute error has the units of the
dependent variable.

The linear system solver used is MUMPS: MUltifrontal
Massively Parallel sparse direct Solver [39] which uses the
multi-frontal approach [40]. MUMPS has a limited degree
of multi-processor capability, with it being able to distribute
tasks to other processors, provided a main host processor is
identified. The ‘Fully Coupled’ Attribute was also used in
this problem. This means that all the equations for all solu-
tion variables are collected in one single matrix equation,
which is then solved using the MUMPS solver.

One of the benefits of using COMSOL was the presence of
predefined sets of equations within various modules, with the
algorithms within these modules optimized to handle these
specific PDEs. The various modules used by us are as fol-
lows:
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• The Nernst–Planck equations used to describe the equa-
tions of the electrolyte. These are inbuilt components of
the Chemical Species Transport module.

• The electric currents component of the AC/DC module
was used to model the electronic transport throughout the
system.

• The PDE module was used to model the lithium diffusion
within the storage particles.

• The solid mechanics component of the structural mechan-
ics module was used to model the stress equations.

A mesh consisting of triangular elements was used. In the
single particle case the total number of elements was 531,
with 150 elements used for the storage particle and 124 ele-
ments used for the electrolyte. For the two particle case, 829
elements were used with 318 elements being used for the
storage particles and 262 elements used for the electrolyte.
Finally, 1147 elements were used in the three particle case
with 494 and 416 elements being used for the storage parti-
cles and electrolyte respectively.

4 Non-dimensional parameters: derivation and range
of values

In our previous work [24] we non-dimensionalized the
diffusion-stress model for a single spherical particle to obtain
material independent results over a range of values for the
resulting non-dimensional groups of parameters. In the pres-
ent work we use values of material properties from experi-
ments for all components of the battery other than the storage
particle. In view of this, we do not non-dimensionalize the
system equations. However, we identify and use non-dimen-
sional parameters relevant to the storage particles to guide
us in the choice of specific values of material properties for
the storage particle, so that we can undertake simulations for
an interesting diversity of regimes of battery behavior. The
non-dimensional parameters are defined as follows.

Following Zhang et al. [19] we use a non-dimensional
surface current density given by

Î = i+r0

F D0cmax
(44)

where i+ is a representative value of the current density at
the surface of a typical storage particle during galvanostatic
charging arising as a consequence of the configuration of the
battery, and r0 is the radius of a storage particle. Charge con-
servation and the fact that the battery is a current loop requires
that the current flowing through the external battery connec-
tion is equal to the total current of Li+ ions leaving cathode
storage particles during charging. Therefore, to obtain i+, we
take the total current in the battery loop during galvanostatic

charging, and divide that by the total surface area of cathode
storage particles.

For a battery of unit thickness and width L as shown in
Fig. 1 subject to a current density iapp during galvanostatic
charging, and having m cylindrical cathode storage particles
all of the same radius r0, we obtain

Î = iapp L

FD0cmax2πm
(45)

We non-dimensionalize the partial molar volume as

�̂ = �Li E

RT
(46)

and use the maximum swelling strain induced in the particle
by lithium

εmax
Li = �Li cmax (47)

as a third dimensionless parameter.
Given that the concentration of lithium in storage parti-

cles influences transport behavior throughout the entire bat-
tery, it is best to keep that fixed through all the simulations
and change the value of the other parameters entering the
dimensionless groups. Hence the value of cmax is kept fixed
throughout, and its value is taken as that of LiMnO4 [7,19,
31], i.e. cmax = 2.29 × 104 mol/m3. The initial value of
lithium concentration in cathode storage particles is chosen
to be 95 % of cmax. We then identify a range of values for
the non-dimensional parameters in Eqs. (45)–(47) for which
we wish to carry out computations, and, at room tempera-
ture, use those groups to determine the requisite values for
the lithium partial molar volume, Young’s modulus and the
charging current density, iapp.

In the results we non-dimensionalize the stress tensor as
follows.

