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A Linearized Model for Lithium
Ion Batteries and Maps for their
Performance and Failure
A linearized model is developed for lithium ion batteries, relying on simplified character-
izations of lithium transport in the electrolyte and through the interface between the elec-
trolyte and the storage particles of the electrodes. The model is valid as a good
approximation to the behavior of the battery when it operates near equilibrium, and can
be used for both discharge and charging of the battery. The rate of extraction of lithium
from and to the electrode storage particles can be estimated from the results of the model,
information that can be used in turn to estimate the shrinkage and swelling stresses that
develop in the particles. Given specified rates of extraction for spherical particles, maps
of the resulting shrinkage and swelling stresses can be developed connecting their values
to battery parameters such as particles size, diffusion coefficient, lithium partial molar
volume, and particle elastic properties. Since a constant rate of extraction can only be
achieved for a limited period of time until the concentration of lithium at the particle pe-
rimeter constrains the lithium mass transport, plots of the average state of charge in the
particle versus time are also produced. [DOI: 10.1115/1.4005962]

Introduction

A schematic of a Li-ion battery is shown in Fig. 1. In typical
current designs, the anode consists of graphite or some other form
of carbon, in particulate form, embedded in a polymeric binder,
with contact among the carbonaceous particles ensuring electrical
conductivity. The aggregate is connected to a copper current col-
lector [1]. The cathode has a hierarchical structure with a particu-
late aggregate of a compound oxide of lithium embedded in a
PVDF binder [2]. These particles are joined together by electroni-
cally conducting elements to provide current connectivity, usually
in the form of carbon coatings on the storage particles. The cath-
ode aggregate is attached to an aluminum current collector. Elec-
trical leads are connected to the two collectors and attach to the
load during discharge, and to the power supply during charging.
The electrolyte is a lithium salt such as LiPF6 in an organic sol-
vent, and the separator is a porous polymer, an example being a
polyolefin [1].

During discharge, as depicted in Fig. 1, Liþ ions are extracted
from the graphite and travel from the anode to the cathode through
the electrolyte, diffusing through the pores of the separator [1]. In
parallel, electrons are released from the anode and then flow round
the electrical load circuit to the cathode collector. The electrons
thereafter transfer to the oxide particles. Upon reaching the cath-
ode, the Liþ ions are inserted into the particles of layered oxide,
while the newly arrived electrons engage in an electrochemical
reaction that reduces the lithium.

The charging cycle is simply the opposite of the discharge
phase [1]. When a power supply is attached to the cell to charge
it, the Liþ ions travel from the positive electrode to the negative
one, as shown in Fig. 1. In this process the lithium ions are oxi-
dized and extracted from the storage particles in the positive elec-
trode and reduced at the negative electrode by the arriving
electrons and intercalated into the graphite. Thus the lithium ions
simply shuttle back and forth from one electrode to the other and
back during the full service cycle [2]. Note that during charging
the electrode on the left is functioning as the cathode and that on

the right as the anode. While it is conventional to refer to the elec-
trode on the left in Fig. 1 always as the anode and to that on the
right always as the cathode, the fact that their functions inter-
change depending on whether charging or discharge is occurring
can cause confusion. As a result, the electrode on the left in Fig. 1
is often referred to as the negative electrode and that on the right
as the positive one, as this identification is correct both during dis-
charge and charging.

A major source of damage arises because the storage particles
shrink and swell as the Liþ ions are extracted and inserted.
Depending on which particle is used, as much as 100% of the lith-
ium is depleted from the oxide during charging [2], leading to sig-
nificant shrinkage. For example, in LiMn2O4, depletion of lithium
to 20% of stoichiometry leads to a volume reduction of 6.5% [3].
Upon very fast charging, the first batch of lithium extracted from
the oxide particle will deplete from near its surface, causing a
high tensile hoop stress as the outer layer shrinks. The resulting
stress can cause cracks to propagate and damage the material.
Thus, comminution of oxide particles can occur during charging

Fig. 1 Schematic of a Li-ion battery showing the main compo-
nents, namely the current collectors, the electrodes, anode and
cathode, and the separator. The electrodes are composed of
active storage particles, binder, and filler, with electrolyte filling
the pores within the particulate structure.
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[4], a damage mechanism that can also accumulate by fatigue
upon repeated cycling of the battery. Similar effects are possible
in the carbonaceous material in the anode, where 8% swelling by
volume occurs in graphite when the number of lithium atoms per
C ring is increased from 0 to 0.6 [3]. Such damage is observed in
electrode material, and is associated with a degradation of per-
formance [5–7]. Although new materials are being proposed for
lithium storage electrodes that have reduced swelling and shrink-
age [8], so that the generation of tensile cracking would be obvi-
ated, other materials with large storage capacity and much greater
swelling, of the order of 300%, are under development [1,7,9].
Clearly such materials are associated with very significant stress
and strain generation during transient charge and discharge proc-
esses [10].

The strains associated with swelling and shrinkage of lithium
storage materials can have disruptive effects on the electrode ag-
gregate [4]. The storage and binding particles and the conducting
elements can be degraded by fatigue or excessive stress as the par-
ticles swell and shrink. Furthermore, deformation of the binder
caused by swelling and shrinkage of the storage particles may
cause the conducting particles embedded in the binder to fail to
percolate, thereby disrupting the electronic conducting path, and
increasing the internal resistance of the cell. Similarly, interface
layers formed on the particles can be disrupted by cracking and
can spall off due to the strains of the storage particles as lithium is
extracted and inserted [3,4,7]. As well as leading to secondary
fracture of the storage particles and their comminution, such
cracking of the surface layers demands their recreation on the
exposed storage material surface, a side reaction that will con-
sume lithium [4,7]. Such processes deplete the capacity of the cell
because the total energy at full charge is proportional to the num-
ber of Liþ ions that can be stored in the anode. Comminution of
storage particles can cause much greater depletion of lithium in
the cell, as large amounts of new surface will be created and then
coated with an interface layer when a particle is split. This aspect
of Li-ion battery performance is the main reason why the use of
very small storage particles is precluded, despite the fact that they
would limit the problems of fatigue crack growth, particle frac-
ture, and comminution. Too much Li would be sequestered as a
consequence of surface layer growth on very small particles, lead-
ing to a severe penalty on the capacity of the battery.

Other mechanisms of degradation of the electrodes can occur
where stress and deformation do not play a role [4,11–16]. Side
reactions with the electrolyte can dissolve electrode particles and
reprecipitate new phases and interface layers, resulting in further
sequestration of lithium, but with the added effect that the rate of
diffusion of Liþ through the resulting thicker layers slows, thereby
prolonging charging times and diminishing maximum power
[4,11]. At high rates of charging and discharging, structural disor-
dering and phase changes in the electrode storage materials may
occur [4,11], resulting in slowing of the rate at which lithium can
be inserted and extracted, and also diminishing the capacity of the
cell. Most of these ageing mechanisms are associated with reac-
tions with the electrolyte and its organic solvent that cause their
decomposition, and the production of volatile and combustible
gases, along with the generation of pressure that may rupture the
cell container [2,4]. In addition, there can be effects indirectly
related to the electrochemistry of the cell, such as corrosion of
components of the electrodes, including the current collector, oxi-
dation of conductive particles within the electrode and its binder,
and binder decomposition, especially at high charging voltages
[2,4]. It has also been observed that swelling of the electrodes and
external loads on the battery pack can cause creep straining of the
separator, leading to closure of its pores [17]. This can lead to per-
formance degradation as transport of Li through the separator is
impeded.

Following the early work of Doyle et al. [18], there has been an
intensive effort to model and simulate the performance of Li-ion
batteries and the stresses generated in their storage particles. An
overview of the contributions of Newman and associates, along

with research from other sources, is available by Thomas et al.
[19]. Commonly, mixture theories and a mean field approach,
referred to as porous electrode theory, are used to represent the
complex microstructure of the electrodes and separator, analyzed
in a one-dimensional (1D) approximation through the thickness of
the battery foil [3,7,18–26]. The results are used to study insertion
and extraction of Li to and from storage particles, leading to stress
generation, the effect of strain and contact stress on electrical con-
ductivity, and the transients and accumulation of damage in cells.
Garcia et al. [27,28] utilized a two-dimensional (2D) simulation
of porous electrode microstructures, identifying elements of the
battery architecture such as storage particles, binder, and electro-
lyte pores for specific realizations of the microstructure. Beyond
this, Sastry and co-workers [29–31] have utilized random particle
networks to analyze Li mass transport and electronic conductivity
in electrodes as they swell and shrink, including the effects of
phase transformation, and have used the outcomes to assess the
stress in particles of various shapes. Based on these 1D, 2D, and
3D methodologies, the conditions experienced by the active par-
ticles in the electrodes can be predicted as they swell and shrink
due to insertion and extraction of lithium, and ageing [19,21,23],
including interface film growth [32], and thermal runaway
[33–37] have been treated. Multiscale methods have also been
used to study the performance of Li-ion batteries, such as the
work of Golman et al. [38] on electrochemical-mechanical inter-
actions in cells. In addition, Bohn et al. [39] have based their
study of mass transport and stress generation in storage particles
on models of the Li chemical potential encompassing excess
Gibbs free energy, and therefore are able to simulate the effect of
phase change and staging in the storage particles.

Fracture of particles has been a major focus of research based
on the analysis of intercalation and stress generation in single par-
ticles, such as that of Verbrugge and Koch [40]. For example,
Aifantis and Dempsey [41] have modeled crack growth in storage
particles, as have Cheng and Verbrugge [42]. Criteria for avoiding
fracture have been developed by Cheng and Verbrugge [43],
while Zhao et al. [44] consider the effect of fast charging on the
generation of fracture in particles. Further studies of fracture in
storage particles have been provided by Yang [45], Woodford
et al. [46], the latter based on concepts of thermal shock, and by
Bhandakkar and Gao [47,48], who use cohesive zone models to
predict fracture of electrodes and their minimum size to ensure a
comminution proof system. Studies of the implications of very
large intercalation strains associated with such storage materials
as silicon [9,10] with regard to modeling of the associated
mechanics, stress generation, inelastic deformation, and interac-
tions at the electrochemical-mechanical level have also been car-
ried out [49,50].

