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Abstract

The performance of a microscale aluminum nitride piezoelectric resonator in the shape of a trampoline

is analyzed using three-dimensional finite element simulations. The air-suspended resonator is supported

by beams and is designed to respond to longitudinal through-thickness vibrations. The device is targeted

to operate at UHF frequencies (3 GHz) suitable for wireless filtering applications. Energy loss due to

material damping is accounted for in the model. Other sources of damping are considered. We analyze if

and how the material thickness, number of beams and beam length affect the resonator performance.

This is intended to provide useful information at the design stages and eliminate the high costs associated

with manufacturing a filter with poor performance. Performance is evaluated by means of the electro-

mechanical coupling coefficient (K2) and the quality factor (Q) calculated from the electrical impedance

frequency response plots. The results indicate that (i) K2 is insensitive to geometry (K2
�6.5%), (ii) Q

increases linearly with the AlN thickness attaining Q�1900 for a 1.7 mm thick resonator and (iii) a

trampoline resonator with three beams has a better performance capability than the resonator with four

or eight beams with a figure of merit K2Q�120 and resonating at a higher frequency value than its

counterparts resonators, peaking at 3.21 GHz. The performance figures agree well with those predicted

by a one dimensional theory. The value of K2 also agrees well with test data but that of Q is higher than

the one recorded in the lab.
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1. Introduction

In the last ten years, there have been multiple research efforts to incorporate innovative
microfabrication and material processing techniques to enhance the performance of ultra-
high-frequency (UHF) filters such as those used in wireless communication devices [1–21].
Filters can be modeled as an arrangement of resonators of various levels of geometric
complexity. Desirable features characteristic of a high performance filter include a small
size, light weight, low production cost, a clear signal reception and minimum power con-
sumption so filters of microscale dimensions provide an immediate solution to the size/
weight reduction. In addition, microelectromechanical systems (MEMS)-based filters
utilize technologies borrowed from the semiconductor industry and can be mass produced,
which in turn reduces the manufacturing costs. As a result, functioning MEMS-filter
components have been built but testing their performance in laboratory has been proven to
be difficult and costly. On the other hand, an analytical analysis is not an option because
piezoelectric problems have no-close form solutions except for very simple unrealistic
geometric conditions so numerical simulations have become increasingly attractive tools to
the MEMS community.

Both the transverse and longitudinal resonant frequency of a mechanical resonator
depends on its material, geometry and mode of vibration [22]. The transverse resonant
frequency varies as (p/L)2O(EI/rA) where L and A are the length and cross section area of
the beam and where E and I are the modulus of elasticity and area moment of inertia. This
relation shows that attaining frequencies in the UHF regime would require the difficult
task to built resonators a few microns long. On the opposite, longitudinal resonant
frequency varies as f¼NVp/2h where N is the resonance order, h is the thickness of the
oscillator and vp is the material’s acoustic velocity so resonators a few microns thick are
capable of reaching frequencies in the UHF regime.

In this spirit, a multi-disciplinary team at the University of California at Santa Barbara
(UCSB) has engaged in a research program aimed at developing a high performance
through-thickness longitudinally vibrating resonator. Program tasks include design, fabrica-
tion and experimental as well as numerical characterization of the device. This paper reports
on the numerical results. Whenever possible, we compare the results with test data
obtained from the device fabricated at UCSB. The structure adopted by the team is a
FBAR (Film Bulk Acoustic Resonator) using a piezoelectric film to provide an electrical
input. It is clear from the relations above that the resonator geometry will affect the resonant
frequency so the focus of the study is on determining how – rather than if – geometry will
impact the performance.

