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We analyze theoretically the moment of inertia of the desert ant Cataglyphis (C. bicolor and C. fortis)

around a vertical axis through its own center of mass when the animal raises its gaster to a vertical

position. Compared to the value when the gaster is horizontal, the moment of inertia is reduced to one

half; this implies that when increasing its angular acceleration the ant need apply only half the level of

torque when the gaster is raised, compared to when the gaster is lowered. As an example, we analyze

the cases of an ant running on circular and sinusoidal paths. In both cases, the ant must apply a

sideways thrust, anti-roll and anti-pitch torques to avoid toppling, and, on the circular path when

accelerating and throughout the sinusoidal trajectory, a torque to enable turning as the path curves.

When the ant is accelerating in a very tight circle or running on a very narrow sinusoidal path, in which

the amplitude of the sinusoid is less than the length of the ant’s body, the forces required for the

turning torque can equal and exceed those required for the sideways thrust, and can be reduced

significantly by the ant raising the gaster, whereas the foot-thrust for the anti-roll and anti-pitch

torques rises only modestly when the gaster is up. This suggests that there may be an evolutionary

advantage for employing the gaster-raising mode of locomotion, since this habit will allow desert ants

to use lower forces and less energy, and perhaps run faster on more tortuous paths.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Some Saharan desert ants of the genus Cataglyphis, especially
those belonging to the bicolor species group (e.g., C. bicolor) and
the albicans species group (e.g., C. fortis) are able to raise the gaster
until its major axis is vertical (Fig. 1). This position contrasts with
the lowered orientation in which the major axis of the gaster is
nearly horizontal, and aligned with the ant’s other body parts
(Wehner, 1982, 1983). The ability of raising the gaster is asso-
ciated with a nodiform or cubiform rather than squamiform
petiolus (Fig. 2) (Wehner et al., 1994). The squamiform petiolus,
which is typical for formicine ants in general, is still present in
some more original Cataglyphis species such as C. emmae, the
members of the cursor species group, and C. bombycina (Agosti,
1990). These species – most remarkably C. bombycina, the ‘‘silver
ant’’ of the Sahara, the Sinai and the deserts of the Arabian
Peninsula – are unable to raise the gaster. Even though they
reach high running speeds, they proceed along almost straight
lines and decelerate or even stop when turning (Wehner and
Wehner, 1990). In contrast, C. bicolor and C. fortis are able to both
ll rights reserved.

t).
elevate the gaster and perform remarkably tortuous runs, during
which they reach high rates of turning with the gaster elevated.

Here we test the hypothesis, promoted almost 30 years ago
(Wehner, 1982, 1983), that the erect position of the gaster
reduces the ant’s moment of inertia and hence facilitates man-
euverability. A lowered moment of inertia would allow the ant to
perform fast turns with reduced levels of torque generated from
the motion of its legs. We investigate this concept quantitatively
by modeling the moment of inertia for the ant with its gaster
raised and lowered. In addition, we consider an ant running on
circular and sinusoidal paths to estimate the relative levels of
torque and foot-thrust required when the gaster is erect and
lowered.
1.1. Geometric model of Cataglyphis

As illustrated in Fig. 2, Cataglyphis has four main body parts.
They are the head, the thorax (alitrunk), the petiole (petiolus) and
the gaster (metamosa) (Wehner, 1983; Wehner et al., 1994). In
addition, there are legs, mandibles, antennae and other small
appendages, whose geometry we ignore for the purpose of
estimating the insect’s moment of inertia. The dimensions
(defined in Fig. 2) and mass of each body part are listed in
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Fig. 1. Sketches of Cataglyphis fortis with its gaster in a near vertical position as

adopted when running through tight turns. From Wehner (1982).

Fig. 2. (a) Lateral and (b) dorsal view of Cataglyphis bicolor and Cataglyphis fortis,

respectively. The body parts (head H, thorax T, petiolus P, gaster G) and measured

dimensions (see Table 1) are indicated. The white dot in (b) marks the center of

gravity when the gaster is in a horizontal position. Drawings adapted from

Wehner (1983) and Wehner et al. (1994).
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Table 1 for workers of C. bicolor and C. fortis. The mass of each
body part was measured on freshly killed animals, and all
appendages of the head were attached. Negligible desiccation
occurred in the few seconds involved in handling, as is confirmed
by the data for wet brains provided by Wehner et al. (2007). In
each case, measurements were made on 3 animals, and the mean
values used to prepare Table 1. The measured ants were all taken
while on foraging runs outbound from the nest, and therefore
following tortuous paths. As a consequence, the dimensions and
masses in Table 1 are those relevant to the ant’s inertia when it is
making its rapid turns. After securing food, the ant returns to the
nest on relatively straight paths. The inertia of the animal carrying
a food item is not relevant to our study.

In view of the shapes of the body parts, we model the head,
thorax and gaster as ellipsoids and the petiolus as a sphere. The
lay-out of our geometric model is shown in various states in Fig. 3.
As can be seen in Fig. 2a, the head is oriented so that its short axis,
(i.e. height) is oriented at approximately 451 to the horizontal axis
of the ant (Wehner, 1982), which we define to be the x-axis (see
Fig. 3a). The y-axis is parallel to the width dimension of all body
parts and the z-direction is vertical. The long axis (i.e. the length
LT) of the thorax is, in the first instance, assumed to be aligned
with the x-axis, as illustrated in Fig. 3. We also consider the case
where the thorax is inclined by f¼201, sloping downwards from
the head to the petioles. When the gaster is lowered, its long axis
(i.e. the length LG) is assumed to be aligned with the x-axis, as
shown in Fig. 3a. When fully elevated, it is assumed to be
vertically above the petiole, as shown in Fig. 3b. The gaster may
be at an orientation intermediate to the horizontal and the
vertical, in which case it will have an angle of inclination, c, to
the horizontal as shown in Fig. 3c. Thus c¼0 is a horizontal gaster,
whereas c¼p/2 is a vertical one. The head is assumed to be
attached to the thorax such that the center of its crown, as marked
in Fig. 2, is vertically above the proximal end of the thorax. The
origin of the Cartesian coordinate system is taken to lie at the
center of mass of the ant in the x–y plane, as shown in Fig. 3a. Note
that throughout this paper we use the general term ‘‘thorax’’
rather than ‘‘alitrunk’’ for the middle part (mesosoma) of the body.
In the nomenclature of hymenopteran morphology ‘‘alitrunk’’
would be the more appropriate term (see also legend of Table 1).