A glance at any one of the papers referenced above will con-
vince the reader of the complexity of the formulations considered
necessary to adequately model a Li-ion battery. In view of this
challenge to modeling and simulation, work has been carried out
to simplify and reduce the order of the partial differential and
algebraic equations involved. An early effort in this regard was
that of Botte and White [51] who considered whether diffusion
driven by stress gradients in storage particles could be ignored,
though their conclusion is that such effects are significant and
stress effects on mass transport cannot be neglected. Other
approaches have included model reformulations for Li-ion
batteries to improve parameter estimation, optimal design, and
numerical computation efficiency [52], while Renganathan
and White [53] consider semianalytical approximations and inte-
gration methods to ease the burden of computation. Similarly,
Ramadesigan et al. [54] reformulate the governing equations of
solid-state diffusion to enhance computational efficiencies, For-
man et al. [55] have introduced quasi-linearization of the porous
electrode equations and a Padé approximation for the solution for
the diffusion of Li in spherical particles, and Gallagher et al. [56]
have simplified the model for interface impedance between the
electrolyte and storage particles in the porous electrode. We note
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that in this regard that some further possibilities have not been
explored, namely aggressive linearization and full simplification
of the mass transport and electrochemical kinetics involved in
Li-ion batteries. The objective of this paper is to present such an
approach and to provide the solutions that can thereby be
obtained. These solutions are valid in specific limits, such as when
the battery operates close to equilibrium and has sluggish, nega-
tively charge ions in the electrolyte. Furthermore, the solutions,
being exact, can serve as benchmarks for computational methods
designed to solve the fully nonlinear, coupled equations for bat-
tery performance. In addition, we develop particle stress and
charge/discharge maps for batteries based on equally simplified
assumptions, with the advantage that these maps are relatively
easy to generate and can thus be made comprehensive without
much effort.

Elementary Linearized Model

We assume porous electrode theory with homogeneous proper-
ties for the battery in regard to the spatial coordinates other than x,
where x is defined according to Fig. 1. Therefore we consider gov-
erning equations only in regard to the independent variables x and
time t, and seek planar solutions describing the behavior of an
infinitely extended battery in directions orthogonal to x. We note
that many batteries are configured in the form of a foil that has
been rolled up, and we assume that the radius of curvature of the
roll is not so small as to compromise the planar behavior we ana-
lyze. We make no attempt to describe the full set of equations that
govern porous electrode theory for Li-ion batteries, given their
complexity [18], but instead simply state the linearized, simplified
formulation. The resulting equations can then be compared with
the full nonlinear formulation both for Li-ion batteries [18] and
for electrochemistry and mass transport of ionic species in general
[57].

Each electrode is characterized by its volume fraction fi of stor-
age particles, which will determine the capacity of the battery.
Note that i¼ n for the negative electrode and i¼ p for the positive
one. In addition, the volume fractions of binder, electronically
conducting coatings, and pore space for electrolyte are relevant,
but we do not define them as we will not introduce models for
how these parameters influence electronic conductivity, ionic im-
pedance, Li mass transport, etc. Instead, we will simply work with
the relevant, average macroscopic quantities, such as the average
electrode electronic resistivity qi and the average electrode ionic
resistivity Ri. We note that electronic conductivity is associated
with paths through the conducting coatings applied to storage par-
ticles, and through graphite particles if present, whereas ionic con-
ductivity is associated with paths through the electrolyte. Mass
transport of Li within the storage particles is not considered to be
a contributor to the ionic conductivity of the electrode. Note that
the separator has average ionic resistivity Rs but is considered to
have zero electronic conductivity. As with the electrodes, we
make no attempt to connect the separator porosity to its average
ionic resistivity. Finally, we assume that the current collectors are
perfect electronic conductors but are impermeable to Liþ and
other ions.

There are two assumptions that are critical to our ability to lin-
earize and simplify the governing equations. The first of these
assumptions is that we take the negative ions in the electrolyte to
be immobile, so that the ionic current in the electrolyte is entirely
due to the Liþ ions. This assumption seems acceptable because
typically the negative ion in the Li-ion battery electrolyte is a
large anion such as PF�6 [1], and therefore likely to be much less
mobile than Liþ. Furthermore, for lack of data on ionic mobility
in multicomponent electrochemical mass transport, the complex
governing equations are often simplified through arbitrary
assumption, so that our inference of zero mobility for the anion in
the electrolyte is consistent with common, pragmatic usage. As a
consequence of this assumption, the concentration of the salt (e.g.,
LiPF6) remains uniform during mass transport of the Liþ ion to

ensure charge neutrality. Therefore, gradients of concentration of
the salt are absent, and the only driving force for transport of the
Liþ is the electric field in the electrolyte. Hence transport of Liþ

is controlled by the kinetic relationship

E ¼ i Ri (1)

where E¼E(x,t) is the electric field in the electrolyte and i¼ i(x,t)
is the current density. Note that we define the current density to be
the current per unit cross-sectional area of the battery, and not per
unit area of electrolyte pores. Therefore the actual current density
in the electrolyte is i divided by the electrolyte pore volume frac-
tion. In addition, and for obvious reasons, the ionic resistivity Ri

of the electrode is calibrated consistent with the definition of cur-
rent density, and is divided by the battery area (not the pore area)
and multiplied by the electrode thickness to obtain the total elec-
trode resistance. In view of our 1D model, the electric field E acts
in the x direction and the current density i conveys charge in the x
direction. Note that i is positive when Liþ is traveling in the posi-
tive x direction (see Fig. 1), and the flux Je

Li of Liþ in the electro-
lyte is given by

Je
Li ¼

i

F
(2)

where F is Faraday’s constant in Coulombs per mole. The flux Je
Li

is defined in terms of moles per unit time per unit battery area and
not per unit electrolyte pore area. We note that Eqs. (1) and (2)
apply to the separator as well as to the electrodes. In the separator
i¼ I, where I is the total current density for the battery, as it is a
current loop. As with all quantities, the current density I is defined
per unit area of the battery. In contrast, in the electrodes the elec-
tronic current density in the phases conducting electrons is I – i.

The Liþ ions are being extracted from and inserted into the
storage particles. Let Q¼Q(x,t) be the resulting source term
defined as the flux of Liþ entering the electrolyte per unit volume
of the electrode per unit time. As a consequence,

@Je
Li

@x
¼ Q (3)

We note that we are neglecting the flux of charge that is involved
in setting up the charge double layer on the surface of the elec-
trode particles [57]. Such charge double layers are inherent to the
electrochemistry of electrodes and when accounted for give the
electrode surface a capacitance and a characteristic time for the
creation and relaxation of the double layer. However, we assume
that the time scale involved in modifying the charge double layer
is not rate limiting and so neglect its influence in our governing
equations.

In general, the flux of Liþ ions to and from the storage particles
is governed by Butler-Volmer kinetics [57] in the form

j ¼ io

F
exp

aaF

RT
gs

� �
� exp � acF

RT
gs

� �� �
(4)

where j is the flux of Liþ ions leaving the storage particles (in
moles per unit time per unit area of particle surface),
io ¼ io c; cs;Tð Þ is the exchange current density, a function of the
concentration c of Liþ in the electrolyte, the concentration cs of Li
in the storage particle at its surface, and of the temperature T. The
parameters aa and ac are transfer coefficients, gs ¼ Us � Ue

�U c; cs;Tð Þ is known as the surface overpotential, where Us is
the potential of the particle surface, Ue is the potential in the elec-
trolyte adjacent to the particle surface, U is the open circuit poten-
tial (OCP) of the material at the particle surface, and R is the gas
constant. Note that when the surface overpotential is positive, the
electrode is anodic and Li is being oxidized to Liþ and being
ejected from the storage particles, with the oxidation reaction
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being the signature feature that defines an anode [57]. In contrast,
when the surface overpotential is negative, the electrode is ca-
thodic and Liþ is being reduced to Li and being inserted into the
storage particles, with the reduction reaction being the signature
feature that defines a cathode [57]. Note that the electrode is at
equilibrium when the surface overpotential is zero and the anodic
and cathodic fluxes cancel each other out.

We now come to the second crucial assumption simplifying the
equations. We assume that the electrodes always operate close to
equilibrium, so that the Butler-Volmer kinetics in Eq. (4) may be
linearized. This leads to

Q ¼ jA ¼ io aa þ acð ÞA
RT

gs (5)

where A is the storage particle surface area exposed to electrolyte
per unit volume of the electrode. Note that the exchange current
density and the transfer coefficients will be unique to the storage
particle material involved. Observing that

E ¼ � @Ue

@x
(6)

we then deduce from Eqs. (1)–(3) and (5) that

@2Ue

@x2
� Ri

qs
i

Ue ¼
Ri

qs
i

U � Usð Þ (7)

where

qs
i ¼

RT

iio ai
a þ ai

c

� �
AiF

(8)

and the subscripts and superscripts i indicate the positive or nega-
tive electrode.

Now recall that the battery is a current loop of magnitude I in
terms of current density. Since i is the current density in the elec-
trolyte path, that in the electron conducting path must be

ie ¼ I � i (9)

Since the surfaces of the storage particles are connected to the
electron conducting path, the electric field at the storage particle
surface must conform to

� @Us

@x
¼ I � ið Þqi (10)

Use of Eqs. (2) and (3) and differentiation of Eq. (7) then gives us

@3Ue

@x3
� Ri þ qi

qs
i

@Ue

@x
¼ Ri

qs
i

@U

@x
þ qiI

� �
(11)

as the differential equation governing each electrode. Note that
we have made another important assumption—that the exchange
current density is uniform throughout the active electrode, and
therefore does not vary with the state of charge of the storage
particles.