σ̂ = σ

E
(48)

Previously, other authors have non-dimensionalized the
stress tensor by dividing it by �Li cmax E , since this group
sets the scale for the stress components [21,34]. We prefer
to normalize the stress tensor by Young’s modulus alone, as
we believe the resulting values are more informative, repre-
senting the scale of the elastic strains.

5 Results and discussion

5.1 Isolated particles

We consider first a single particle in the cathode, as illustrated
in Fig. 3; however, we note that due to periodic boundary
conditions, this configuration represents a row of particles
parallel to the current collector, and therefore, depending on
the distance separating particles, interactions among particles
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Fig. 3 A schematic of a single isolated particle in a cathode, represent-
ing a row of particles due to the use of periodic boundary conditions

may occur. We locate the row of particles half way between
the current collector and the separator, as shown in Fig. 3.
The width of the repeating unit of the battery, L (see Figs. 1,
3), is determined so that the smallest distance between the
surfaces of particles in the same row is dp; given a particle
radius of r0, the total width becomes

L = 2r0 + dp (49)

The length of each segment of the battery (separator, etc.) is
taken from the works of Garcia et al. [31], Doyle et al. [28]
and Wang and Sastry [33]. The length of the anode and sep-
arator are 50 µm each, the length of the cathode is 174 µm
and the length of the current collector is 10 µm. The particle
radius is chosen to be 8.5 µm. The values of all dimensions
and material properties used in the simulations are detailed
in Tables 1 and 2. In view of the resulting geometry, we con-
clude that the cathode storage particles are spaced a large
distance from the separator and the current collector, though
particles in the same row can be close together. In this sense,
the particles considered are isolated from other features of
the battery.

For the simulations we use COMSOL v4.2 [34]. The range
of values used for the non-dimensional parameters in the sim-
ulations is highlighted in Table 3. The values of the different
parameters are chosen based on results from stress maps; we
choose values at extremes as well as combinations of param-
eters that invoke different regimes of interaction between the
mechanical stress and lithium concentration in storage parti-
cles; in particular, we are interested in cases where the stress
gradient dominates the driving force for lithium diffusion,
and, in contrast, in cases where the lithium concentration
gradient dominates it.

The values of dp are initially chosen as 2r0 and r0/2. As
mentioned in Garcia et al. [31], one of the problems of a 2-D,
planar simulation is that artificial constraints are created to
the motion of species in the electrolyte. Two particles that
are very close to each other restrict the motion of the elec-
trolyte (and subsequently the lithium ions) in the small gap
between them. An actual, 3-D battery can have neighboring
storage particles that touch each other because the species in
the electrolyte can find alternative routes around the particle,
reducing the severity of the consequences of particle con-
tact. Another reason for avoiding particles that touch each
other is that we do not consider the effects of contact and
contact stress in this work. Therefore, we prefer to avoid sit-
uations where the swelling of particles due to lithiation is
large enough to cause contact and contact stress due to con-
straints among the particles.

The maximum circumferential stress experienced at the
surface of the cathode storage particles when they are
arranged in a single row far from the current collector and
the separator is shown in Fig. 4 for the different particle
spacings and values of material and performance parame-
ters. The maximum stress experienced in the particles is in
the z or through thickness direction, i.e. parallel to the axis of
the cylinder. We judge that the more relevant results are the
circumferential stresses, as these components are analogous
to those obtained for spherical particles [24]. The second
principal stress is an accurate measure of the circumferential
stress at the surface and this is the stress that is plotted in the
following figures.

We identify the stress at Point B as shown in Fig. 3, located
at a location that should show the maximum effects of par-
ticle interaction. The influence of parameters Î , �̂ and εmax