Among the various FBAR structures described by Rosenbaum in his book on acoustic
resonators [23], suspended plates have been reported as having the best potential for high
performance. This provided the basis for the design of the device fabricated at UCSB [24]
and shown in Fig. 1. It consists of nine circular resonators 300 mm in diameter, about 2 mm
thick, suspended over a circular air-cavity. Eight beams at 451 apart each, 24 mm wide and
300 mm long connect the circular membrane to a surrounding silicon substrate. Because of
their distinctive shape, we named the resonators ‘‘trampoline’’ resonators. The span
between the resonators’ centers is 1000 mm. The resonator and the beams are made of
aluminum nitride (AlN) which was chosen among other piezoelectric materials for its high
acoustic velocity (10 927 m/s), a good piezoelectric coefficient (1.55 C/m2) and a good
thermal conductivity [21].



Fig. 1. The 3� 3 array of aluminum nitride trampoline resonators fabricated at UCSB. The circular resonators

are 300 mm in diameter and 1.7 mm thick supported by eight beams 300 mm long. The resonators are suspended

over an air cavity and respond to through thickness vibrations.
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The beams electrically connect the resonator via a MEMS component attached to the far
ends. They are expected to minimize the transfer of acoustic energy from the resonating
element to the surrounding system and diminish attachment loss that would result from
clamping the membrane to the substrate. A gold electrode approximately 0.27 mm thick covers
the top circular portion of the resonator so the beams are not piezoelectrically activated. The
device is driven by a 1.5 GHz AC current oriented parallel to the axis of polarization in order
to enable longitudinal (though-thickness) vibrations. The magnitude of the input current takes
into account the electrode’s added mass which has for effect to decrease the magnitude of the
resonant frequency according to a simple one dimensional undamped spring-mass model.
Fabrication techniques specific to the UCSB design can be found in [24]. They include an

Inductively Coupled Plasma (ICP) chlorine process to etch the AlN and a MEMS-based
bulk silicon Deep Reactive Ion Etch (DRIE) process to form a circular air cavity. The AlN
film is sputtered directly onto a /100S silicon wafer.
A resonator performance is characterized by means of the electromechanical coupling

coefficient K2 and the quality factor Q. K2 combines the elastic, piezoelectric and dielectric
material coefficients [25] and is defined as the ratio of electrical energy to mechanical energy
stored in the device. A high value of K2 is desired and associated with a broad bandwidth. The
Q-factor measures mechanical losses due to internal or external sources and is an indication of
the sharpness of the resonant response of the system. For filters, the parameters can be
combined into the product K2Q, which indicates lower insertion loss and better efficiency when
high [23]. In theory, infinite values of Q can be achieved but in practice, values of Q on the
order of only 103 are expected in this kind of electronic applications [1] because filters have
complex geometries and energy can dissipate at many locations (i.e. electrodes, supporting and
surrounding medium, anchor points). In terms of damping ratio (z¼1/2Q), values in the order
of 0.05% or smaller are typical for these applications.
Experimental values for the device fabricated at UCSB were obtained with a network

analyzer. Performance values reported in [24], K2
¼6.3% and Q¼150 at 1.5 GHz are

significantly higher values than those reported in the literature for similar designs, Q¼91.7
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and K2
¼2.4% at 1.65 GHz and Q¼50.2 and K2

¼1.2% at 1.64 GHz for square-shape
aluminum nitride resonators supported by beams, 160� 160 mm2, 2 mm-thick and 200�
200 mm2, 15 mm-thick, respectively [10]. However, the figures obtained are not yet in the
order of the thousand expected for this kind of applications. To investigate possible causes
for this low Q, we have engaged in a systematic parametric study of the resonators using
Abaqus [26], a three-dimensional finite element commercial package. The primary quantities
we estimate are the resonant and anti-resonant frequencies, the electromechanical coupling
coefficient K2 and the quality factor Q. We also identify spurious modes of resonance and their
proximity to the important fundamental modes since the excitation of spurious modes results
in energy loss and a degraded Q-factor. The other FEM modeling of piezoelectric resonators
we are aware of are used to validate a particular design while ours is intended to serve in the
design stages to eliminate the difficulties, length and high costs that would result in fabricating
a poor performance device.