Positive Electrode. We now solve Eq. (11) for the potential
Up

e within the electrolyte in the positive electrode, where the ori-
gin is at the interface between the separator and the positive elec-
trode, which has width wp. This electrode therefore occupies
0 � x � wp. Boundary conditions are

@Up
e 0ð Þ
@x

¼ �IRp

@Up
e wp

� �
@x

¼ 0

(12)

since the current at the interface with the separator is entirely
ionic and at the current collector at x¼wp it is entirely electronic.
Therefore, within 0 � x � wp we find

Up
e xð Þ � Up

e 0ð Þ

¼ IRp

Rp þ qp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p

Rp þ qp

s
qp þ Rp cosh kpwp

� �
cosh kpx� 1
� �

sinh kpwp

"(

�Rp sinh kpx

#
� qpx

)
(13)

where

kp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rp þ qp

qs
p

s
(14)

and we have assumed that the OCP at the particle surface in the
electrode is uniform. From Eq. (1) we then find the current density
in the electrolyte path to be

i ¼ I

Rp þ qp

qp þ Rp cosh kpx�
qp þ Rp cosh kpwp

� �
sinh kpx

sinh kpwp

" #

(15)

and the flux of Liþ out of particles is given by Eq. (3) as

Q ¼ � I

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p Rp þ qp

� �q Rp cosh kp wp � x
� �

þ qp cosh kpx

sinh kpwp

" #

(16)

Thereafter, from Eqs. (5) and (8) we obtain the potential Up
s at the

storage particle surface to be

Up
s xð Þ ¼

Iqp

Rp þ qp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p

Rp þ qp

s
Rp sinh kpx

"(

�
qp þ Rp cosh kpwp

� �
cosh kpxþ Rp

qp

 !

sinh kpwp

3
77775� Rpx

9>>>>=
>>>>;

þ Up
e 0ð Þ þ Up (17)

where Up is the OCP of the positive electrode with respect to a
reference electrode. In particular, the potential at the current col-
lector of the positive electrode is given by

Up
s wp

� �
¼ � I

Rp þ qp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p

Rp þ qp

s
q2

p þ R2
p

	 

cosh kpwp þ 2Rpqp

sinh kpwp

2
4

3
5

8<
:

þRpqpwp

)
þUp

e 0ð Þ þUp (18)

Negative Electrode. For the analysis of the negative electrode,
we now place the origin at the interface between the negative
electrode and the separator, with the negative electrode having
width wn. Therefore, within the electrode, in �wn � x � 0, we
find, from considerations similar to those for the positive elec-
trode, that the potential Un

e in the electrolyte is
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Un
e xð Þ � Un

e 0ð Þ

¼ IRn

Rn þ qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n

Rn þ qn

s
qn þ Rn cosh knwnð Þ 1� cosh knxð Þ

sinh knwn

�(

�Rn sinh knx

#
� qnx

)

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn þ qn

qs
n

s
(19)

while the current density in the electrolyte path is deduced to be

i ¼ I

Rn þ qn

qn þ Rn cosh knwnð Þ sinh knx

sinh knwn
þ Rn cosh knxþ qn

� �
(20)

This leads to the flux of Liþ out of the storage particles given by

Q ¼ I

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n Rn þ qnð Þ
p Rn cosh kn wn þ xð Þ þ qn cosh knx

sinh knwn

� �
(21)

The potential Un
s at the surface of the storage particles is then

deduced to be

Un
s xð Þ ¼ Iqn

Rn þ qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n

Rn þ qn

s
Rn sinh knx

"(

þ
qn þ Rn cosh knwnð Þ cosh knxþ Rn

qn

� �
sinh knwn

3
775� Rnx

9>>=
>>;

þ Un
e 0ð Þ þ Un (22)

where Un is the OCP of the negative electrode with respect to the
same reference electrode used for the positive one. The potential
at the current collector for the negative electrode is then

Un
s �wnð Þ ¼ I

Rn þ qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n

Rn þ qn

s
q2

n þ R2
n

� �
cosh knwn þ 2Rnqn

sinh knwn

� �(

þ Rnqnwn

)
þ Un

e 0ð Þ þ Un (23)

Separator. The separator carries uniform current density, so
the potential difference across it is, according to our somewhat
unconventional notation,

Up
e 0ð Þ � Un

e 0ð Þ ¼ �IRsws (24)

Cell Potential Difference. The cell potential difference U is
obtained by subtracting Eq. (23) from Eq. (18). The result, after
use of Eq. (24), is

U ¼ U � I

Rp þ qp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p

Rp þ qp

s
q2

p þ R2
p

	 

cosh kpwp þ 2Rpqp

sinh kpwp

2
4

3
5

8<
:

þRpqpwp

)
� I

Rn þ qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n

Rn þ qn

s(

�
q2

n þ R2
n

� �
cosh knwn þ 2Rnqn

sinh knwn

� �
þ Rnqnwn

)
� IRsws (25)

where

U ¼ Up � Un (26)

is the OCP of the cell.
When the battery is being discharged, the current density I is

positive, and the terms on the right-hand side of Eq. (25) in addi-
tion to the OCP represent the losses within the cell, and therefore
everything multiplying I, when added together, gives us the inter-
nal resistance per unit area of battery. When the battery is being
charged, the current density is negative, and the terms on the
right-hand side of Eq. (25) in addition to U gives the additional
potential in excess of the OCP that must be applied to charge the
cell.

Optimal Electrode Thickness. Although a detailed study of
optimization of the battery is beyond the scope of this paper, we
briefly assess the implications of Eq. (25) in this regard. We note
that this equation suggests that, as far as minimizing internal bat-
tery losses are concerned, there is an optimal electrode thickness;
in contrast to the common view that the thinnest electrode is the
best. For the purposes of the assessment, we assume that all pa-
rameters except the electrode thickness have been chosen to con-
stitute the battery design. Such design parameters must be chosen
to ensure trade-offs among competing priorities are met; e.g., a
thin, low resistance separator should be chosen, but having suffi-
cient robustness to avoid electrical breakdown, and being suffi-
ciently stiff and strong to avoid mechanical compromises such as
creep deformation; in addition, the separator must be sufficiently
thick that it is impermeable to unwanted mass transport, such as
diffusion of the storage materials from one electrode to the other
[4]. Another example of the necessary trade-offs is that good ionic
conductivity in the electrolyte of the pores of the electrode
requires high pore volume, which can only be achieved by canni-
balizing the space that otherwise can be allocated to storage par-
ticles. Given that all parameters other than electrode thickness
have been chosen, we now ask whether there is an optimal elec-
trode thickness for minimizing internal losses. This requires maxi-
mization of Eq. (25) with respect to wp and wn, a procedure that
gives

wp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qs
p

Rp þ qp

s
cosh�1 1þ

Rp þ qpffiffiffiffiffiffiffiffiffiffi
Rpqp

p
 !

(27)

as the optimal thickness, with an equivalent result for wn. Clearly
this result indicates that for electrode thicknesses below this level,
the internal losses will rise above the optimum.

Insertion and Extraction Rate. As noted above, the flux of
Liþ into and out of particles is given by Eq. (16) in the positive
electrode and Eq. (21) in the negative electrode. Note that when
the current density I is positive (i.e., a battery in discharge), the
positive electrode is cathodic and the flux Q being negative, indi-
cates that Liþ is being inserted into its storage particles; simulta-
neously the negative electrode is anodic and the flux Q positive,
involves Liþ being extracted from its storage particles. When the
current density I is negative (a battery being charged), the situa-
tion is reversed; the positive electrode is anodic and the flux Q
now positive, shows that Liþ is extracted from its storage par-
ticles; simultaneously the negative electrode is cathodic and the
flux Q now negative, indicates that Liþ is being inserted into its
storage particles. We now seek the location in the electrodes
where the magnitude of the flux rate is maximized. Differentiation
of Eqs. (16) and (21) with respect to x and then differentiation
again shows that the magnitude of the flux may have one mini-
mum somewhere in the middle of the electrode. Therefore, the
largest flux rate is to be found on one side or the other of the
electrode.
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In the case of the positive electrode, when Rp> qp the maxi-
mum rate of Liþ flux into or out of its storage particles occurs at
the interface between the separator and the electrode. When the
situation is reversed, and Rp< qp, the maximum flux occurs at the
current collector. A similar situation arises in the negative elec-
trode. We note that the electronic conducting path is likely to be
more conductive than the ionic conducting path in the electrolyte,
and therefore Rp> qp, making it more likely that the highest flux
will occur in both electrodes at the interface with the separator.
Based on evidence that comminution of particles is most severe at
the separator [4,26], we infer that this is indeed the common situa-
tion since a high rate of extraction or insertion is more likely to
lead to the high stresses that fracture particles [3,7,25–27,29–31].
We note that according to our model the flux at the interface with
the separator in the positive electrode is

~Qp ¼ �
I

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p Rp þ qp

� �q Rp cosh kpwp þ qp

sinh kpwp

� �
(28)

and in the negative electrode it is

~Qn ¼
I

F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n Rn þ qnð Þ
p Rn cosh knwn þ qn

sinh knwn

� �
(29)

Battery Performance During Continuous Utilization. We
now consider the performance of a charged battery if we operate
it continually at constant current density I until the negative elec-
trode is depleted of Li. We assume that the storage particles in the
battery are initially at the same state of charge (SOC) having the
same concentration of Li in them. At first the voltage will be given
by Eq. (25) and will hold steady. We assume now that the electro-
des are such that the electronic conducting paths have low resis-
tivity compared to the ionic conducting paths. Therefore, the rate
of flux for storage particles near the separator will be higher than
elsewhere, and in the negative electrode these particles will be
depleted of Liþ first and in the positive electrode they will be
filled first.