Li
in regard to behavior in a single particle subject to spheri-
cally symmetric lithium flux has been described in detail in
[24], so we restrict ourselves to the salient results here. Fig-
ure 4a shows those for a high value of the non-dimensional
current, Î = 15, while Fig. 4b is for a lower value, Î = 1.
A higher charge rate leads to a higher value of stress. This
is because a high rate of extraction leads to the development
of a large lithium concentration gradient within the particle.
A large gradient in the concentration of lithium, leading to
large gradients of lithiation strain, requires a large elastic
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Table 2 Value of material
parameters [7,19,28,31,33] Symbol Parameter Value

r0 Particle radius 8.5 µm

D0 Diffusion coefficient of storage particle 7.08 × 10−15 m2/s

cmax Maximum concentration of lithium in the storage particle 2.29 × 104 mol/m3

κI V Electrical conductivity of storage particles 3.8 S/m

ρpart Density of storage particles 4140 kg/m3

kR Reactivity coefficient at particle/electrolyte interface 1.9 × 10−9 m/s

αA,i Anodic empirical constant 0.5

αC,i Cathodic empirical constant 0.5

κI I I Electrical conductivity of binder mixture 2.53 S/m

κ Ionic conductivity of electrolyte/solvent mixture 0.108 S/m

cini Initial value of electrolyte concentration 2000 mol/m3

t0+ Transference number 0.463

D Diffusivity of lithium in the electrolyte 7.5 × 10−11 m2/s

κI I Electrical conductivity of lithium anode 1.08 × 107 S/m

i0,b Exchange current density at electrolyte anode interface 8.5 × 103 A/m2

κI V Electrical conductivity of nickel metal foil 1.25 × 107 S/m

Table 3 Values of the parameters used

Parameter Values

dp r0/2

�̂ 1500, 150, 15

εmax
Li 1.0, 0.1, 0.01

Î 1.0, 15.0

strain in compensation and thus produces a large maximum
stress [7,19]. The monotonically increasing dependence of
the maximum stress on the maximum lithiation strain, εmax

Li ,
arises because this parameter controls all strain magnitudes,
including elastic ones, in the extraction or insertion process.

The dependence of the results for stress on �̂ is complex,
due to the coupling of the effects of stress and lithium con-
centration. The stress gradient that builds up in the storage
particle will always aid the process that is being undertaken;
i.e. during extraction the hydrostatic stress at the particle sur-
face is positive, whereas at its center the hydrostatic stress
is negative, thereby hastening the lithium flux. We note that
the parameter �̂ controls the degree of influence that the
stress gradient has on lithium flux [24]. When �̂ = 0, the
stress gradient has no effect on the lithium flux, whereas
the stress gradient has a strong influence on lithium diffu-
sion when �̂ has a high value. In the latter situation, when �̂

is very high, stress gradient driven diffusion can be so rapid
that it counters any tendency for stress gradients to build
up. Since stress gradients arise as a consequence of lithium

concentration gradients, the effect of a very high value of �̂

is to limit the extent to which lithium concentration gradients
can arise. However, an aspect of Eq. (21) is that the influence
of the stress gradient on the lithium flux is strongest when
the lithium concentration is equal to cmax/2 and falls off for
higher and lower values of cLi . This combination of feature
causes the history of the stress, as shown in Fig. 4, to exhibit
two maxima for high values of �̂, one near the beginning of
extraction and one later on when the particle approaches the
stage of being fully depleted.

Simulations carried out with dp = 2r0 and dp = r0/4
did not yield any changes in the results compared to those in
Fig. 4. It is clear from these and other simulations that the
distance between particles has negligible effect on the stress
history in the range considered.

5.2 Closely packed particles

We now consider multiple rows of particles within the cath-
ode. During charging, the flux of lithium in the cathode is
from the storage particles to the separator. As a consequence,
the electric potential in the electrolyte is lower at the stor-
age particles and higher near the separator, while electron
transport from the storage particles to the current collector
requires the electric potential in the storage particles to be
lower in the row nearest the separator and higher in the row
of particles nearest the current collector. The outcome of this
situation is that lithium is extracted fastest from the row of
particles nearest the separator and more slowly from the par-
ticles nearest the current collector. As a consequence, the
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stress in the particles nearest the separator is higher than
that in the particles nearest the current collector, as has been
observed by [30,31]. To examine this effect in greater detail
we modify the morphology of the electrode by reducing the
spacing between particles as well as the size of the electrode,
without reducing the diameter of the particles. In that sense,
we describe the resulting configurations as closely packed,
though technically this is a misnomer as the particles are not
in contact with each other.