Among researchers who have used three-dimensional finite element models to develop
and optimize piezoelectric resonators are Antkowiak et al. [9], who use finite element state-
based modeling procedures to study (-very similarly to our work) the performance
characteristics of AlN MEMS film bulk acoustic resonators 3 mm wide, 6 mm long and
0.5 mm thick, excited longitudinally. However, the input geometry is modeled with less
than one hundred nodes and calculations are performed with Mathcad. Jung et al. [14]
analyzed the resonance modes of a 1 mm thick zinc-oxide (ZnO) FBAR device in addition
to the spurious modes of resonance caused by variations in electrodes and found an optimum
ratio of length to thickness. Southin et al. [15] showed that extensional resonances of rod-like
length nanostructures yielded significant higher values of the electromechanical coupling
coefficient compared to the plate-like longitudinal resonance typical of FBAR geometry. In
[16], Zhu et al. presented a new modeling approach combining microwave circuit theory and
finite element analysis to study a mechanical filter comprised of two mechanically coupled
silicon cantilevers and determined the optimum position and length of the linkage for
maximum Q-factors. More recently, Yong et al. [17] have proposed a method to solve the
equations of piezoelectricity including damping and losses due to current conduction without
using usual a-priori assumptions for the resonator impedance or resistance and concluded that
eigenvalues from free vibration analysis can be used for designing high-Q resonators.

The methodology we used to study the optimal design configuration for the filter
consisted in breaking the analysis into four phases from a simplified to a more complex
model, with the anticipation that the resonator that had achieved the best performance
singly would result in a high performance filter as well. Fig. 2 shows the different levels of
idealization. This paper reports the results of the first phase in which the resonators are
subjected to systematic variations in thickness, number of beams and beam length. The
beam width has not been studied. For a first level of approximation, we assumed that the
electrodes were so thin that their mass-loading effect was negligible. The second phase
consisted in using the resonator geometry that had shown optimized performance and to
account for the effects of two electrodes (a top gold electrode and a bottom aluminum
electrode). This differed slightly from the fabricated device which utilized one electrode at
the time. The third phase considered the more complete model of the resonator with
electrodes resting on a silicon substrate. The results of the second and third phase have
been reported in [27]. The final phase arranged the resonators in pairs (1� 2 array) and in
quad (2� 2 array) to model the filter and to study the nature of the interactions (i.e. cross
talk or energetic coupling) from one resonator to another.



Fig. 2. Different levels of idealization used in the parametric study of the resonator.
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Material damping has been accounted for in all the simulations as explained in the
following section but we did not consider losses due to thermal dissipation of current in the
structure. This is nonetheless an active area of research (see for instance [12,13–28]).
Another concern reported in the manufacturing community has been to determine if there
is a need to vacuum package MEMS devices as a way to limit energy loss due to air
exposure [19,20]. Test data [24] indicated that neither viscous air damping nor damping
arising from acoustic radiations were significant loss mechanisms.
2. Theory

Details pertaining to the analytical treatment of piezoelectric materials can be readily
found in the literature [25]. The relevant equations are

fTg ¼ ½CE �fSg�½e�T fEg,

fDg ¼ ½e�fSg þ ½eS�fEg, ð1Þ

provided constant temperature and lossless process are assumed and where in Cartesian
coordinates, {T}T

¼{T11 T22 T33 T23 T13 T12} is the array of stress components, the
superscript T indicating the transpose, {S}T

¼{S11 S22 S33 S23 S13 S12} is the array of strain
components, {E}T

¼{E1 E2 E3}
T is the array of electric field components, and {D}T

¼{D1

D2 D3}
T is the array of components of electric displacements.

Piezoelectric materials undergo strains in the order of 0.1% so the small deformation
theory can be assumed in which the strains are given in terms of the displacement gradients
as Sij¼ (ui,jþuj,i)/2, where ui,j indicates the partial differentiation of the displacement ui with
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respect to position xj. The components of electric field are given by the gradient of the
electric potential j, i.e. E,i¼�j,i .The symbols [cE], [eS] and [e] refer to the elasticity matrix
at constant electric field, the dielectric permittivity matrix at constant strain and the matrix
of piezoelectric coefficients, respectively. Strains and stresses can be calculated from the
solution of the displacement field while the solution of the electrical potential yields the
electrical impedance, a quantity defined as the ratio of voltage over the electrical current
and from which performance figures can be calculated.