So far we have assumed that the exchange current density for
the storage particles is constant. However, it is well known that
this parameter depends on the SOC of the particles, in particular
depending on the concentration of Li adjacent to the particle sur-
face, as noted above. In addition to gradual changes to the
exchange current density that occur over the normal range of
SOC, an evolution that we have ignored in our model, more pro-
found modifications take place in certain circumstances. For
example, when the material near the surface is completely filled
with Li to stoichiometric capacity (e.g., x fi 1 for LixCoO2 in the
case of lithium cobalt oxide) or is exhausted of Li (e.g., x fi 0 for
LixCoO2), the exchange current density changes dramatically as
side reactions start to become important or new insertion phenom-
ena begin to dominate [57]. We will model these features by sim-
ply assuming that the exchange current density goes to zero when
the surface of the particle is depleted of Li or is filled. That is,
extraction stops when the material near the surface of the particle
is devoid of Li and insertion ceases when the material near the
particle surface is stoichiometrically filled. We further simplify
this picture by the assumption that Li diffusion within the particles
is relatively fast, and the concentration of Li within them remains
fairly uniform. As a consequence, extraction will continue in the
negative electrode until the particles are completely depleted of Li
and then will stop; similarly, insertion will continue in the positive
electrode until the particles are filled and then will cease.

Since we have assumed that the fastest insertion and extraction
rates occur in particles closest to the separator, these particles will
be the first to terminate the active processes of insertion and
extraction. To account for this we divide the electrodes into two
regions, those adjacent to the current collectors and having thick-
nesses ~wp (for the positive electrode) and ~wn (for the negative

electrode) that remain active, and the remainders adjacent to the
separator that have become inactive for the reasons above. The
regions near the separator, being passive, will simply provide
ionic conducting paths in the electrolyte within them, and will no
longer need to conduct electrons as none are being absorbed or
released within these regions of the electrodes. As a consequence,
they are annexed to the separator in terms of their function within
the battery, but retaining their unique ionic resistivity. The
remaining active regions of the electrodes have an unchanged
function as active electrodes, but are thinner than the original
electrode. As a consequence we can write the potential difference
across the cell as a modification of Eq. (25) as

U ¼ U � I

Rp þ qp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

p

Rp þ qp

s
q2

p þ R2
p

	 

cosh kp ~wp þ 2Rpqp

sinh kp ~wp

2
4

3
5

8<
:

þRpqp ~wp

)
� I

Rn þ qn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs

n

Rn þ qn

s(

�
q2

n þ R2
n

� �
cosh kn ~wn þ 2Rnqn

sinh kn ~wn

� �
þ Rnqn ~wn

�
� IRsws

� IRp wp � ~wp

� �
� IRn wn � ~wnð Þ (30)

We can regard wn � ~wn as a measure of utilization, as it will grow
once the inactive zone in the electrode has been established. We
note that it is not an exact measure of utilization as the storage
particles in ~wn are already partially depleted when the inactive
zone is established, and, of course, there is an initial period of use
of the battery during which ~wn ¼ wn. Nevertheless, after an inac-
tive zone is created in the electrode, wn � ~wn can serve as a rudi-
mentary measure of battery utilization. Furthermore, if the
positive and negative electrodes have equal capacity, ~wp=wp

¼ ~wn=wn, so that both wp � ~wp and wn � ~wn serve as equivalent
measures of utilization.

Given our comments regarding the optimal electrode thickness,
we deduce that the potential difference for the cell from Eq. (30)
will fall beyond a certain point as ~wp and ~wn diminish. Therefore,
the loss of potential typically observed in cells [18] is reproduced
by the simple linearized model, in particular the significant loss
that tends to accompany the end of the discharge cycle. We can
make this point clearer by approximating Eq. (30) for thin electro-
des so that the hyperbolic trigonometric functions can be linear-
ized to first order. This gives

U ¼ U � I
qs

n

~wn
þ Rnqn ~wn

Rn þ qn

þ
qs

p

~wp
þ

Rpqp ~wp

Rp þ qp

þ Rn wn � ~wnð Þ
(

þRp wp � ~wp

� �
þ Rsws

)
(31)

making it clear that the potential difference for the cell will drop
dramatically at the end of utilization. Indeed, the potential differ-
ence can even drop to zero in this process, illustrating the signifi-
cant evolution the cell can experience during utilization.

We can consider reversing the process to assess charging. In
this case, at the end of the charging process, as we try to com-
pletely fill Liþ into the storage particles in the negative electrode,
the voltage that must be applied to the cell to continue its charging
at a given rate will rise dramatically. The alternative possibility is
also interesting: if we charge the battery at a fixed voltage, the
charging rate will steadily diminish at the end of the charging
process.

Stress Generation in the Storage Particles. We have deduced
the flux rate of Liþ into and out of storage particles in the form of
Q, the source term defined in Eqs. (3), (5), (16), and (21), with a
rate at the interface with the separator given by Eqs. (28) and (29).
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It is well know that the rate at which Liþ is inserted into or
extracted from storage particles determines the peak stresses in
them that arise due to heterogeneous swelling and shrinkage of
the particles due to the presence of Li [3,7,25–27,29–31]. Such
stresses are responsible for the fracture and comminution of the
storage particles. As the foregoing list of references indicates, a
great deal of work has been done on this problem. However, com-
prehensive maps of the peak stress as a function of battery param-
eters have not been developed, and an objective of the present
paper is to provide such maps derived from simplified, basic
assumptions regarding the process of insertion and extraction of
Li.

The model developed above provides us with Q, which is the
flux of Liþ per unit volume of electrode delivered by storage par-
ticles. It is desirable to connect Q to the flux rate Js

Li of Liþ leav-
ing particles that is defined per unit surface area of storage
particles. The obvious way to do that is to divide Q by the particle
surface area exposed to electrolyte per unit volume of electrode,
as used above in Eq. (5). However, we will calculate the diffusion
of Li in spherical particles as if their entire surface area is exposed
to electrolyte, so that we can take advantage of spherical symme-
try to simplify the computations. Therefore the parameter we need
to divide into Q is the total surface area of storage particles per
unit volume of the electrode. Treating the storage particles as
spheres of equal size, we find this parameter to be 3f/r0, where r0

is the particle diameter. As a consequence, the equivalent flux of
Liþ ions out of spherical storage particles through their surface is

Js
Li ¼

Qr0

3f
(32)

where we should recall that the volume fraction of storage par-
ticles in the electrode is f.

We now describe computations of mass transport of Li within
spherical storage particles subject to an extraction rate Js

Li at the
surface such that Eq. (32) connects these computations to the mac-
roscopic, linear battery model summarized above. Equivalently,
these computations represent storage particles subject to a surface
current density equal to FJs

Li, where this current is positive when
directed outward from the particle surface.

Stress Maps for a Single Spherical Lithium Storage
Particle

Model Description. As described earlier, the insertion and
extraction of lithium into storage particles results in significant
volume changes, which, over time, are thought to lead to the com-
minution of storage particles. While earlier studies focused solely
on the electrochemistry of the battery [18,19,22,24,58,59] more
recent efforts have turned toward the study of the stress generated
within storage particles via coupled diffusion-stress models
[3,30,31,38,39,43–49]. We utilize essentially the same methods as
other workers on this topic, but we emphasize our attempt to be
generic, so that we can map the generation of stress in storage par-
ticles in terms of battery performance and design parameters. In
addition, we pursue a fundamentally consistent approach in terms
of the model for mass transport of lithium and the mechanics of
stress generation in the particles, though we confine ourselves to
relatively simple versions of the system model in this paper as a
first effort to lay out the general principles behind our ideas.

We start with the equation for the ideal chemical potential of
lithium per mole, as determined by Bohn et al. [39], when it is
intercalating a storage particle,

lLi ¼ l0
Li þ RT ln

cLi

cmax � cLi

� XLirh; 0 � cLi � cmax (33)

where l0
Li is the ideal enthalpic contribution per mole of lithium

when dissolved in the lattice, the second term on the right-hand
side is a model for the ideal entropic contribution, and the third

term is the effect due to the presence of mechanical stress. Since
we use a model of the ideal chemical potential of the lithium
when it is intercalated in the storage particle, we have omitted the
excess Gibbs free energy term, or interaction energy, included by
Bohn et al. [39] in their expression. In Eq. (33) cLi is the concen-
tration of lithium in moles per unit volume, and cmax is the maxi-
mum possible concentration of lithium dissolved in a storage
particle, above which concentration further intercalation sites are
unavailable and a new phase must form. The contribution of me-
chanical energy is given by �XLirh, where XLi is the partial molar
volume of lithium dissolved in the lattice and rh is to the hydro-
static stress within the particle. Note that we use the simplest pos-
sible model in several respects; the intercalation solution is
assumed to be ideal, the material is taken to swell or shrink iso-
tropically when lithium is inserted or removed, the resulting strain
is small and analyzed within the mechanics of infinitesimal strain-
ing, and the partial molar volume is assumed to be independent of
lithium concentration.

The vector flux JLi of lithium within the particle, in moles per
unit area per unit time, is given by

JLi ¼ cLivLi (34)

where vLi is the vector of average velocity of lithium, proportional
to its mobility MLi and the gradient of its chemical potential, so
that

JLi ¼ �cLiMLirlLi (35)

Following [39] we take the mobility to be isotropic and a function
of lithium concentration, accounting for the likelihood of a suc-
cessful hop from one intercalation site to another, so that

MLi ¼ M0 1� cLi

cmax

� �
(36)

where the parameter M0 is given by

M0 ¼ DoRT (37)

with Do the concentration independent diffusion parameter.
On combining Eqs. (33)–(37), we find that the flux is given by

JLi ¼ �D0 rcLi � 1� cLi

cmax

� �
XLicLi

RT
rrh

� �
(38)

Note the important difference between this equation for lithium
flux and that used by Zhang et al. [30], where the term
ð1� cLi=cmaxÞ is not present. However, in the absence of a gradi-
ent of hydrostatic stress, our flux equation and that resulting from
the form used by Zhang et al. [30] are the same. At least when the
solution is ideal, the flux response is isotropic, the intercalation
strains are small and isotropic, and the partial molar volume is in-
dependent of lithium concentration, we note that Eq. (38) is rigor-
ous, including its accounting for the effect of a hydrostatic stress
gradient, a conclusion we come to because of our rigorous formu-
lation of the chemical potential of the lithium and its mobility. As
noted by Bohn et al. [39], the term ð1� cLi=cmaxÞ in Eq. (38)
brings symmetry in the effect of the hydrostatic stress gradient at
both concentration extremes, cLi ¼ 0 and cLi ¼ cmax, where the
flux arising from the hydrostatic stress gradient will be zero. This
result comes about because the effects of entropy dominate the
lithium chemical at these extremes of concentration, and the influ-
ence of hydrostatic stress is negligible.