One, two and three rows of particles, as shown in Fig. 5,
are considered in this case. Note that this figure is not drawn
to scale. In each case, the storage particle is located in a
unit cell consisting of the particle in a square area of electro-
lyte, with the closest distance between the particles chosen as
dp = r0/4. Therefore, the smallest distance from the particle
surface to the edge of the unit cell is r0/8. In Fig. 5, we have
marked the particles with numbers, and various points in the
particles with upper case Latin letters so that we may refer
to them below.

In Fig. 6 the histories of stress and lithium concentration
for a single row of particles are plotted. The time at which
the transition from galvanostatic to potentiostatic charging
occurs is marked as a vertical dashed line in each plot. We
consider values for stress and lithium concentration at three
points on the particle, (A, B and C), for various values of
�̂. The maximum lithiation strain is chosen as εmax

Li = 1.0,
and the non-dimensional current is Î = 15.0. As before, an
increase in the value of �̂ leads to a decrease in the value of
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Fig. 6 The histories of maximum circumferential stress and SOC for
particles in a cathode during charging for three different points on the
surface of a particle in a single row in the close-packed morphology. For
the positions of the three different points see Fig. 5. Parameter values

are εmax
Li = 1.0, Î = 15.0 and dp = r0/4. Stress histories are plotted

in a–c and SOC histories in d–f, such that a �̂ = 15.0, b �̂ = 150.0, c
�̂ = 1500.0, d �̂ = 15.0, e �̂ = 150.0, and f �̂ = 1500.0

maximum stress experienced in the particle, as can be seen
as we progress from Fig. 6a–c.

The variations in concentration and stress within the par-
ticle, though never great, are most pronounced for �̂ = 150,
as seen in Fig. 6b, e. For �̂ = 15, (Fig. 6a, d) the contribu-
tion of the stress gradient to the diffusion of lithium within
the particle is the least. As a result, the distribution of lith-
ium within the storage particle is radially very non-uniform,
though it is fairly uniform around the circumference, as can
be seen from Fig. 6d. As a consequence of the radial non-uni-
formity of lithium concentration in the particle, the surface
is depleted of lithium early on, and the process of charging
reaches the transition between galvanostatic and potentio-
static control sooner than in the other cases. On reaching
the transition point, the shift from galvanostatic charging to
potentiostatic charging causes the concentration to be dis-
tributed more evenly throughout the particle, and the stress
levels thereafter fall. For �̂ = 1500 (Fig. 6c, f) the stress
gradient contributes significantly to the diffusive flux of lith-
ium out of the particle. As a consequence, radial gradients of
lithium concentration are not able to build up, and it remains
fairly uniform throughout the particle. As a result, galvano-
static extraction of lithium from the cathode storage particles

can be continued longer because depletion of lithium at the
particle surface is delayed. As outcomes, the transition to
potentiostatic charging occurs later than in the other cases,
and the stress levels are lower and fairly uniform around
the particle. For �̂ = 150 (Fig. 6b, e) the contribution of
the stress gradient to lithium diffusion leads to a transition
time between galvanostatic and potentiostatic charging that
is intermediate compared to the other cases. However the
influence of the stress gradient is unable to prevent the build
up of large radial concentration gradients and smaller cir-
cumferential ones. We therefore see small variations of both
concentration (Fig. 6e) and stress (Fig. 6b) around the par-
ticle that are more pronounced, if modest, compared to the
situation observed in the other cases (Fig. 6a, c, d, f).

We now consider the system with two rows of particles,
as shown in Fig. 5b. The distance between the particles is
dp = r0/4 and is the same in both x and y directions. Fig-
ure 7 shows the plots of the stress and lithium concentration
histories at six different points. Particle 1 (Points A, B and
C) is closer to the current collector and particle 2 (Points E,
F and G) is closer to the separator. The plots of the stress his-
tories in Fig. 7a–c clearly show that particle 2 experiences
steeper lithium concentration gradients and higher values of
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Fig. 7 The histories of maximum circumferential stress and SOC for
particles in a cathode during charging for three different points on the
surface of particles from each of two rows in the close-packed mor-
phology. For the positions of the three different points on each particle

see Fig. 5. Parameter values are εmax
Li = 1.0, Î = 15.0 and dp = r0/4.