In the absence of body forces, conservation of linear momentum is assured by Tij,j¼rui,tt

where r is the material density and where the subscript t after a comma denotes partial
differentiation with respect to time. Conservation of angular momentum is enforced by
symmetry of the stress tensor. For the electrical part of the problem, the acoustic limit
rather than the electromagnetic limit is imposed and conservation of electric flux in the
absence of free charge is assured by Gauss’s law in the form Di,i¼0 (i.e. the divergence of
the electric displacement is zero), another form of the quasi-static assumption for the
elastic fields.

These equations are augmented by prescribed mechanical and electrical boundary
conditions on the surface A of the domain under consideration. For the surfaces of the
resonator (excluding the electrodes) denoted by At with outward unit normal vector n,
the traction ti¼Tijnj is prescribed. On the remaining portion of the surface (Au), the
displacement ui is prescribed. For the surfaces representing the electrodes (Aj), the electric
potential is prescribed while the remainder of the surface (AD) is charge-free so that the
normal component of the electric displacement is zero (i.e. niDi¼0)

Virtual work for the body is expressed asZ
V

fdugTrfug,tt dV þ

Z
V

fdSgT fTgdV ¼

Z
AT

fdugT ftgdS,

Z
V

fdEgT fDgdV ¼�

Z
AD

djniDi dS, ð2Þ

where the symbol d indicates a virtual variation of the term immediately following it. When
the piezoelectric relationships in (1) are used in conjunction with the standard interpola-
tions of the finite element method, for a model having m nodes, the 4m coupled ordinary
differential equations of the finite element method are obtained from virtual work [29] as

½M � 0

0 0

� �
fDg,ttþ

½C � 0

0 0

� �
fDg,tþ

½Kuu� ½Kuj�

½Kuj�
T ½Kjj�

" #
fDg ¼ fPg, ð3Þ

where the coefficient matrices in this system are square with size 4m� 4m. In (3),
{D}T
¼{unun}

T is an array containing in the first 3m locations, the nodal displacements un

(where n stands for nodes) of the finite element model and followed in the next m locations
by the electric potential values un at the nodes of the model. Similarly {P}T

¼{FnQn}
T is an

array containing in the first 3m locations, the applied nodal forces Fn and followed in the
next m locations by the applied nodal charges Qn.

The applied nodal forces are statically equivalent to surface tractions and the applied
nodal charges are electrostatically equivalent to surface charge densities [30]. The entries in
(3) are the 3m� 3m mass matrix [M], the 3m� 3m damping matrix [C]. Finally, [Kuu]
represent the 3m� 3m stiffness matrix, [Kuj] is the 3m�m piezoelectric coupling matrix
and [Kjj] is the m�m capacitance matrix. The columns and rows of the relevant matrices
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not filled by the mass and damping matrices are zero, as indicated in (3). All matrices and
arrays in (3) are computed automatically by Abaqus and their detailed form in terms of
finite element theory can be found in [29].
Note that damping which is absent in (1), has been introduced in the finite element

solution to account for energy dissipated by all mechanisms other than material yielding.
In our work, we used a particular form of damping known as Rayleigh damping where
damping is written as a linear combination of the mass and stiffness matrices via two non-
negative scalar coefficients a and b namely [C]¼a[M]þb[Kuu] [31]. This form has the
advantage to yield a set of uncoupled orthogonal modal equations of motion and to
significantly reduce the computing time. The steps used to quantify the coefficients a and b
are discussed later.
3. Finite element methodology