Other formulations of solid-state lithium mass transport include
those based on multicomponent diffusion, with the effect of stress
incorporated via a pressure gradient term [3,25], a set up that is
broadly consistent with our treatment above, but that leads to
detail differences. In some treatments, the contribution of the
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stress gradient term in lithium mass transport is neglected
[40,43–45,51,60], while others go beyond ideal thermodynamics
to account for interaction effects among lithium atoms as they
intercalate [3,7,38,39,51]. In some cases, the relevant chemical
potential is obtained from the measured OCP [3,7,39], perhaps
using activity coefficients in the formulation [3,7,40,43,51].

The equation governing lithium mass transport is obtained by
use of conservation of mass to obtain

@cLi

@t
þr � JLi ¼ 0 (39a)

or

@cLi

@t
¼ D0r � rcLi � 1� cLi

cmax

� �
XLicLi

RT
rrh

� �
(39b)

Note that we have derived our lithium transport equation in gen-
eral terms, but we will use it in this paper to address only the case
of a spherical particle subject to spherically symmetric, radially
heterogeneous concentrations of lithium.

Swelling strains occur due to volume changes that arise during
intercalation/deintercalation of lithium in the storage particle.
When these strains are heterogeneous, elastic stress will also arise,
so that the total strain is given by

e ¼ 1

E
1þ �ð Þr� 3�rhI½ � þ XLi cLi � c0ð Þ

3
I (40)

where e is the strain tensor, E is Young’s modulus, � is Poisson’s
ratio, I is the identity tensor, and c0 is a datum concentration at
which the swelling strain is considered to be zero. The equation
for equilibrium of stress is given by

r � r ¼ 0 (41)

Given that the free surface of the storage particle is traction free,
we use the result for thermal stresses in a solid spherical body of
outer radius r0 when the temperature distribution is spherically
symmetric, as derived by Timoshenko and Goodier [61] and used
by Zhang et al. [30]. The radial rr and circumferential rc stresses
are given by

rr ¼
2XLiE

3ð1� �Þ
1

r3
0

ðr0

0

cLir
2dr � 1

r3

ðr

0

cLir
2dr

� �
(42)

rc ¼
XLiE

3ð1� �Þ
2

r3
0

ðr0

0

cLir
2dr þ 1

r3

ðr

0

cLir
2dr � cLi

� �
(43)

where r is measured from the center of the particle. The hydro-
static stress is then deduced to be

rh ¼
rr þ 2rc

3
¼ 2XLiE

3ð1� tÞ
1

r3
0

ðr0

0

cLir
2dr � cLi

3

� �
(44)

From these equations one can determine that during steady extrac-
tion starting from uniform lithium concentration, the maximum
principal stress is circumferential, tensile, occurs at the particle
surface, and is given by

rmax tð Þ ¼ XLiE

3ð1� �Þ
3

r3
0

ðr0

0

cLi r; tð Þr2dr � cLi r0; tð Þ
� �

(45)

Boundary and Initial Conditions. Earlier work on stress in stor-
age particles [3,30,39] was usually confined to the case of lithium
insertion. In such simulations, the computation is initiated with a
uniform concentration of lithium, and the insertion rate at the par-
ticle surface is uniform and constant in time, a process known as

galvanostatic insertion. For obvious reasons, the lithium concen-
tration at the surface of the particle during the insertion process is
higher than elsewhere in the particle and reaches cmax there first.
The usual procedure in these earlier simulations is to stop the
computation at this stage. An alternative to the simulations just
described is to couple the computation of stress in the particle to a
battery simulator such as Dualfoil [3,7,18–20] that predicts the
insertion rate for particles in the electrode as a function of time
and position through the thickness of the electrode. Such a proce-
dure allows the continuation of the computation beyond the steady
insertion rate stage of the process as the coupling between the bat-
tery simulator and the individual particle allows for the evolution
of the boundary conditions at the particle surface through the use
of Butler-Volmer kinetics. For example, in the actual charging of
a battery, after a predetermined average lithium concentration in
the negative electrode is reached, the battery is held at a constant
potential for a while in order to equalize the concentration among
and within the storage particles. The coupling of the particle stress
computation with the battery simulator enables this transition to
be allowed for.

More recently, simulations of lithium extraction from particles
have been undertaken and the resulting stress in them predicted.
These have been carried out in both fashions just described; i.e.,
on the one hand, lithium is removed from the particle surface at a
constant and uniform rate (i.e., galvanostatic extraction), with the
simulation terminated when the lithium concentration at the parti-
cle surface reaches a minimum level [46,62]; on the other hand,
the extraction simulation can be carried out with the particle stress
computation coupled to a battery simulator [25,26].

To avoid the limitations of simulations of purely galvanostatic
extraction, but to obviate the need to couple the storage particle
stress computation to a battery simulator, we mimic conditions
experienced by spherical storage particles during actual battery
charging and discharge by doing the following.

In the case of extraction, the particle has a uniform initial lith-
ium concentration cLi ¼ cmax. The particle is discharged galva-
nostatically, with uniform lithium flux through its entire free
surface, until the surface reaches the minimum permitted lithium
concentration, i.e., until cLi r0; tð Þ ¼ 0. Thereafter, the concentra-
tion at the particle surface is held fixed at cLi r0; tð Þ ¼ 0 while the
extraction process continues. The simulation can be continued
for an arbitrary time, but for practical reasons we terminate inser-
tion when the average value of cLi=cmax within the particle
becomes equal to 0.01. Note that the average value of cLi=cmax

in the negative electrode is known as the state of charge (SOC).
We will adopt this terminology for individual storage particles
indiscriminately, using the term SOC as defined above for any
storage particle, notwithstanding whether it is for the positive or
negative electrode.

Note that the procedure just described is a reasonable approxi-
mation to what is experienced by a storage particle during battery
charging or discharge. At first the process is close to being galva-
nostatic, because the surface overpotential and exchange current
density do not vary greatly as lithium is extracted. Then, when the
lithium concentration at the particle surface reaches its extreme
(i.e., cLi r0; tð Þ ¼ 0), the surface overpotential and exchange cur-
rent density adjust in such a way that the lithium concentration at
the particle surface remains close to its extreme value (i.e., close
to cLi r0; tð Þ ¼ 0), a result that comes about because of the tend-
ency for side reactions to become dominant and because the Gibbs
free energy of the new phases that develop beyond these extremes
is relatively high.

Furthermore, the surface concentration of lithium in the storage
particle determines the lithium chemical potential there (at least in
the absence of stress at the free surface, see Eq. (33)). Note that
the OCP of the particle surface is directly related to the lithium
chemical potential by

FUs tð Þ ¼ ~lLi � lLi r0; tð Þ (46)
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where ~lLi is the lithium chemical potential in the reference elec-
trode used to define the OCP for the electrode within which the
given storage particle lies. (Note that for reference purposes we
have plotted in Fig. 2 the OCP from Eq. (46), subject to Eq. (33),
as a function of the SOC for a particle having a uniform lithium
concentration, and therefore zero stress. For a battery designed to
have the same lithium capacity in both electrodes the variation of
the battery OCP would be twice what is shown in Fig. 2, so that
this figure is representative of the OCP for a battery having ideal
electrodes in which the lithium chemical potential for both elec-
trodes is represented by expressions having the form of Eq. (33).)

It follows that when the particle surface is held at a fixed poten-
tial and the electrolyte potential adjacent to it does not vary, such
a condition is tantamount to holding the lithium concentration at
the particle surface fixed. For this reason, a boundary condition on
the mass transport process for lithium in which the lithium con-
centration at the storage particle surface is held fixed is known as
a potentiostatic process. Thus the stage of battery charging during
which the potential difference between the electrodes is held con-
stant while the surface lithium concentration in the particles has
reached its extreme value (i.e., cLi r0; tð Þ ¼ 0) is a potentiostatic
process. The same can be said for battery discharge if the control
system for battery utilization holds the potential difference
between the electrodes fixed. In summary, we are therefore mod-
eling the effects on a storage particle during battery charging and
discharge as a galvanostatic process taking the surface lithium
concentration from one extreme value to another (i.e., from
cLi r0; tð Þ ¼ cmax to cLi r0; tð Þ ¼ 0) followed by a potentiostatic pro-
cess in which the surface lithium concentration is held fixed (i.e.,
at cLi r0; tð Þ ¼ 0).

During the galvanostatic stage of our simulations, the flux of
lithium out of a storage particle through its surface is given by
Eq. (32). As is standard practice in the literature, this boundary
condition will be stated in terms of a surface current density in
defined as current exiting the particle when positive, such that

Jr r0; tð Þ ¼ Js
Li ¼

Qr0

3f
¼ in

F
(47)

where Jr is the radial component of the vector JLi.