1.2. Center of mass of the ant

We first compute the center of mass of the whole ant. We
assume that the ant is running on level ground that is parallel to
the horizontal x–y plane, uses all six feet, and is able to avoid
toppling. The density of each body part is taken to be uniform
within that body part, though the density of each is allowed to be
unique. By symmetry, the center of mass will bisect the dorsal
projection. In view of the assumptions of shape and uniformity of
density, each body part has a center of mass central to it, so all
such centers of mass also lie in the x–z plane. Furthermore, we
assume that the centers of mass of each body part lie on the x-axis
when the ant has its gaster held horizontal.

The distance from the mandibles to the center of gravity of the
ant is LC, as shown in Fig. 3, and is computed, by balancing
gravitational moments (Goldstein, 1950) around the y-axis,
according to
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where mA is the mass of the ant, and mI is the mass of a body part,
with subscript H representing the head, T the thorax, P the
petiolus and G the gaster. Thus

mA ¼mHþmTþmPþmG ð2Þ

The angle f, as noted above, is the angle between the x-axis
and the long axis of the thorax. It is taken to be zero for the
purposes of the diagrams in Fig. 3.

The average Cataglyphis bicolor (Cataglyphis fortis) as charac-
terized by the data in Table 1 has mass mA¼28.72 mg (8.37 mg).
The dimensions LH, LT, LP and LG are the major axes of the head,
thorax, petiole and gaster, respectively. Their measures are
depicted in Figs. 2 and 3. With the gaster and thorax horizontal,
the ant’s center of mass lies in the thorax near the thorax–petiole
joint, at a distance of 0.222 mm (0.514 mm) from that junction.
This distance represents 5% (20%) of the length of the thorax. This
estimate agrees fairly well with an experimental measurement
performed on Cataglyphis bicolor, in which the center of mass was
found to be near the same junction, but displaced by about 10% of
the thorax length (Zollikofer, 1988). When the gaster is vertical,
the center of mass of the average C. bicolor (C. fortis) is quite near
the center of the thorax, being 0.706 mm (0.112 mm) to the right
of it in the views of Fig. 3. This distance is 16% (4% for C. fortis) of



Table 1
Dimensions and weights of body parts for (a) Cataglyphis bicolor and (b) Cataglyphis bicolor. The table presents the means of data obtained from 3 ants in each case. The

more technical terms for thorax, gaster and petiole are alitrunk, metasoma and petiolus, respectively. For the definition of the dimensions, refer to Fig. 3.

Body part Length Width Height Mass Mass

L W H m m

mm mm mm mg % of ant’s mass

(a) Cataglyphis bicolor

Head 2.564 2.305 1.663 6.720 23

Thorax 4.431 1.816 1.678 6.307 22

Gaster 3.934 2.781 2.625 15.543 54

Petiole is approximately equiaxed with diameter 0.825 mm and mass 0.15 mg (0.5%).

(b) Cataglyphis fortis

Head 1.805 1.765 1.194 2.717 32

Thorax 2.655 1.232 0.986 1.677 20

Gaster 2.484 1.716 1.648 3.923 47

Petiole is approximately equiaxed with diameter 0.506 mm and mass 0.05 mg (0.6%).

Fig. 3. Diagrams of 3 ellipsoids and a sphere used to model the body parts of the ant, and the coordinate system utilized. (a) Sagittal (elevation) and dorsal (plan) view,

gaster horizontal. The head is inclined at 451 and the crown of the head is aligned above the proximal end of the thorax. (b) Sagittal (elevation) view of the ant model with

its gaster vertical. (c) Sagittal (elevation) view of the ant model with its gaster at inclination angle c.

Table 2
Position of the center of gravity of (a) Cataglyphis bicolor and (b) Cataglyphis fortis

with the thorax horizontal and the gaster at various angles.

Gaster angle Distance from the

mandibles to the ant

center of gravity

Height of the center of gravity

above its position with the

gaster horizontal

c LC (mm) HC (mm)

(a) Cataglyphis bicolor

0 6.022 0

p/8 5.924 0.493

p/4 5.645 0.911

3p/8 5.227 1.190

p/2 4.734 1.288

5p/8 4.241 1.190

(b) Cataglyphis fortis

0 3.417 0

p/8 3.364 0.268

p/4 3.212 0.496

3p/8 2.984 0.648

p/2 2.716 0.701

5p/8 2.448 0.648
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the length of the thorax. The x-coordinate positions of the centers
of mass of C. bicolor and C. fortis for a few positions of the gaster
when the thorax is horizontal are given in Table 2.

The raising of the gaster causes the ant’s center of mass to rise
above the x-axis. By balancing moments that would arise if gravity
acted parallel to the x-axis, we deduce that the height, HC, of the
center of mass above the x-axis, when the thorax is horizontal
and the gaster is vertical, is given by HC ¼ 0:5ðLPþLGÞmG=mA.
For C. bicolor, HC¼1.288 mm and when C. fortis is considered,
HC¼0.701 mm. Such elevation of the ant’s center of mass upon
gaster raising was identified by Dlusskij (1981) through use of a
model constructed from paper. In general, with the thorax
horizontal and the gaster at an angle c, the distance from the
x-axis to the position of the center of mass on the z-axis is given by

HC ¼
mGðLPþLGÞsinc

mA
ð3Þ

Results for this parameter are given also in Table 2, and its
definition is clarified in Fig. 3c.
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1.3. Moment of inertia of the ant about its center of mass