The mechanical and electrical boundary conditions enforced in the simulations are
shown in Fig. 3. All external surfaces are stress free (T¼0) except the ends of the beams
which are fixed (u¼0). This condition is enforced based on the assumption that the
substrate is massive and stiff compared to the resonator, so the ends of the beams where
they are attached to the substrate are fixed in position. The surfaces for which no electrical
potential is specified are charge free (D � n¼0) where n represent the normal vector to the
surface. The bottom surface of the resonator has zero potential (j¼0) to represent a
grounded electrode while the top surface is maintained at a uniform potential (j¼j0).
Consequently, all the nodes on a given electrode experience the constraint that their
electrical potential is tied to one value, eliminating the equations in (3) for the electric
potential of all these nodes except one retained node on that electrode. Furthermore, the
nodal electrical charges to the right hand side of (3) for these nodes are aggregated into one
value representing the total charge on a given electrode. For the two electrodes these total
charges are equal in magnitude and opposite in sign. Thus, the entire right hand side of (3)
can be represented by one parameter, namely the total charge, Qe on one of the electrodes,
jωt
0q=q e

u = 00ϕ =
Τ = 0

0ϕ = ϕ
Τ = 0

x

y

z d

Aluminum Nitride

= 0D.n 

24μm

where p
a

V
=2 f   f~f =

2h
ω π

h

L

{

{

Fig. 3. Mechanical and electrical boundary conditions enforced in the simulations.
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which has potential je, with the other electrode held at zero potential and having total
charge �Qe. As a result, a simple strategy can be adopted for the solution of the frequency
response of the FBAR, which is to drive the total charge on the electrodes at a frequency o
and amplitude q0, so that Qe¼qoejot, with j¼O�1, and to use (3) to compute the resulting
amplitude and phase of the potential difference between the electrodes. The phase angle,
c(o), gives the degree to which the charge on the electrodes lags the potential difference
between the electrodes due to damping. The result for the potential difference between the
electrode is approximately je(o,c,t)¼jo(o)e

j(otþc), where j0 is the amplitude of potential
difference between the electrodes. The approximation arises because, for the finite element
model, (3) represents a multi-degree of freedom system and when driven at a specific
frequency, the response will involve a multiplicity of modes each having its own amplitude
and phase angle. Thus it should be understood that the concepts just described are
meaningful strictly only when the frequency is very near one of the natural frequencies, and
so the response of the FBAR system is dominated by the shape, amplitude and phase angle
of the mode associated with that natural frequency.

The methodology in Abaqus involves a sweep of the driving frequency from a low value
to a high value. The range of the driving frequency is confined to a limited interval that
contains the expected fundamental natural frequency and obtained from the eigenvalue
analysis returned by Abaqus. Within this range, (3) is solved repeatedly and an approxi-
mately sinusoidal curve in time for the potential difference is obtained from the output.
The amplitude of the potential difference is obtained from the peak to peak magnitude and
the phase angle is obtained by the degree to which the peak in the potential difference leads
the peak of the total charge sine wave. Note that the eigenvalues (found from solving the
homogeneous form of Eq. (3)) are computed without damping which result in an infinite
number of values because the diagonal terms of the electrical degrees of freedom in the
mass matrix are not zero. To find the associated finite eigenvalues (squares of the natural
frequencies), we used a Lanczos method to diagonalize and orthogonalize the matrices.
Details of the procedure are given by Guo et al. in [32] and can also be found in the
Abaqus documentation [26].

4. Device performance

A resonator behavior is characterized by it electrical impedance Z(o) defined for a single
degree of freedom system as [25]

ZðoÞ ¼
V ðoÞ
IðoÞ

, ð4Þ

where I(o) is the electrical current at an electrode, i.e. the rate of change of total charge on
the electrode and the voltage V(o) is the potential difference between the electrodes.
Written in polar form, Z(o)¼9Z(o)9e�jz(o), with the electrical impedance magnitude and
phase angle given in terms of the parameters introduced in the previous paragraphs by
9Z(o)9¼j0(o)/oq0 and z(o)¼p/2�c(o).