Nondimensionalization. In order to ensure that the study is
generic and applicable to a wide range of materials, battery
designs, and performance indicators, the equations are nondimen-
sionalized. Following Zhang et al. [30] we use the nondimension-
alized position, time, Li concentration, and surface current density
given by

r̂ ¼ r

r0

t̂ ¼ tD0

r2
0

ĉLi ¼
cLi

cmax

Î ¼ inr0

FD0cmax

(48)

Although it would be more natural to nondimensionalize the stress
tensor by dividing it by XLicmaxE since this group sets the scale
for the stress components [43,62], we prefer to normalize the
stress tensor by Young’s modulus alone as we believe the result-
ing values are more informative and, of course, the result repre-
sents the scale of the elastic strains. In addition, we introduce a
new parameter as the nondimensionalized partial molar volume so
that

r̂ ¼ r
E

X̂ ¼ XLiE

RT
(49)

Note that there is an additional nondimensional parameter, namely
Poisson’s ratio �, and another elucidated below.

In nondimensional form, the diffusion equation for lithium
transport in the storage particle reduces to

@ĉLi

@ t̂
¼ @

@r̂
þ 2

r̂

� �
@ĉLi

@r̂
� X̂ 1� ĉLið ÞĉLi

@r̂h

@r̂

� �
(50)

During the galvanostatic stage of extraction, the boundary condi-
tion is

@ĉLi 1; t̂ð Þ
@r̂

¼ �Î þ X̂ 1� ĉLi 1; t̂ð Þ½ �ĉLi 1; t̂ð Þ @r̂h 1; t̂ð Þ
@r̂

(51)

whereas in the potentiostatic stage the boundary condition is

ĉLi 1; t̂ð Þ ¼ 0 (52)

The formulas for stress, Eqs. (43) and (44), can be stated in nondi-
mensional form. We give only the result for hydrostatic stress,

r̂h ¼
2emax

Li

3ð1� �Þ

ð1

0

ĉLir̂
2dr̂ � ĉLi

3

� �
(53)

where
emax

Li ¼ XLicmax (54)

is the final dimensionless parameter, representing the maximum
swelling strain that can be induced by the lithium.

We observe that the relevant solutions for the dimensionless
lithium concentration and the dimensionless stress tensor as
functions of dimensionless position in the storage particle and
dimensionless time will depend only on the three irreducible pa-
rameters, Î, X̂, and emax

Li . Therefore, all solutions can be phrased in
terms of these three parameters and we now proceed to explore
the territory of particle stresses and SOC in that context. We note
that Zhang et al. [30] published a plot for the maximum principal
stress during lithium galvanostatic insertion as a function of Î
for spherical LixMn2O4 particles, with the modulus taken to be
10 GPa. While their stress results can be normalized by their mod-
ulus to give results in dimensionless form, they pertain to only
one specific value of X̂ and one specific value of emax

Li . Thus we
will augment their results by considering solutions for an appro-
priate range of values of Î, X̂, and emax

Li , although we will confine
ourselves to extraction in this paper.

For guidance on the appropriate range for the parameters, we
consider storage particles composed of lithium manganate
(LixMn2O4) and use parameters taken from literature [3,30,46]:

D0 ¼ 7:08� 10�15 m2=s

XLi ¼ 3:497� 10�6 m3=mol

E¼ 100 GPa

Fig. 2 Plot of the open circuit potential (OCP) versus the state
of charge (SOC) for an electrode having ideal thermodynamics
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Thus X̂ ¼ 141 for LixMn2O4.
For a spherical particle of radius 15 lm at a surface current den-

sity of 31.3 A/m2 the nondimensional current is 30. Such a rate
insertion corresponds to discharge at 10 C, i.e., the entire particle
will be filled in 1/10th of an hour or 6 min. This would be a rela-
tively high rate of insertion or extraction for a particle, and can
therefore be considered to be an upper limit.

A typical maximum upper limit for the lithium concentration in
lithium manganate storage particles is cmax ¼ 2:29� 104 mol=m

3
.

As a consequence, the value for emax
Li for lithium manganate is

0.08.
Taking these numbers as a baseline, we choose a range of

values extending from 0 to 1500 for X̂, from 0.5 to 30 for Î, and
from 0.005 to 1.0 for emax

Li . Of course, a strain of unity for lithia-
tion is somewhat beyond the limit where infinitesimal strain
theory is truly valid, but we include such a high lithiation strain
because new storage materials such as silicon tend to swell a great
deal when they absorb lithium. In addition, the elastic strains pro-
duced when emax

Li is high are actually more modest, so that the use
of infinitesimal theory is just about acceptable. We should note,
however, that there are other issues, such as the distinction
between undeformed and deformed configuration and its effect
on the equations of mass transport that become of concern when
the lithiation swelling is large, but we have ignored such
complications.

A note should be made concerning the value of X̂ ¼ 0. This
does not imply that either the Young’s modulus or the partial
molar volume is zero. At extremely high temperatures, i.e.,
T !1; X̂! 0. This is consistent with the fact that at high tem-
peratures entropy driven diffusion will dominate, and the contri-
bution of the stress gradient term will be negligible or zero. This

observation justifies the inclusion of results for X̂ ¼ 0 for com-
pleteness, though, of course, we realize that very high tempera-
tures are physically unrealistic in the operation of batteries.

Results. For the case of extraction, the circumferential stress at
the surface is the maximum tensile stress experienced in the parti-
cle. In Fig. 3 we provide plots of such maximum stresses experi-
enced in the particle during extraction as a function of the
dimensionless current Î and the maximum lithiation strain emax

Li at
various values of X̂. As one would expect, increasing the values
of Î and emax

Li leads to an increase in the maximum stress experien-
ces by the particle. The monotonically increasing dependence of
the maximum stress on the maximum lithiation strain occurs for
obvious reasons, as the latter is the parameter that controls all
strain magnitudes, including elastic ones, in the extraction or
insertion process. As noted by others [30], the fact that the extrac-
tion rate Î determines the gradient of lithium concentration in the
particles leads to the monotonic dependence of the maximum
stress in the particle on the extraction rate. That is, a large gradient
in the concentration of lithium, leading to large gradients of lithia-
tion strain, requires a large elastic strain in compensation and thus
produces a large maximum stress.

We note that the elastic strains predicted in Fig. 3 are relatively
high, up to 5% in one case and 40% in another. This partly reflects
the fact that the maximum lithiation strains can be relatively high;
e.g., 8% in the case of lithium manganate as noted above. It seems
likely that the elastic strain levels observed at the higher end in
Fig. 3, and the associated stresses, are likely to fracture and com-
minute storage particles. However, the extraction rates and the
lithiation strains in practice will enable avoidance of the extreme

Fig. 3 Three-dimensional stress maps generated for (a) X̂ ¼ 1500, (b) X̂ ¼ 150, and (c) X̂ ¼ 10, where X̂ is the normalized lith-
ium partial molar volume. The peak maximum principal stress during galvanostatic extraction followed by potentiostatic
extraction is shown as a function of the normalized lithiation strain emax

Li and the normalized extraction rate Î .
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strain magnitudes possible in the conditions encompassed by
Fig. 3. For example, as we have already discussed, the lithium
manganate in a battery charging at 10 C with particles of diameter

30 lm has Î ¼ 30, X̂ ¼ 141, and emax
Li ¼ 8%. Such a condition

leads to a dimensionless maximum stress approaching 30%. While
such a discharge rate is relatively rapid, the example illustrates
that the elastic strains and associated stresses in storage particles
can in practice be quite high, suggesting that they are actually
quite robust and resistant to fracture and comminution. Neverthe-
less, it seems likely that even at lower extraction rates comparable
to 1 C that are common in practice, fracture, and comminution of
storage particles is always a real possibility.

We note that the maximum stress during extraction, according
to Fig. 3, is highest when X̂ is low and lower when X̂ is high. This
inverse dependence on X̂ is at first sight surprising, as X̂ is propor-
tional to the partial molar volume of lithium intercalating the stor-
age particle, and thus one might expect stresses to go up as X̂
increases. The observed dependence of the maximum principal
stress on X̂ arises because of the role it plays in the lithium trans-
port equation, Eq. (50). A high value of X̂ enhances the influence
of stress gradients on lithium flux, whereas a low X̂ value limits
the influence of stress gradients. We note that the stress gradient
in the storage particle will always aide the process that is being
undertaken; i.e., during extraction the hydrostatic stress at the par-
ticle surface is positive, whereas at its center the hydrostatic stress
is negative. Thus, in the case of extraction the hydrostatic stress
gradient set up by the extraction process will speed the rate at
which the lithium is transported. As a consequence, the gradients
of lithium concentration in the storage particle during extraction
will be less severe when X̂ is large and more severe when it is
small.

Since the lithium concentration is the cause of the swelling that
leads to the elastic stresses, we can conclude that the magnitudes
of stress will be relatively small when X̂ is large. This phenom-
enon is confirmed by the results in Fig. 4 which shows the profile
of lithium concentration in the storage particle at various stages
of the extraction process, commencing with the particle full of
lithium. The plot in Fig. 4(a) is for a case at the extreme of the
spectrum we have studied, having a high value of each of
the dimensionless parameters that control the behavior, with
X̂ ¼ 1500 to be specific, so that the influence of the hydrostatic
stress gradient on lithium transport is very strong. It can be seen
that the lithium concentration remains fairly uniform throughout
the particle during the extraction process, with only a slight gradi-
ent from the particle surface to its center. Only at the end of galva-
nostatic extraction, when the concentration at the particle

perimeter approaches and reaches zero, is there a significant gradi-
ent in the lithium concentration. Recall that the elastic stresses,
and thus the maximum principal stress, are highest when the lith-
ium concentration gradient is greatest; it follows that the stress in
this case will remain everywhere relatively small, with a peak in
its magnitude only toward the end of galvanostatic extraction and
at the beginning of the potentiostatic stage. This is confirmed by
the results in Fig. 5(a) which shows the maximum principal stress
in the storage particle for this case, among others, as a function of
time. It can be seen that the maximum principal stress rises to a
peak at the end of galvanostatic extraction and falls thereafter.
The probable reason why the maximum principal stress is greatest
at the end of galvanostatic extraction is that ĉLi approaches and
reaches zero at that time, and thus the influence of the hydrostatic
stress gradient at the particle surface is de-emphasized and almost
eliminated (see Eq. (50)). Thus the lithium flux near the surface
slows down and a greater gradient of the lithium concentration is
required to keep the transport process going. This in turn leads to
an enhancement of the maximum principal stress, leading to the
trend observed in Fig. 5(a) for the case under consideration. After
the process has switched over to potentiostatic extraction, the lith-
ium gradient naturally declines as time passes, and as a conse-
quence the maximum principal stress also diminishes with time.