When the ant is turning, it will have to apply a torque around
its center of mass proportional to its angular acceleration times its
moment of inertia relative to its center of mass (Goldstein, 1950).
For clarity we summarize the formulation here to see how it is to
be applied to each body part of the ant. Consider an ant spinning
rigidly around the z-axis passing through its center of mass. The
resulting acceleration of any point in the ant is

dv

dt
¼ _oðxj�yiÞ�o2ðxiþyjÞ ð4Þ

where v is the velocity vector, t is time, o is the rate of rotation,
or angular velocity, of the ant in radians per unit time, and _o is
the time rate of change of o and is thus the ant’s angular
acceleration. The terms i and j are the unit base vectors for the
Cartesian coordinate system in the x- and y-directions, respec-
tively. The moment vector, M , or torque, that must be applied by
the ant to cause this acceleration is then given by

M ¼

Z
V
rðxiþyjÞ �

dv

dt
dV ¼ _ok

Z
V
rðx2þy2ÞdV ¼ J _ok ð5Þ

where V is the volume of the ant’s body, r is the local density of
the interior of the ant’s body parts, � denotes the vector or cross
product, and k is the unit base vector in the z-direction. The
integral in the penultimate form in Eq. (5) is the moment of
inertia, J, of the ant about its center of mass.

For any body part with volume VI, (I¼H, T, P, G for head,
thorax, petiolus and gaster, respectively), the contribution to the
integral can be written asZ

VI

rðx2þy2ÞdV ¼ rI

Z
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½ðrIþxCÞ
2
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C �dV ¼mIr
2
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Z
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ðx2
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CÞdV

ð6Þ

where rI is the density of the relevant body part, rI is the distance
along the x-axis from the center of mass of the ant to the position of
the centroid of the body part in question, and ðxC ,yC ,zCÞ are
Cartesian coordinates of points in the body part relative to an
origin at the centroid of that body part. Thus the definition of rI is
such that x¼ xCþrI , while yC ¼ y. The parameter rI is known as the
radius of gyration of the body part (Goldstein, 1950). The linear
terms in Eq. (6) are zero by definition of the centroid of the body
part. The integral in the final form in Eq. (6) is the moment of inertia
of the body part about its own center of mass. The final form is the
well-known Steiner or parallel axis theorem (Goldstein, 1950).

For all body parts, the integral containing yC in the final form in
Eq. (6) is completed by the procedure

rI

Z
VI

y2
C dV ¼ 2rI

Z yo

0
y2

CAðycÞdyC ¼ 2prIxozo

Z yo

0
y2

C 1�
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20
mIW
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where we take the ellipsoid in question to have semi-axes xo, yo,
zo. A is the area of the elliptical cross section in the sagittal plane

at yC and therefore having semi-axes xo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

C=y2
o

q
and

zo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

C=y2
o

q
. Given that the area of an ellipse is p times the

product of the 2 semi-axes, and that the volume of an ellipsoid is
4p/3 times the product of the 3 semi-axes, we obtain the result in
Eq. (7). In addition we use yo ¼WI=2, where WI is the width of the
body part, as defined in Fig. 2 and tabulated in Table 1.

To allow for a gaster and a thorax that may be raised above the
horizontal orientation, and to account for the head, we introduce
a change of variables for xC given by

xC ¼ xcosc�zsinc ð8Þ
where the coordinates ðx,zÞ are indicated in Fig. 3c. When xC in Eq.
(8) is squared, the term containing the product xz gives no
contribution to the resulting integral, and we then deduce that

rI

Z
VI

x2
C dV ¼

1

20
mIðL

2
I cos2cþH2

I sin2cÞ ð9Þ

on similar grounds to those that gave us the result in Eq. (7). The
expressions in Eqs. (7) and (9) give us outcomes that can be used
for all body parts. For the head, we set c¼p/4, for the thorax we
use c¼f, and for the petiolus we set c¼0. In the case of the
gaster, c is its angle of inclination, allowing us to specify whether
it is raised to fully vertical and beyond, lowered to horizontal, or
in an intermediate positions.

Now we can formulate the moment of inertia for the ant as a
whole. From the parallel axis theorem and the various results
above, we obtain

J¼mHr2
Hþ
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40
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With its thorax and gaster horizontal, i.e. f¼0 and c¼0,
respectively, Cataglyphis bicolor has rH¼5.115 mm;
rT¼1.993 mm; rP¼0.635 mm; rG¼3.014 mm, whereas Cataglyphis

fortis has rH¼2.779 mm; rT¼0.813 mm; rP¼0.767 mm;
rG¼2.262 mm. The results for the moment of inertia are then
J¼3.708�10�3 g cm2 for C. bicolor and J¼0 455�10�3 g cm2 for
C. fortis. We note that the head contributes 48% of the total
moment of inertia in both animals, and the gaster around 45%.
Thus the head and the gaster dominate the moment of inertia by
having radii of gyration larger than the other body parts. The
terms dependent on the radii of gyration for the head and the
gaster account for, respectively, 47% and 38% of the total moment
of inertia in the case of C. bicolor, and 46% and 44% in the case of
C. fortis. If we divide J by the total mass of the ant, we obtain the
square of the radius of gyration of the ant as a whole when its
thorax and gaster are horizontal. This radius of gyration is equal
to 3.59 mm in the case of C. bicolor and 2.33 mm in the case of
C. fortis.

With the thorax horizontal and the gaster vertical, i.e. f¼0
and, c¼p/2, respectively, C. bicolor has rH¼3.827 mm;
rT¼0.705 mm; rP¼rG¼1.923 mm, and C. fortis has rH¼2.078 mm;
rT¼0.112 mm; rP¼rG¼1.468 mm. The results for the moment of
inertia are then J¼1.815�10�3 g cm2 for C. bicolor and
J¼0.229�10�3 g cm2 in the case of C. fortis. As for the gaster
horizontal situation, the head and gaster dominate the moment of
inertia, with the head contributing about 55%, and the gaster
around 40%, fractions that are little changed from those prevailing
when the gaster is horizontal. The terms dependent on the radii of
gyration for the head and the gaster account for, respectively, 54%
and 32% in the case of C. bicolor and 51% and 37% when C. fortis is
considered. Again, these fractions are little changed from those
relevant to the gaster horizontal configuration. With the thorax
horizontal and the gaster vertical, the radius of gyration of the ant
as a whole is 2.51 mm for C. bicolor and 1.65 mm for C. fortis.