Stress histories are plotted in a–c and SOC histories in d–f, such that a
�̂ = 15.0, b �̂ = 150.0, c �̂ = 1500.0, d �̂ = 15.0, e �̂ = 150.0,
and f �̂ = 1500.0

stress than particle 1. The maximum stress for �̂ = 15 is
similar to that for the case where there is a single row of
particles (Fig. 6a). However, for �̂ = 150 and 1500, the
value of maximum stress increases compared to that for a
single row of particles. For all three values of �̂, the level of
stress experienced by particle 1 (i.e. in the row further from
the separator) is lower than that for the case of a single row
of particles. This fact, coupled with the observation that the
lithium concentration for points on particle 2 are lower than
that for particle 1, indicates that particle 2 (nearer the separa-
tor) experiences a higher extraction rate than particle 1. The
cause for this is the feature that the limited ionic conductiv-
ity in the electrolyte causes a difference in the overpotential
at the surfaces of the two rows of particles. Consequently,
the extraction rates for the two rows are different, with the
row nearest the separator being depleted of lithium faster.
Within the particles in the system having two rows, the stress
averages to approximately the same value as the stress in the
system having a single row, but the distribution of stress lev-
els around the particle at the different surface points is wider.
We note that in the system having two rows of particles, the
fluctuation of the maximum stress in time is smoother than
that occurring when there is one row of particles.

In Fig. 8 the stress and lithium concentration histories for
a system with three rows of particles are plotted for Î = 15.0
and εmax

Li = 1.0. The results are similar to those of the system
with two rows of particles, with points I, J and K on particle
3, which is closest to the separator, experiencing maximum
stress in the system. The stress histories of points on particles
1 (A, B and C) and 2 (E, F and G) are similar to each other
and have significantly lower maximal values than particle 3.
For �̂ = 1500 the maximum value of stress of particle 1
(furthest away from the separator) is around 55 % lower than
the maximum stress in particle 3 (closest to the separator).
The particle closest to the separator, i.e. particle 3, seems to
act somewhat like a filter for the system. Due to the higher
extraction rates at the surface of this particle, the extraction
rates, and therefore the stress, at the surface of the particles
further from the separator are lower. Inspection of the results
for stress in the case of one, two and three rows of particles
reveals a pattern. As each extra row is added, the maximal
stress in the particle row nearest the separator goes up and
the stress in the remaining rows goes down.

This pattern is apparent in the lithium extraction rate as
well, and, of course, leads to the outcome in terms of stress
just described. That is, as each row of particles is added, the
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Fig. 8 The histories of maximum circumferential stress and SOC for
particles in a cathode during charging for three different points on the
surface of particles from each of three rows in the close-packed mor-
phology. For the positions of the three different points on each particle

see Fig. 5. Parameter values are εmax
Li = 1.0, Î = 15.0 and dp = r0/4.

Stress histories are plotted in a–c and SOC histories in d–f, such that a
�̂ = 15.0, b �̂ = 150.0, c �̂ = 1500.0, d �̂ = 15.0, e �̂ = 150.0,
and f �̂ = 1500.0

lithium extraction rate in the row nearest the separator goes
up and that in the remaining rows goes down. As a result
of this imbalance, the lithium concentration at the surface of
particles in the row nearest the separator reaches the limiting
value for galvanostatic charging more quickly, triggering a
faster change to potentiostatic charging for the whole battery.
Thus when the number of rows of particles is increased, the
time elapsed until the transition from galvanostatic to poten-
tiostatic charging is reduced, in many cases causing most of
the lithium extraction for the entire cathode to occur under
potentiostatic charging.