Now consider the case illustrated by the results in Fig. 4(b),
which is the same as that for Fig. 4(a) except that the value of X̂ is
much smaller, at 10. It can be seen that the profile of the lithium
concentration in the particle is very different in this case, as com-
pared to the results in Fig. 4(a). As time passes throughout galva-
nostatic extraction, the lithium concentration near the center of
the particle is almost unchanged from its initial value. Only near
the particle surface is the lithium concentration reduced by the
extraction process, and as a consequence there is a steep gradient
there. This leads to the much higher maximum principal stress
that is found in this case, as illustrated by the results in Fig. 3(c).
In contrast to the result given in Fig. 4(a), the contribution to the
lithium flux due to the hydrostatic stress gradient in the case illus-
trated in Fig. 4(b) is relatively low, requiring steeper gradients in
the lithium concentration gradient to ensure consistency of the
lithium flux with the boundary condition, namely Î ¼ 15. As a
consequence, the stress generated in the particle is greater than for
the case used to generate Fig. 4(a). This confirms our reasoning as
to why a high X̂ leads to a low maximum principal stress in the
particle and vice versa. We note also that the distribution of lith-
ium in the case illustrated in Fig. 4(b) will lead to the highest max-
imum principal stress at the end of galvanostatic extraction, a fact
that is confirmed by the relevant result in Fig. 5(c) where the

Fig. 4 Lithium concentration profile in a storage particle at specific times for particular values of the normalized extraction
rate Î , the normalized lithium partial molar volume X̂, and the normalized lithiation strain emax

Li : (a) Î ¼ 15, X̂ ¼ 1500, emax
Li ¼ 1:0;

(b) Î ¼ 15, X̂ ¼ 10, emax
Li ¼ 1:0; and (c) Î ¼ 15, X̂ ¼ 1500, emax

Li ¼ 0:01
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stress peaks at that stage, and at a much higher value than the
equivalent result in Fig. 5(a).

Note also that Fig. 4(c) illustrates that reducing the maximum
lithiation strain emax

Li while keeping X̂ constant has a similar effect
on the lithium concentration gradient as keeping emax

Li constant and
reducing X̂. The reasons for this effect are very similar to those
associated with the effect of X̂ on the lithium concentration gradi-
ent. At a given gradient of lithium concentration, a high value of
emax

Li leads to high stress magnitudes, whereas a low value causes
low stress magnitudes. Because the average stress in the particle
must be zero, an effect that is due to the absence of tractions on

the particle surface, high stress magnitudes lead to high stress gra-
dients, i.e., during extraction a high tension at the particle surface
and a high compression at its center. The high stress gradient
enhances the lithium flux and so the particle is evacuated of lith-
ium much more rapidly. To maintain a given extraction rate, it
follows that a particle having a high value of emax

Li will experience
lower gradients of lithium concentration, while a particle having a
low value of emax

Li will experience higher gradients of lithium con-
centration. This feature is confirmed by the contrasting results in
Figs. 4(a) and 4(c). However, the increased gradients of lithium
concentration in the case depicted in Fig. 4(c) are associated with

Fig. 5 Histories of maximum principal stress (a)–(d) and average lithium concentration
(SOC) (e)–(h) in a storage particle during galvanostatic extraction followed by potentio-
static extraction. The normalized extraction rate is Î ¼ 15 and results are shown for four val-
ues of the normalized lithium partial molar volume X̂. Within each plot results for different
values of the normalized lithiation strain emax

Li are provided. (a) Maximum principal stress
for X̂ ¼ 1500; (b) maximum principal stress for X̂ ¼ 150; (c) maximum principal stress for
X̂ ¼ 10; (d) maximum principal stress for X̂ ¼ 0; (e) SOC for X̂ ¼ 1500; (f) SOC for X̂ ¼ 150;
(g) SOC for X̂ ¼ 10; and (h) SOC for X̂ ¼ 0.
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lower magnitudes of maximum principal stress despite the tend-
ency for high gradients of lithium concentration to promote
high maximum principal stresses, a consequence of the low value
of emax

Li and thus the low magnitudes of elastic strain that are
generated.

We now explore the results in Fig. 5 more thoroughly. In this
figure the SOC for a storage particle is shown as a function of
time as well as the maximum principal stress in it, as mentioned
above. Results are shown for a high extraction rate Î ¼ 15 and for
various values of X̂ and emax

Li . The time at which the transition
from galvanostatic to potentiostatic extraction occurs is marked in
each case by a black dot. The results in Figs. 5(a)–5(d) indicate
for the cases considered that the peak maximum principal stress
during extraction occurs at the transition from galvanostatic to
potentiostatic extraction. The maximum principal stress thereafter
falls because potentiostatic extraction involves a process in which
the lithium concentration gradients tend to diminish in time, and
thus stress levels go down. It might be expected that high stress
levels would be achieved shortly after extraction commences
because of large lithium concentration gradients that would be
expected near the particle surface. The results in Fig. 5 show that
such high stresses near the beginning of extraction are most nota-
ble in the case of X̂ ¼ 1500, but are otherwise not very significant.
Even in the case of X̂ ¼ 1500, after peaking, these early time
stress levels fall and only rise again later to higher levels as galva-
nostatic extraction is coming to an end. It is likely that the high
stresses in the case of X̂ ¼ 1500 that occur shortly after the begin-
ning of extraction occur because the hydrostatic stress gradient
term in the lithium transport equation (Eq. (50)) is less significant
at the beginning when ĉLi is close to unity because of the presence
of the factor 1� ĉLi. This feature will make early stage extraction
when X̂ ¼ 1500 similar to other cases in that the high driving
force for hydrostatic stress gradient driven lithium flux that other-
wise prevails when X̂ ¼ 1500 is de-emphasized. Thus, high lith-
ium concentration gradients associated with high stress gradients
can build up in the early stages of extraction, but are then dissi-
pated as ĉLi falls significantly below unity due to the fact that the
hydrostatic stress gradient driven flux becomes more significant.
In contrast, the process of the high stresses building up in time
continues unabated in the cases for which X̂ 6¼ 1500 and this build
up only terminates when galvanostatic extraction is brought to an
end.

The results in Figs. 5(e)–5(h) show the storage particle SOC as
a function of time for various values of the dimensionless parame-
ters X̂ and emax

Li for an extraction rate of Î ¼ 15. The transition
from galvanostatic to potentiostatic extraction is shown by a black
dot, so that the relative duration of these two stages is illustrated.
Obviously the SOC is linear with time during galvanostatic exac-
tion. Furthermore, because all results shown for Fig. 5 have
Î ¼ 15, the linear results for SOC versus time are all the same in
Fig. 5. However, once potentiostatic extraction takes over, the
result for each case diverges. Because the lithium concentration is
more uniform when X̂ ¼ 1500 and emax

Li ¼ 1, most of the lithium
is extracted in this case during the galvanostatic stage, and less
than 10% remains to be removed potentiostatically. Because
potentiostatic extraction is always slower than galvanostatic
extraction, the case of X̂ ¼ 1500 and emax

Li ¼ 1 is the one with the
most rapid removal of lithium from the storage particle over all
the cases that we have considered. Reduction of X̂ or emax

Li causes
an earlier transition to potentiostatic extraction and thus to an
overall slower removal of the lithium from the particle. This effect
is caused by the reduction in the importance of lithium transport
driven by the hydrostatic stress gradient, so that the lithium con-
centration gradient must be higher to maintain the surface flux of
lithium at the particle surface. As a consequence, the lithium con-
centration at the particle surface goes to zero faster, ending galva-
nostatic extraction sooner. In line with the fact that X̂ controls the
importance of the hydrostatic stress gradient in lithium transport,
the low value used for Fig. 5(g) means that there is little differ-
ence among all the cases having different values of emax

Li . That is,

even though a high value of emax
Li causes high stress gradients, it

has little influence on the overall rate of extraction because lith-
ium transport is little affected by the hydrostatic stress gradient.
Furthermore, the case with emax

Li ¼ 0:0 is overall the slowest situa-
tion as far as removing 90% of the lithium is concerned. This fact
is in line with the observation that the hydrostatic stress gradient
driven lithium transport always speeds up extraction, so that
diminishing it by making X̂ or emax

Li low slows down the potentio-
static stage of lithium extraction as well as causing an earlier tran-
sition to it.

Figures 5(d) and 5(h) are for the special case X̂ ¼ 0. The strain
here is the highest, at just over 40%. The diagram of the average
SOC reveals that changing the value of emax

Li does not affect the
concentration profile, and all are identical. As noted earlier, the
case of X̂ ¼ 0 implies zero contribution of the stress term to the
lithium flux within the particle. The concentration profile, and
therefore the SOC, is affected only by Î, which has the same value
for all these cases.

The stresses are not plotted for the case emax
Li ¼ 0 in Fig. 5 since

they would all be zero. The SOC is plotted for emax
Li ¼ 0 in each

case. The plot for X̂ ¼ 0; emax
Li ¼ 0 represents the baseline case;

i.e., Fickian diffusion with no stresses present. This gives the lith-
ium concentration profile that would be obtained if the stresses
were not taken into account at all. As can be seen in Fig. 5, the
deviation of the SOC for cases where the stress gradient has been
allowed for in the lithium transport simulation, relative to the
baseline, can be significant depending on the value of emax

Li and X̂.
We conclude that it is important to take the stress into account in
order to predict the concentration of lithium within the particles
accurately. For example, when X̂ ¼ 150 and emax

Li ¼ 0:1 (approxi-
mately the values for lithium manganate), there is a notable differ-
ence between the SOC during potentiostatic extraction when
stress driven diffusion of lithium is taken into account and when it
is not.