It is notable that the ant is able to reduce its moment of inertia
around its center of mass by a significant amount by raising its
gaster to a vertical position. For the average Cataglyphis bicolor,
with data summarized in Table 1a, the moment of inertia with the
gaster vertical is only 49% of the value prevailing when the gaster
is horizontal. Similarly, for the average Cataglyphis fortis, with
data summarized in Table 1b, the moment of inertia with the
gaster vertical is only 50% of the value prevailing when the gaster
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is horizontal. This means that during rapid running the ant can
reduce the required torque from its legs, at a given angular
acceleration, to a half of what would be required with the gaster
horizontal.

To provide additional information, we have summarized in
Table 3a the moment of inertia of C. bicolor with its thorax
horizontal (f¼0) and its gaster at various angles of inclination,
and for C. fortis in Table 3b. Results are given as the value of the
moment of inertia, and as a percentage of the moment of inertia
that the ant possesses when its gaster is horizontal. Since the
terms containing the radius of gyration of each body part
dominate the expression in Eq. (10), we have, in addition,
computed the result for the moment of inertia neglecting every-
thing except those terms. This result is that obtained when each
body part is treated as a point mass located at its center of gravity,
and is so described in Table 3. It can be seen that the point mass
result involves significant error, ranging from 8% to 17% in the
case of C. bicolor and from 23% to 64% in the case of C. fortis.

However, when expressed as a percentage of the result that
pertains to the ant holding its gaster horizontal, the point mass
result is remarkably good. However, the point mass result
exaggerates the benefit of raising the gaster in terms of how
much the moment of inertia is reduced. This feature arises
because the moment of inertia of each body part around its
own centroid becomes more important in the final result when
the shape of the ant is compact. This outcome arises because in a
compact shape the radii of gyration are relatively small.

No doubt there will be significant variation of ant morphology
from the average values summarized in Table 1. However, it
seems safe to assume that Cataglyphis bicolor and Cataglyphis fortis

can generally half their moment of inertia about the center of
mass when the gaster is raised from the horizontal to the vertical
orientation. In addition, the ant can reduce its moment of inertia
even further by drawing its gaster beyond the vertical so that it
makes an acute angle with the axis of its thorax, i.e. the case of
c¼5p/8 that has been included in Table 3. At this angle of
inclination of the gaster, the ant’s moment of inertia around its
center of mass is around 35% of the value that pertains to the
gaster horizontal. C. fortis has been observed to bring its gaster to
approximately such a position when running in a tortuous path. It
is notable from Table 3 that, despite their different sizes, the
Table 3
Moment of inertia of (a) Cataglyphis bicolor and (b) Cataglyphis fortis with the

thorax horizontal and the gaster at various angles. Results are given for the

complete result from Eq. (9) and for the result when each body part is treated as a

point mass located at its center of gravity.

Gaster

angle

Moment of

inertia Eq.

(9)

Moment of

inertia % of J

when

gaster

horizontal

(Eq. (9))

Moment of

inertia

point

masses

Moment of

inertia % of J

when gaster

horizontal

(point mass)c J (g cm2) J (g cm2)

(a) Cataglyphis bicolor

0 3.71�10�3 100 3.42�10�3 100

p/8 3.53�10�3 95 3.25�10�3 95

p/4 3.06�10�3 82 2.80�10�3 82

3p/8 2.43�10�3 65 2.20�10�3 64

p/2 1.82�10�3 49 1.60�10�3 47

5p/8 1.34�10�3 36 1.11�10�3 32

(b) Cataglyphis fortis

0 0.454�10�3 100 0.350�10�3 100

p/8 0.434�10�3 95 0.332�10�3 95

p/4 0.377�10�3 83 0.285�10�3 81

3p/8 0.303�10�3 67 0.221�10�3 63

p/2 0.229�10�3 50 0.159�10�3 45

5p/8 0.171�10�3 38 0.110�10�3 31
percentage reduction in the moment of inertia for a given gaster
angle of inclination is almost the same for both Cataglyphis

species, indicating self-similar scaling of their biomechanics.
The ant usually holds its thorax at an angle of inclination such

that its end proximal to the head is above the distal one, i.e. fa0.
To determine whether this has a significant effect on the results,
we have repeated our calculations for the case of f¼p/9, typical
of an ant running on a straight path (Duelli, 1975). The results are
presented in Table 4. In view of the fact that the point mass result
exaggerates the advantage of lifting the gaster, we have omitted
these results. The more compact shape that results when f¼p/9
reduces the ant’s moment of inertia slightly compared to that
arising when the thorax is horizontal. When expressed as a
percentage of the result for a horizontal gaster, there is almost
no difference between the values in Table 4 for the inclined
thorax and those in Table 3 for the case of a horizontal thorax.
However, the advantage of raising the gaster is slightly improved
when the thorax is inclined, a result that arises because the
inclined thorax allows a more compact shape when the gaster is
raised.

1.4. Estimate of forces and torques for a running ant

Assume that the ant runs forward on a flat, horizontal surface,
defined as the x1�x2 plane. At any given instant, the position
vector, r , for its center of gravity in this plane is

r ¼ x1e
1
þx2e

2
þHk ð11Þ

where e
i
, i¼1,2, are unit vectors parallel to the coordinate axes x1

and x2, H is the height of the ant’s x–y plane above the ground (i.e.

the height of its legs), and k is the unit base vector parallel to the
z-axis previously defined in conjunction with Eq. (5). Suppose that
the ant controls the motion of a point P within it at position
ðx,y,zÞ ¼ ðxP ,0,0Þ and thus not at its center of gravity. We assume
that the point P is unaltered within the ant when the gaster is
raised or lowered. We judge this to be appropriate since it seems
likely that the ant controls the motion of a point somewhere in its
thorax centered among its legs. It seems reasonable that when the
gaster is raised or lowered, this point remains fixed in place in the
thorax, perhaps in the middle of the line drawn between the hips
of its 2 center legs. As a result, xP will have different values when
the gaster is raised and lowered, as the x, y, z coordinate system is
such that the center of mass is always at ð0,0,HCÞ.
Table 4
Position of center of gravity and moment of inertia of (a) Cataglyphis bicolor and (b)

Cataglyphis fortis with the thorax at an angle of inclination of 201 and the gaster at

various angles.