In Fig. 9 we show color contour plots of SOC in (a) and
(c) and circumferential stress in (b) and (d) for a system
with three rows of particles with �̂ = 150, Î = 15.0 and
εmax

Li = 1.0. Figure 9a, b is plotted at t = 75 s which is
the time for the transition from galvanostatic charging to
potentiostatic charging, as well as the point of maximum
stress in particle 3 i.e. the particle closest to the separator.
Figure 9c, d is plotted at t = 1000 s, which has no special sig-
nificance other than to show the effects of long term potentio-
static charging. Figure 9a indicates the significant variation
in the concentration within the different particles, with most
of the extraction being associated with particle 3. Particle 1,
furthest away from the separator, has not experienced rapid

extraction, with its center still at a lithium concentration close
to its initial value. Figure 9b, the contour plot of the second
principal stress at this time, highlights the effect of these
concentration differences, with larger tensile stresses devel-
oping at the surface of particle 3 in comparison to particle 1.
Figure 9c, d, in contrast, shows smaller fluctuations of con-
centration within the particle as well as lower values of stress.
After undergoing potentiostatic charging for some time, the
particle has begun to experience an evening out of its lith-
ium concentration, which leads to a reduction in the stress
within it.

We note that the SOC at the particle surface at t = 1000 s is
significantly higher than the value that we set as the limiting
value of the SOC, and that supposedly caused the transi-
tion from galvanostatic to potentiostatic charging. Indeed, at
t = 75 s, when the transition took place, the surface SOC in
the most severely depleted particle is around 0.5, as can be
seen in Fig. 9a. As mentioned earlier, practically, it is the volt-
age and current at the current collector that can be controlled,
not those at the particle surface, and thus the potential dif-
ference across the entire cell is used to make the decision to
transition from galvanostatic to potentiostatic charging. Due
to losses in the cell (both polarization losses at the interfaces
subject to Butler–Volmer kinetics, and ohmic losses in the
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Fig. 9 Color contour plots of
the maximum circumferential
stress and SOC in storage
particles at two different times
during charging in a cathode
having three rows of particle.
Simulations are carried out
using the following parameter
values: �̂ = 150, Î = 15.0 and
εmax

Li = 1.0. a Color contour plot
of SOC at t = 75 s after the
beginning of charging when the
stress is maximal and the
transition from galvanostatic to
potentiostatic charging occurs.
b Color contour plot of
circumferential stress at t = 75 s
after the beginning of charging
when the stress is maximal and
the transition from galvanostatic
to potentiostatic charging
occurs. c Color contour plot of
SOC at t = 1000 s after the
beginning of charging. d Color
contour plot of circumferential
stress at t = 1000 s after the
beginning of charging
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Fig. 10 The histories of maximum circumferential stress and SOC for
particles in a cathode during charging for three different points on the
surface of particles from each of three rows in the close-packed mor-
phology. For the positions of the three different points on each particle

see Fig. 5. Parameter values are chosen to represent lithium manganate
and are �̂ = 150.0, εmax

Li = 0.1, and Î = 1.0 with particle spacing
given by dp = r0/4. Stress history is plotted in a and SOC history in b

electrolyte and electronic circuitry), the value of the voltage
difference across the entire battery never matches the that of
the potential at the surface of cathode particles. Hence the
SOC at a cathode particle surface can remain significantly
higher than the limiting value at which the charging transition
is supposed to occur. The result is apparent in Fig. 9a at t = 75 s
when the transition occurs in the system with three rows of
particles, and where the lowest surface SOC, in the particle
nearest the separator, is 0.4884, well above 0.00035. How-
ever, once the transition is enforced, potentiostatic charging
is continued and we do not return to galvanostatic charging,
even though the surface SOC in particles is well above the
value of 0.00035 at which the transition is supposed to take
place. At t = 1000 s (Fig. 9d), long after the transition from
galvanostatic to potentiostatic charging, the lithium concen-
tration at the surface of the three particles is almost identical,
and is now down to approximately 0.01, much closer to the
transition threshold of 0.00035.

