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In this technical brief, we compute the J-integral near a crack-tip
in an elastic-perfectly-plastic material. Finite deformation is
accounted for, and the apparent discrepancies between the prior
results of the authors are resolved. [DOI: 10.1115/1.4006255]

1 Introduction

Recently Carka and Landis [1] have demonstrated the path-
dependence of the J-integral [2] in elastic-plastic materials under
plane strain conditions. These calculations, using the assumptions
of linear kinematics, show that the value of the J-integral for a cir-
cular contour on the crack-tip is approximately 18% lower than its
far field level in an elastic-perfectly-plastic material with
Poisson’s ratio in the range of most metals. Within a full finite de-
formation setting, McMeeking [3] showed that J was markedly
path-dependent very close to the crack tip where the change in ge-
ometry associated with crack-tip blunting has a significant effect.
In fact, McMeeking’s results suggest that J goes to zero for a con-
tour approaching the tip of a crack that was sharp prior to blunt-
ing. Due to the manner in which McMeeking generated and
plotted values for J versus the size of the path-integral contour,
some questions may arise about the consistency between the
results of McMeeking [3] and Carka and Landis [1]. This note
attempts to make the connection between these two works and
bring closure to the issue.

2 Results and Discussion

The primary differences between the calculations performed in
Refs. [1,3] include, (a) the description of the kinematics and the
associated issues for describing the constitutive behavior, (b) the
method for applying the far-field boundary conditions, (c) the type
of finite-elements and number of degrees of freedom in the plastic
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zone used, and (d) the method for computing J. In this note, the fi-
nite deformation formulation and finite-element implementation
of McMeeking [3] and McMeeking and Rice [4] is used, the far-
field boundary conditions due to Carka et al. [S] are applied, nine-
noded quadrilateral elements with full integration of deviatoric
strains and reduced integration of hydrostatic strains are imple-
mented, and the domain integral method is used to compute J.

The results for the J-integral as a function of the radius of the
circular contour are plotted in two ways in Fig. 1, and the crack
tip opening displacement as a function of the far-field applied J is
plotted in Fig. 2, all for elastic-perfectly-plastic materials with
Poisson’s ratio of 0.3. Figure 1(a) plots the value of J/, normalized
by the far field applied value, as a function of the radius of the
integration contour in the initial undeformed configuration nor-
malized by the plastic zone size, R, = (K1/00)* /3m. Here K is
the far-field applied mode I stress intensity factor, which is related
to the far-field applied J value as Jo, = K7 (1 — ?)/E, and oy, E,
and v are the yield strength, Young’s modulus, and Poisson’s ratio
of the material.

In addition to the size of the plastic zone, the consideration
of finite deformation introduces a second length scale into the
small-scale yielding problem, namely the crack tip opening dis-
placement ;,. The crack tip opening displacement can be
approximated as &, = 0.6//00 = 1.8n(1 — 1?)(09/E)R,. The
prefactor of 0.6 has a mild dependence on a¢/E as is plotted
in Fig. 2. Note in Fig. 2 that in the limit as ¢¢/E — 0,
04ip00/Jso — 0.61, which is the result from the linear kinematics
computations in Ref. [1]. Figure 1(a) shows that as the size of the
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Fig. 1 The J-integral normalized by its far-field value as a
function of the radial distance of the contour from the crack-tip
in the undeformed configuration. All results are for elastic-
perfectly-plastic materials. (a) With the contour distance nor-
malized by the characteristic size of the plastic zone. (b) With
the contour distance normalized by the crack-tip opening
displacement.
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Fig. 2 The normalized crack-tip opening displacement as a
function of the yield strength to Young’s modulus ratio in an
elastic-perfectly-plastic material

integration contour approaches J;;,, the finite deformation results
begin to significantly deviate from their linear kinematics counter-
part. Figure 1(b) also plots the normalized J values as a function
of the contour size but with the contour radius normalized by the
crack opening displacement. These results confirm McMeeking’s
finding that J appears to vanish as the radius of the contour shrinks
to the crack tip. Away from the crack tip, there appears to be dis-
agreement with the results reported in Ref. [3]. However, this is
not the case. In Ref. [3] the results for J were reported for three
different contour radii in the initial undeformed configuration, and
these radii were normalized by the diameter of the blunted crack
tip b, which included both the crack opening displacement d,;, and
the initial blunt notch diameter by. Values for J/J,, were then
computed as the loading progressed and consequently as the crack
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tip diameter, b = by + dy,, increased with respect to the location
of the contours. Since each contour is located in entirely elastic
material when the loading begins, the value for J/J, at such a
point in the calculation must be unity. Furthermore, since the posi-
tion of the contour is normalized by b and not J,;,, the point on the
ordinate J/Jy = 1 resides at multiple different finite distances
from the crack-tip on the abscissa depending on the location of
the contour, instead of infinitely far from the crack-tip as would
be the case for the fully self-similar solution. The results in Ref.
[3] do show that as plasticity progresses J decreases, and very
close to the crack tip it drops precipitously towards zero. What is
perhaps misleading about Fig. 9 in Ref. [3] is that only the very
last few points on each of the three branches are close to the self-
similar steady-state solution. Hence, the appearance in Ref. [3]
that J is essentially path-independent outside of a few crack-tip
opening displacements is an artifact of the method used to gener-
ate and plot the results. Figures 1(a) and 1(b) of this note plot only
points from the self-similar solution and demonstrate how the
crack-tip blunting associated with finite deformation leads to devi-
ations from the linear kinematics results for the path-dependence
of J.
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