Gaster angle Distance from

the mandibles to

the ant center of

gravity

Moment of

inertia

Moment of

inertia in % of J

when gaster is

horizontal

c LC (mm) J (g cm2)

(a) Cataglyphis bicolor

0 5.846 3.49�10�3 100

p/8 5.748 3.32�10�3 95

p/4 5.469 2.86�10�3 82

3p/8 5.051 2.25�10�3 64

p/2 4.559 1.66�10�3 48

5p/8 4.066 1.21�10�3 35

(b) Cataglyphis fortis

0 3.325 0.428�10�3 100

p/8 3.272 0.408�10�3 95

p/4 3.120 0.353�10�3 82

3p/8 2.892 0.281�10�3 66

p/2 2.624 0.210�10�3 49

5p/8 2.356 0.155�10�3 36
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The position vector, r
P
, in the x1�x2 plane for the point P is

thus

r
P
¼ rþxPi ¼ x1e

1
þx2e

2
þHkþxPi ð12Þ

where we have used Eq. (11). Recall that i is the unit base vector
parallel to the x-axis previously defined in conjunction with Eq.
(4). The velocity vector, v

P
, in the x1�x2 plane of point P, with

the ant’s gaster at a fixed elevation, is thus

v
P
¼

dr
P

dt
¼

dr

dt
þxP

di

dt
¼ v

C
þxP

da
dt

j ¼ v
C
þxPoj ð13Þ

where v
C

is the velocity vector in the x1�x2 plane of the ant’s
center of mass, j is the unit base vector parallel to the y-axis
previously defined in conjunction with Eq. (4), and a is the angle
between the x1-axis and the x-axis, i.e. between the x1-axis
and the long dimension of the ant’s body as shown in Fig. 4.
In Eq. (13), it has been recognized that, due to the fact that the ant
must turn to follow a curved path, di=dt¼ j da=dt, and that da/dt

is the angular velocity, o, of the ant. The situation is illustrated in
Fig. 4, though this figure is for a sinusoidal path that will be
explored below. Nevertheless, the significance of the parameters
illustrated in Fig. 4 is general.

Assume that the ant has no sideways motion, and runs at
speed v parallel to its long axis, i.e. the velocity is always parallel
to the x-axis (fixed in the ant) as shown in Fig. 3. However, the
path may be tortuous, and the ant controls the motion of point P.
Thus, we take the velocity vector, v

P
, of the point P within the ant

to be

v
P
¼ vi ð14Þ

As a consequence, the acceleration of the center of mass of the
ant is

dv
C

dt
¼

dv

dt
þxPo2

� �
iþðvo�xP _oÞj ð15Þ

where we have used dj=dt ¼�oi.
From Newtonian mechanics we then deduce that the vector

force, F , that the ant must apply to its body by its legs is

F ¼mA
dv

dt
þxPo2

� �
iþmAðvo�xP _oÞjþmAgk ð16Þ

where g is the gravitational acceleration and thus mAg is the ant’s
weight.
Fig. 4. A sinusoidal path in the x1–x2 plane on which the ant is assumed to run at a

constant speed v.
While running on its chosen path, the ant must apply, by the
thrust of its legs, a moment sufficient to ensure that it turns
consistently with its trajectory. With a point in the ant’s body
having velocity vector v, the required moment vector, M , is given
by the rate of change of its moment of momentum (Goldstein,
1950) and is

M ¼
d

dt

Z
V
rðrþxiþyjþzkÞ�vdV ¼

Z
V
rðrþxiþyjþzkÞ�

dv

dt
dV ð17Þ

where, for convenience, we have chosen to compute moments
relative to the origin of the fixed x1�x2 coordinate system. Note
that the term in parenthesis in Eq. (17) is the position vector of
any point in the ant’s body relative to the origin of the x1�x2

coordinate system. We may choose to use the origin of this
coordinate system to enforce the condition on moments because
they must be balanced relative to any point in the ant’s inertial
frame. We are at liberty to place the origin of the x1�x2 at any
place we please, and so we define it instantaneously to lie
vertically below the ant’s center of mass Thus, instantaneously,
r ¼Hk. In view of the fact that the ant is controlling the motion of
point P, and its rotation around that point, we give the velocity of
each point in the ant as

v ¼ ðv�oyÞiþoðx�xPÞj ð18Þ

The expression for the moment in Eq. (17) then becomes

M ¼

Z
V
r xiþyjþðHþzÞk
h i

�
dv

dt
� _oy�o2ðx�xPÞ

� �
iþ _oðx�xPÞþov�o2y
� �

j

	 

dV

¼

Z
V
r x _oðx�xPÞþov�o2y

� �
�y

dv

dt
� _oy�o2ðx�xPÞ

� �	 

kdV

þ

Z
V
rðHþzÞ

dv

dt
� _oy�o2ðx�xPÞ

� �
j� _oðx�xPÞþov�o2y
� �

i

	 

dV

ð19Þ

As was noted in connection with Eq. (6), the terms linear in x

in Eq. (19) integrate to give zero due to the definition of the center
of mass. Any term containing y, other than those in the form of y2,
integrate to give zero due to symmetry. Similarly, by the defini-
tion of the center of mass, those terms linear in z are such thatZ

V
rzdV ¼mAHC ð20Þ

As a consequence, Eq. (19) simplifies to

M ¼ _o
Z

V
rðx2þy2ÞdVkþðHþHCÞ

Z
V
rdV

dv

dt
þo2xP

� �
jþð _oxP�ovÞi

� �

�

Z
V
rxzdVðo2jþ _oiÞ

¼ J _okþmAðHþHCÞ
dv

dt
þo2xP

� �
jþð _oxP�ovÞi

� �
�Jtðo2jþ _oiÞ

ð21Þ

where

Jt ¼

Z
V
rxzdV ¼

mH

40
ðL2

H�H2
HÞþ

1

2
mGrGLG sincþ

mG

20
ðL2

G�H2
GÞsinccosc

ð22Þ

is the transverse moment of inertia for the ant. The final result in
Eq. (22) is given for the thorax horizontal. The value for the case
where the thorax is inclined at a low angle will not differ greatly
from the result given in Eq. (22). The transverse moment of inertia
arises due to asymmetry of the ant, and determines, for example,
the torque required around the x-axis when the ant is experien-
cing angular acceleration around the z-axis. It can be seen that
when the gaster and the thorax are horizontal, so that c¼0, Jt is
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small, reflecting the fact that then the ant’s asymmetry arises
solely from the head.