We note that the cathode consisting of three rows of parti-
cles begins to approach the dimensions and configuration of
a very thin battery electrode. In view of this, we consider a
case having three rows of particles with parameters consistent
with an actual storage particle material. For lithium manga-
nate, �̂ = 141 and εmax

Li = 0.08 [24]. Thus, we simulate a
case having �̂ = 150 and εmax

Li = 0.1 at a modest extraction

rate of Î = 1.0. This rate corresponds to a C-Rate 0.35C
assuming galvanostatic charging throughout, and to around
0.28C if we consider potentiostatic charging as well. This

rate is fairly low and is representative of a low power battery,
whereas a C-Rate of 1 (i.e. complete charging of the battery
in an hour) is considered to be a desirable, though unambi-
tious objective. Results are shown in Fig. 10. In Fig. 10a we
see that the stresses are lower than in the previous cases due
to the combined effect of a reduced εmax

Li and a lowered Î .
The double peaked structure in the stress history reappears,
indicating a significant contribution of the stress gradient to
the lithium flux. Stress differences among the particle rows
are present, but are not very large. The SOC of the particles in
different rows are almost the same, as can be seen in Fig. 10b.
The stress remains fairly steady throughout lithium extrac-
tion until the transition from galvanostatic to potentiostatic
charging is reached, and then falls gradually, as expected.
Around 90 % of the lithium has been extracted when the
transition is reached, i.e. almost all of it is withdrawn under
galvanostatic charging.

When we add rows of particles to the system, the increase
in the thickness of the cathode creates longer diffusion paths
for the species in the electrolyte. To study the effect of this
change, we increase the distance between particles to dp =
r0/2 in a system with three rows of particles, thereby making
the cathode thicker. Figure 11a, b is plots of the stress and
SOC histories for the case where �̂ = 1500, εmax

Li = 1.0

and Î = 15.0. Comparing these to Fig. 8c, f respectively,
we notice that the maximum stress experienced by points
on particle 3 (I, J and K) is approximately 10 % lower than
for the thinner cathode where dp = r0/4. In the other two
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Fig. 11 The histories of maximum circumferential stress and SOC for
particles in a cathode during charging for three different points on the
surface of particles from each of three rows in the close-packed mor-
phology. For the positions of the three different points on each particle

see Fig. 5. Parameter values are �̂ = 1500.0, εmax
Li = 1.0, and Î = 15.0

with particle spacing given by dp = r0/2, so that the cathode is rela-
tively thick. Stress history is plotted in a and SOC history in b

particle rows further away from the separator, i.e. particles
1 and 2, the maximal stress in the thicker cathode increases
by 15 and 6 % respectively compared to the equivalent value
in the thinner cathode. The time at which the transition from
galvanostatic to potentiostatic charging occurs shifts from
50 s after charging begins in the thinner cathode to 200 s in
the thicker one. The lithium concentrations are mostly sim-
ilar, other than modest differences within with particle 3,
indicating a more even distribution. It is likely that the larger
particle spacing in the thicker cathode causes the distribution
of the various species in the electrolyte to be more uniform,
leading to smaller differences in overpotential at the surfaces
of the various particles. It is important to note that in a 2-D
simulation these effects are likely to be magnified, as flow-
path constrictions in a 2-D system might be enough to restrict
transport significantly, but in a 3-D arrangement of equiaxed
particles, alternative routes would be available [31]. Hence
it is possible that the differences among particles that we
observe in stress in the three row system analyzed in a planar
2-D configuration would be reduced in a simulation in 3-D
having equiaxed particles.

6 Concluding comments

In this work we develop a model for a 2-D lithium ion bat-
tery, including the equations of transport in the electrolyte

for the various electrochemical species involved. These equa-
tions are then integrated with a previously developed coupled
lithium diffusion-stress model for cathode storage particles.
The system of equations is then solved to predict the transport
of lithium and electrons within the battery during charging.
The stress generated by shrinkage of cathode storage par-
ticles during lithium extraction is shown to increase as the
charging rate is increased, to increase with the magnitude of
the swelling, and to decrease as the magnitude of the product
of the storage material elastic modulus and its lithium partial
molar volume is increased. As expected, particle arrangement
with respect to the separator is critical to the stress history
experienced by storage material, with the particles closest to
the separator going through the most severe conditions. The
number of particles through the thickness of the electrode is
shown to influence the maximal stress, with a larger num-
ber of rows of particles being detrimental. Storage material
properties are shown to influence the maximal stress experi-
enced by particles. Thus, careful design of the electrode and
choice of storage material can help to alleviate the maximum
stresses developed within storage particles.
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