In Fig. 6 we have plotted results for different values of X̂ to-
gether on the same graphs to enable us to encompass more values.
The results are similar to, in some cases the duplicate of, those
given in Fig. 5, and the same comments may be made regarding
them. To avoid lengthy duplication of such comments, we abjure
any description or commentary on Fig. 6, except to note that these
figures allow ready comparison of results that allow for stress gra-
dient driven lithium transport and those that do not. We observe
that these differences can be considerable in terms of both the
maximum principal stress and the SOC. This insight indicates,
once more, that omission of stress gradient driven lithium trans-
port is usually a mistake, leading to overestimation of the peak
maximum principal stress and the SOC during extraction.

In Fig. 7 histories of the maximum principal stress for a charg-
ing rate of Î ¼ 1:0 are plotted for two different values each of X̂
and emax

Li . The maximum stress reduces by an order of magnitude
as compared to Fig. 5 where Î ¼ 15. The lower external flux leads
to a lower lithium concentration gradient within the particle,
reducing the stress gradient and the stress magnitude for the rea-
sons outlined earlier. The stress histories in Fig. 7(a) are similar to
those in Fig. 5(a), but those in Figs. 7(b)–7(d) differ somewhat
from their counterparts in Fig. 5. In Fig. 7, large values of X̂ and
emax

Li lead to a significant contribution from stress gradient driven
lithium flux, and there is a dip in the stress profile similar to what
is observed in Fig. 5(a).

The effect of reducing Î becomes clear on inspection of the
stress histories in Figs. 7(b)–7(d). There is a notable difference
between the histories for Î ¼ 15 observed in Figs. 5 and 6 and
those for the lower current density shown in Fig. 7. Instead of a
monotonic increase until the start of potentiostatic charging com-
monly seen at high current densities, the maximum stress either
plateaus or dips, depending on the value of X̂ and emax

Li . At the
lower rate of extraction, the diffusion of lithium within the parti-
cle can keep pace with the extraction of lithium from its surface,
and the formation of large concentration gradients of lithium is
prevented. The consequence is twofold. First, the combination of
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Fig. 6 Histories of maximum principal stress (a)–(c) and average lithium concentration (SOC) (d)–(f) in a storage particle
during galvanostatic extraction followed by potentiostatic extraction. The normalized extraction rate is Î ¼ 15 and results
are shown for three values of the normalized lithiation strain emax

Li . Within each plot results for different values of the nor-
malized lithium partial molar volume X̂ are provided. (a) Maximum principal stress for emax

Li ¼ 1:0; (b) maximum principal
stress for emax

Li ¼ 0:1; (c) maximum principal stress for emax
Li ¼ 0:01; (d) SOC for emax

Li ¼ 1:0; (e) SOC for emax
Li ¼ 0:1; and (f)

SOC for emax
Li ¼ 0:01.

Fig. 7 Histories of maximum principal stress in a storage particle during galvanostatic
extraction followed by potentiostatic extraction. The normalized extraction rate is Î ¼ 1:0 and
results are shown for two values of the normalized lithium partial molar volume X̂ and two
values of the normalized lithiation strain emax

Li . In the plot for a given value of X̂ results are
shown for various values of emax

Li , and vice versa. (a) Maximum principal stress for X̂ ¼ 1500;
(b) maximum principal stress for X̂ ¼ 150; (c) maximum principal stress for emax

Li ¼ 1:0; and
(d) maximum principal stress for emax

Li ¼ 0:1.
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X̂ and emax
Li required in order for the stress gradient to cause a sig-

nificant contribution to the lithium flux will not be as high as for
higher charging rates. Thus even at relatively low values of X̂ and
emax

Li a dip can be seen in the maximum stress as times passes,
characteristic of cases where stress gradient driven lithium trans-
port is playing a significant role in the diffusion process.

Second, when both values of X̂ and emax
Li are low, the stress his-

tory will plateau. The clearest example of this is the stress profile
in Fig. 7(d) for the case X̂ ¼ 0. In this case the stress gradient
makes no contribution to the overall lithium flux. As a conse-
quence, there is a monotonic rise in the maximum principal stress
characteristic of cases where the stress gradient driven lithium
flux is playing a minor role. However, since extraction of lithium
is occurring at a relatively low rate, it is more likely that its diffu-
sion in the particle matches the surface extraction rate before the
transition to potentiostatic extraction occurs. This leads to the for-
mation of a steady state lithium concentration profile. As a result,
the magnitude of the stress will also stabilize, causing it to plateau
until galvanostatic extraction ends.

Closure

We have attempted to give some insights into the performance
and failure of lithium ion batteries through the means of a linear-
ized one-dimensional model for the cell as whole, and through
simulations of lithium transport and lithiation stress in a single
spherical particle. In our approach we have tried to be as general
as possible as far as combinations of performance indices and ma-
terial parameters are concerned, though we have confined our-
selves to idealized thermodynamics. We hope that our paper will
help to advance battery design and utilization so that cells may be
exploited more effectively to allow faster charging and greater ex-
ploitation of their capacity.

Dedication

We are pleased to dedicate this paper to Professor James R.
Rice to mark his 70th birthday. Jim has been an inspiring and gen-
erous mentor to many, including one of the authors (RMM). As
the first author of this paper is a student of RMM, Jim has directly
or indirectly guided us both on our paths into research and applied
mechanics. Such paths, lit by the brightness of his teaching,
research, and friendship have been inspiring to follow. Jim’s
unforgettable kindness, creativity, and awesome intellect are rec-
ognized by all who know him, all who read his papers, and all
who hear him lecture. Having been guided by Jim, RMM feels
fortunate. With this paper on lithium ion batteries, the authors
wish to honor Jim. Though lithium ion batteries is a subject that
Jim has not worked on, the topic involved—applied mechanics
coupled to thermodynamics and chemistry—is one where Jim did
pioneering work, and so the authors owe much to Jim regarding
the genesis of this work.
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Padé Approximation,” J. Electrochem. Soc., 158, pp. A93–A101.

[56] Gallagher, K. G., Nelson, P. A., and Dees, D. W., 2011, “Simplified Calculation
of the Area Specific Impedance for Battery Design,” J. Power Sources, 196, pp.
2289–2297.

[57] Newman, J., and Thomas-Alyea, K. E., 2004, Electrochemical Systems, 3rd ed.,
John Wiley, Hoboken, NJ.

[58] Doyle, M., Newman, J., Gozdz, A., Schmutz, C., and Tarascon, J. M., 1996,
“Comparison of Modeling Predictions With Experimental Data From Plastic
Lithium Ion Cells,” J. Electrochem. Soc., 143, pp. 1890–1903.

[59] Darling, J., and Newman, J., 1999, “Dynamic Monte Carlo Simulations of Dif-
fusion in LiyMn2O4,” J. Electrochem. Soc., 146, pp. 3765–3772.

[60] Cheng, Y.-T., and Verbrugge, M., 2009, “Evolution of Stress Within a Spheri-
cal Insertion Electrode Particle Under Potentiostatic and Galvanostatic Oper-
ation,” J. Power Sources, 190, pp. 453–460.

[61] Timoshenko, S. P., and Goodier, J. N., 1951, Theory of Elasticity, 2nd ed.,
McGraw-Hill, New York.

[62] Yang, F., 2005, “Interaction Between Diffusion and Chemical Stresses,” Mater.
Sci. Eng., A-409, pp. 153–159.

031021-16 / Vol. 79, MAY 2012 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 01/15/2014 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1149/1.2059263
http://dx.doi.org/10.1149/1.2044130
http://dx.doi.org/10.1149/1.1837095
http://dx.doi.org/10.1149/1.2049974
http://dx.doi.org/10.1149/1.1393490
http://dx.doi.org/10.1016/j.compstruc.2009.08.005
http://dx.doi.org/10.1016/j.compstruc.2009.08.005
http://dx.doi.org/10.1149/1.1836486
http://dx.doi.org/10.1016/j.jpowsour.2004.11.037
http://dx.doi.org/10.1149/1.3455179
http://dx.doi.org/10.1149/1.3298892
http://dx.doi.org/10.1063/1.3492617
http://dx.doi.org/10.1063/1.3486512
http://dx.doi.org/10.1149/1.3464773
http://dx.doi.org/10.1149/1.3464773
http://dx.doi.org/10.1016/j.ijsolstr.2010.02.001
http://dx.doi.org/10.1016/j.ijsolstr.2011.04.005
http://dx.doi.org/10.1016/j.jmps.2011.01.003
http://dx.doi.org/10.1063/1.3525990
http://dx.doi.org/10.1149/1.1344517
http://dx.doi.org/10.1016/j.jpowsour.2010.06.081
http://dx.doi.org/10.1149/1.3425622
http://dx.doi.org/10.1149/1.3519059
http://dx.doi.org/10.1016/j.jpowsour.2010.10.020
http://dx.doi.org/10.1149/1.1836921
http://dx.doi.org/10.1149/1.1392547
http://dx.doi.org/10.1016/j.jpowsour.2009.01.021
http://dx.doi.org/10.1016/j.msea.2005.05.117
http://dx.doi.org/10.1016/j.msea.2005.05.117

	F1
	l
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	E23
	E24
	E25
	E26
	E27
	E28
	E29
	E30
	E31
	E32
	E33
	E34
	E35
	E36
	E37
	E38
	E39a
	E39b
	E40
	E41
	E42
	E43
	E44
	E45
	E46
	E47
	E48
	E49
	E50
	E51
	E52
	E53
	E54
	s1B3
	F2
	F3
	F4
	F5
	F6
	F7
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62