We thus see from Eq. (21) that the ant has to apply a torque,
J _o, determined by its moment of inertia around its center of mass
even when it controls the motion of a point P in its body other
than its center of mass and determines the rotation rate around
the point P. Simultaneously, the ant must arrange the thrust of its
legs to apply to its body torques around the x-axis (i.e. the term in
Eq. (21) containing i) to avoid toppling sideways during turning
(i.e. an anti-roll torque), the torque around the y-axis (i.e. the term
in Eq. (21) containing j) required to avoid toppling head over heels
during acceleration and braking (i.e. an anti-pitch torque), and the
torque around the z-axis (i.e. the term in Eq. (21) containing k)
required for the angular acceleration, i.e. to accelerate the rate of
yawing. The yawing term is that identified previously in Eq. (5).

1.5. Estimate of forces and torques for an ant running on a circular

path

Let the ant be running anti-clockwise on a circular path when
viewed from above, with the circle having radius R. As a
consequence, o¼v/R, so that

_o ¼ 1

R

dv

dt
ð23Þ

Since xP does not appear in the turning torque in Eq. (21), and
because we are unsure of an appropriate location for P, we will
take the value of xp to be zero. This means that we assume that
the ant can sense where its center of mass is, and adjust its
motion control actions to specify how its center of mass moves.
As a consequence, we can write Eq. (16) as

F ¼mA
dv

dt
iþmA

v2

R
jþmAgk ð24Þ

and Eq. (21) as

M ¼� mAðHþHCÞþ
Jt

R

� �
v2

R
iþ mAðHþHCÞ�

Jt

R

� �
dv

dt
jþ

J

R

dv

dt
k ð25Þ

It can be seen that the significance of the transverse moment
of inertia, Jt, and its increase when the gaster is raised depends on
the radius of the circle upon which the ant is running. If we
assume that the ant runs on a circle whose diameter approxi-
mately equals the ant’s length, the term Jt/R is negligible com-
pared to mAH. The increase in the transverse moment of inertia
when the gaster is raised is then of no significance. It seems
unlikely that the ant will run on tighter circles. Therefore, we
neglect Jt/R throughout our assessment of the ant’s situation.

From Eq. (25) we deduce that the ant’s gaster raising is
advantageous for acceleration on the circular path (J is reduced),
but carries a penalty both during acceleration and constant speed
running because HC is increased. However, J can be reduced to
half by the ant raising the gaster, whereas HC increases by only
about 1.3 mm for C. bicolor and by 0.7 mm in the case of C. fortis

when the gaster goes from horizontal to vertical. Let us assume
that H, the height of the ant’s center of mass above the ground,
introduced in conjunction with Eq. (11), is approximately twice
the length of the gaster (see Fig. 1). In that case, HþHC increases
by about 15% for both animals when the gaster is raised from
horizontal to vertical. Thus the advantage of raising the gaster to
cut J in half outweighs the disadvantage of the increase in HþHC

that forces the ant to use a greater effort to avoid toppling.
Running for a long time in a circle at constant speed will be

hampered by the increase of HþHC for the duration of the activity,
whereas the advantage of a low J persists only for the spell of
acceleration and braking at the beginning and end of the exercise.
It would be interesting to know if the ant raises its gaster to
accelerate and brake, but lowers it at steady velocity on the
circular path. In addition, we note that the circular path is different
from a tortuous one in that covering the circular path at steady
speed involves no angular acceleration, in contrast to the twisting
back and forth that is required when the ant zig-zags. Further-
more, it seems unlikely that the ant will persist in running for long
times on circular paths, as this behavior gains it little, other than
perhaps a transient ability to escape a predator. For this reason, we
now turn to an ant running at constant speed on a sinusoidal path
possessing characteristics that typify a tortuous trajectory.

1.6. Estimate of forces and torques for an ant running at constant

speed on a sinusoidal path

Let the ant’s sinusoidal path have the form

x2 ¼
b

2
sin

2x1p
l

ð26Þ

as illustrated in Fig. 4, with b the amplitude of the sinusoid and l
its wavelength. Note that

tana¼ dx2

dx1
¼
pb

l
cos

2x1p
l

ð27Þ

Differentiation of Eq. (27) with respect to time provides

o¼� 2p2bvsinð2x1p=lÞ
l2
½1þðp2b2=l2

Þcos2ð2x1p=lÞ�3=2
ð28Þ

where we have used dx1=dt¼ vcosa, a result that arises by
projection of the ant’s velocity on the x1-axis. We then use Eq.
(15) to calculate the acceleration of the ant’s center of gravity at
constant speed, v, and with xP¼0 as

dv
C

dt
¼�

2p2bv2 sinð2x1p=lÞ
l2
½1þðp2b2=l2

Þcos2ð2x1p=lÞ�3=2
j ð29Þ

which is maximized at x1¼(2n�1)l/4, where n is a positive
integer. Therefore the maximum magnitude of the acceleration
of the ant’s center of gravity is

dv
C

dt

����
����
max

¼
2p2bv2

l2
ð30Þ

where we recall that v is the constant speed at which the ant runs
along its path. The maximum in the acceleration in Eq. (30) occurs
at the extremes of the amplitude of the sinusoid, where the
curvature is highest, and is directed inwards from those extreme
points. To support the acceleration given by Eq. (30), the ant must
provide a sideways thrust by its legs, and the maximum magni-
tude of this force, from Newton’s 2nd law, is

Fmax ¼mA

dv
C

dt

����
����
max

¼
2p2mAbv2

l2
ð31Þ

The ant’s rotational acceleration can be computed, in turn, as

_o ¼�4p3bv2

l3

½1þð3p2b2=l2
Þ�ð2p2b2=l2

Þcos2ð2x1p=lÞ�cosð2x1p=lÞ
½1þðp2b2=l2

Þcos2ð2x1p=lÞ�3

ð32Þ

Instead of considering the general situation, take b¼l, and
then investigation of Eq. (32) reveals that the maximum magni-
tude of _o occurs very close to, but not at, the amplitude extremes
of the sinusoidal path, with the cosine term equal approximately
to 70.14. The quotient of the trigonometric terms is then
approximately 72.5, so that in this case

9 _o9max � 10
p3v2

b2
for l¼ b ð33Þ
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The ant must use its legs to apply a torque, Mz, around its z-axis
(i.e. the vertical axis), from Eq. (5), with a maximum magnitude
given by

Mmax
z ¼ J9 _o9max ¼ 10J

p3v2

b2
ð34Þ

Let us assume that for C. bicolor the distance between its feet
on one side of its body to the feet on its other side is approxi-
mately 11 mm (Zollikofer, 1988), or approximately the length, LA,
of the ant with its gaster horizontal. If we further assume that the
torque in Eq. (34) is applied by the ant in the form of a couple
through 2 legs, the force, Pmax, associated with the maximum
torque in Eq. (34) is given by

Pmax ¼ 10J
p3v2

b2LA

ð35Þ

so that the torque in Eq. (34) is produced by the couple LAPmax.
Note that Cataglyphis runs by a tripod (actually a bipedal) gait
with 3 feet on the ground at any given time, with utilization of
alternating tripods (for ants see Zollikofer, 1988, 1994; Seidl and
Wehner, 2008; Weihmann and Blickhan, 2009; Reinhardt et al.,
2009; for insects in general see Full and Tu, 1990, 1991; Ting
et al., 1994). Therefore, we could cut the estimate in Eq. (35)
down somewhat to account for the ant’s use of 3 legs rather than
2, but we seek only a rough value. To compare forces expected of
the ant’s legs, we divide Pmax in Eq. (35) by Fmax/2 from Eq. (31),
(with l¼b), with the division by 2 justified by the recognition
that more than one leg will be responsible for the necessary
thrust, but it may not come equally from the 3 legs of the tripod
supporting the ant at any one time. We find

Pmax

Fmax=2
¼

10pJ

mAbLA
¼

10pr2
A

bLA
ð36Þ

where rA is the radius of gyration of the ant, so that J¼mAr2
A.

In the case where C. bicolor has its gaster held horizontal,
LAE11 mm, rAE3.56 mm so that rA=LA � 1=3. The ratio is similar
for C. fortis. As a result, the ratio of forces in Eq. (36) is

Pmax

Fmax=2

� �
gaster horizontal

�
pLA

b
ð37Þ

It is difficult to judge what the ant can tolerate, but for the sake
of argument let us assume that it can afford to have this
parameter equal to unity, i.e. the ant can apply the same level
of force parallel to the ground sideways and fore and aft when it
maneuvers through a turn. With the left hand side of Eq. (37) thus
set to unity, we then deduce that the ant can afford to run on a
sinusoidal path for which the amplitude and wavelength are
about 3 times greater than its body length, i.e. we obtain bE3LA

from Eq. (37), having approximated p as 3.
Now consider the ant when it has its gaster vertical. In this

case rA=LA � 1=4 and

Pmax

Fmax=2

� �
gaster vertical

�
pLA

2b
ð38Þ

If we use the same criterion as above, the ant can now tolerate
sinusoidal paths that are twice as severe, with amplitude and
wavelength that are only about 1.5 times its full (gaster horizon-
tal) body length, and consequently having tighter turns than
those the ant can follow with its gaster horizontal.

Now consider the question of toppling. The moment that the
ant must apply to its body by its legs when it is running on a
tortuous path at constant speed is, from Eq. (21)

M ¼ J _ok�mAðHþHCÞovi ð39Þ

where we have omitted the terms containing the transverse
moment of inertia, Jt, as the curvature of the paths will not be
sufficient to make this term important. The term containing i is
that required to ensure that the ant does not topple sideways, and
is thus the x-component

Mx ¼�mAðHþHCÞov ð40Þ

of the moment vector, i.e. the moment applied by the ant around
its (lengthwise) x-axis. From the deductions in the sequence Eqs.
(28)–(30), the maximum value of this component is

ðMxÞmax ¼
2p2mAðHþHCÞv

2

l
ð41Þ

where we have used the assumption l¼b introduced above. This
moment is applied by the ant by supporting more of its weight on
the legs on one side of its body. If we assume all of the ant’s weight
is supported by the legs on one side of the body and none on the
other, we have the maximum moment that the ant can exert. The
lever arm for this moment from the ant’s center of mass to the
positions of its footfalls is approximately half of the ant’s length
(Zollikofer, 1988). Therefore, we use ðMxÞmax ¼mAgLA=2 and obtain
the maximum feasible velocity from Eq. (41) as

vmax ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gLAl
ðHþHCÞ

s
ð42Þ

With the gaster horizontal, we deduced above that the ant can
follow a path on which lE3LA, and since HC¼0 in this case, we
obtain a maximum speed of

vmax ¼
1

p
ffiffiffiffiffiffiffiffi
gLA

p
ð43Þ

where we have used the rough estimate H¼ 3LA=4, consistent
with our previous assumption that H� 2LG. For C. bicolor, the
result in Eq. (43) is approximately 0.1 m/s. This speed requires a
sideways thrust of 0.17 mN at the extremes of the sinusoidal path,
as computed from Eq. (31), given the parametric values deduced
above.

Now consider the ant with the gaster vertical. In this case, we
estimated that the ant can follow a path with l� 3LA=2, and this
reduces the ant’s maximum feasible speed to 70% of the estimate
in Eqs. (42) and (43), or 0.07 m/s for C. bicolor. The complete result
for the case of the gaster raised is

vmax ¼
1

p

ffiffiffiffiffiffiffiffi
gLA

2:3

r
¼

0:66

p
ffiffiffiffiffiffiffiffi
gLA

p
ð44Þ

where we have used HþHC ¼ 1:15H for the case where the gaster
is raised, consistent with our observation above in the context of
the ant running in a circle. The result in Eq. (44) gives a value of
0.66 m/s for the maximum velocity of C. bicolor with the gaster
raised, or a mere penalty of just over 5% on the top feasible speed.
This assessment confirms that ant gains much in terms of
maneuverability by raising the gaster since it eases its ability to
increase its angular acceleration. At the same time the ant pays
only a modest penalty in terms of its resistance to toppling
sideways, due to the fact that raising the gaster heightens the
ant’s center of mass by a small fraction of the height of its legs.
2. Discussion

The large workers of Cataglyphis bicolor and the significantly
smaller workers of Cataglyphis fortis are two prime examples of
desert ants that are able to raise the hind part of their bodies, the
gaster (metasoma), to a fully upright position (Fig. 1). In the latter
species the gaster can be tilted upward by even more than 901, so
that its posterior tip points forward (Fig. 1 on left). This remarkable
behavior is largely facilitated by a derived morphological trait, the
cubiform shape of the petiole. Dlusskij (1981) has shown what
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modifications the petiolar muscle system had to undergo in order
to enable the animal to elevate its gaster. On the behavioral side,
the ability of raising the gaster is associated with high running
speeds including both translatory and rotatory movements.

Using geometric models based on morphological data (dimen-
sions and masses of the individual body parts) of both species of
desert ant, we have tested the hypothesis put forward by Wehner
(1983) that the upright position of the gaster brings the heavy mass
of this hind part of the body closer to the animal’s turning axis and
thus decreases the moment of inertia. Our mechanical analysis
shows indeed that, by raising its gaster, both species of ants can
reduce their moment of inertia to about one half. Moreover,
analysis of forces on an ant running on a sinusoidal path has
demonstrated that the ant can take tighter turns when its gaster is
raised. The ants are often observed to run in straight paths with the
gaster raised slightly up to about c¼p/4. When this is used as the
datum, the advantage of raising the gaster to the vertical position is
less than the 50% reduction of the moment of inertia that we have
ascertained as the difference between the horizontal and vertical
positions. If the gaster goes from c¼p/4 to the vertical position, the
reduction of the moment of inertia is approximately 40%, i.e. the
ant’s moment of inertia with the gaster vertical is approximately
60% of its value when the gaster is at 451. Thus, there is still a
substantial reduction. Furthermore, if the gaster goes from c¼p/4
to c¼5p/8 so that it is inclined towards the thorax, as is observed,
the reduction of the moment of inertia is around 60%, i.e. the ant’s
moment of inertia with the gaster at c¼5p/8 is approximately 40%
of its value when the gaster is at 451. Therefore, the ant has
strategies available to it to reduce its moment of inertia by a factor
of 2 whether it starts with the gaster horizontal or at 451.

As to a different kind of argument, it has been claimed that
raising the gaster is ‘‘to protect the vital organs contained in it
from high temperatures’’ (Cerdá, 2001). This is an unlikely
hypothesis for a number of reasons. First, the vital organs most
susceptible to heat stress are the gonads and the brain, but in ant
workers (which are all females) the ovaries are not developed,
and the brain is housed at the opposite end of the body. Second, if
Cataglyphis ants are exposed to gradually rising temperatures (by
the dynamic method: Lutterschmidt and Hutchison, 1997), the
ant’s body temperature increases, but from a certain critical
temperature it is the head rather than the gaster that, by
evaporative cooling, is kept at a lower temperature than the rest
of the body. Once this critical temperature is reached, the ants
regurgitate a droplet of fluid from the mouth or the anus and
spread it with their legs across the surface of the head (thermo-
vision recordings by S. Heinzelmann and R. Wehner, unpublished
data). Thirdly, the most heat-tolerant of all Cataglyphis species –
the sand-dune species Cataglyphis bombycina and Cataglyphis

pallida – have a squamiform petiole and do not raise the gaster,
while the northern Mediterranean Cataglyphis noda, which inha-
bits more mesic (macchie, bushland and even agricultural) areas,
where it rapidly walks over rugose ground, is provided with a
nodiform petiole and is able to raise its gaster. Even though all
these arguments provide only circumstantial evidence, taken
together they make it very unlikely indeed that the evolutionary
driving force for the gaster-raising habit has been heat avoidance.
Rather, as shown in the present account, the whole suite of
adaptations of the locomotor apparatus that finally result in the
ant’s ability to elevate the gaster whenever the animal is in its fast
and tortuous running mode, favor the hypothesis scrutinized in
the present account: what the ants gain in raising their gaster is
an increase in energetically efficient locomotor agility.

In conclusion, whatever the criterion for how big the torque/
thrust force ratio, i.e., the ratio of the turning force to the sideways
thrust force can be, with its gaster vertical, the ant can tackle
tighter turns than with its gaster horizontal, to the extent of
increasing its angular acceleration by a factor of 2. As a result,
regular, programmed paths such as a sinusoid, which the ant may
follow when scavenging for food, can be tighter, and the ant can
move along them faster. Similarly, erratic paths involving abrupt,
unpredictable turns, such as those the ant may adopt when it is
fleeing from a predator, can be more tortuous and have more acute
diversions. In both circumstances, it is logical to infer that the
ability to raise its gaster to a vertical position, and to pursue tighter
turns as a result, bestows on the ant an evolutionary advantage.
The latter conclusion is nicely corroborated by the fact that the
trait of raising the gaster is restricted to the worker caste. It does
not occur in the sexual forms, the males and (fertile) females.
While the workers of both Cataglyphis species considered here get
engaged in far-ranging foraging journeys (Wehner, 1987), have
relatively long legs (Sommer and Wehner, 2011) and a cubiform
petiole, the sexual individuals of the two species disperse by flying,
have relatively short legs and a squamiform petiole that prevents
them from elevating the gaster (Wehner, 1983).
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