Another form of the electrical impedance of a piezoelectric resonator undergoing
longitudinal vibrations can be shown to be

ZðoÞ ¼
1

joC0
1�K2 tanðkph=2Þ

ðkph=2Þ

� �
, ð5Þ
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where h is the piezoelectric slab thickness, kp is the wave number defined as kp¼o/Vp,
Vp¼O(Yp

D/r) is the wave velocity in the piezoelectric material, Yp
D is the piezoelectric

material equivalent stiffness defined as Yp
D
¼C33þe33

2 /e33 (the subscript 3 representing
properties in the thickness direction) , C0 is the static device capacitance defined by
C0¼e33A/h, where A is the planform area of the piezoelectric slab, and K2 is given by
K2
¼e33

2 /e33 Yp
D [25]. The form (5) uses a one-dimensional model and assumes that the

material is free from damping. With the material properties for AlN given in Table 1, the
wave velocity is Vp¼10927 m/s and the effective acoustic coupling coefficient is K2

¼

5.88%. This value differs from the one given in [24] (K2
�6.5%) because of the material

properties we used.
Resonance (or series resonance) occurs for each value of h that causes Z(o) to be zero

and anti-resonance (or parallel resonance) takes place when Z(o) is equal to infinity. With
that, the magnitude (real part) of the electrical impedance may be rearranged to approxi-
mate K2 as a function of the relative separation between the resonant fr and anti-resonant
frequencies fa of the system

K2 ¼
p2

4

fa�fr

fa

� �
, ð6Þ

assuming that both frequencies are negligibly different compared to the magnitudes of the
frequencies themselves [25].
The parameter Q measures energy loss due to internal or external sources and is

evaluated from the phase angle (imaginary part) of the electrical impedance using the
Table 1

Materials properties.

Aluminum nitride Silicon

Density r (kg/m3) 3512 2300

Elastic constants (GPa) Orthotropic (transverse isotropy) Cubic isotropy

C11¼C22¼345 C11¼C22¼C33¼165.7

C12¼125 C12¼C13¼63.9

C13¼C23¼120 C44¼C55¼C66¼79.6

C33¼395

C44¼C55¼118

C66¼110

Dielectric permittivities

(10�12 Farad/m)

Orthotropic Isotropic

e11¼e22¼79.65 e11¼e22¼e33¼104.43
e33¼97.35

Piezoelectric constants

(Coulomb/m2)

e24¼e15¼�0.48

e31¼e32¼�0.58

e33¼1.55

Poisson’s ratio 0.22

Wave velocity (m/s) 10,927

Elastic impedance (106 kg/m2/s) 38

Material damping b (10�14 s) 2.82 3.2



A. Ruimi et al. / Journal of the Franklin Institute 349 (2012) 2294–2312 2303
relation

Qr,a ¼
fr,a

2

dz
df

����
����
fr,a

, ð7Þ

where 9dz/df9fr,fa is the absolute value of the derivative of the phase z with respect to the
resonant or anti-resonant frequency [22].

A small difference between the two values Qr and Qa is an indication that the system is
lightly damped. Strictly speaking, the values of the resonant and anti-resonant frequencies
used in determining K2 differ from those used in calculating Q. However, the values of the
resonant and anti-resonant frequencies are not greatly affected by a light damping so the
natural frequencies obtained from a basic eigenvalue analysis can be used.

5. Evaluation of Rayleigh damping coefficients

As mentioned above, damping in a system cannot in general be represented by a matrix
satisfying the eigenvector orthogonality equation but Rayleigh damping employs a particular
form of damping which results in a set of uncoupled orthogonal modal equations of motion
[31]. The system Q-factors is then given as [26]

1=Qr ¼ a=or þ bor, ð8Þ

where or is the particular frequency of vibration. This shows that mass proportional damping
(given by the a coefficient) is used to damp out the lowest frequency response and stiffness
proportional damping (given by the b coefficient) is used to damp out the highest frequency
response. Physically, the a coefficient simulates the process of a model moving through a
viscous medium so that any motion of any point in the model causes damping while the b
coefficient can be thought as internal damping associated with the material itself [26]. To
account for damping and to enter numerical values for the a and b coefficients in the
simulations, we proceeded to an eigenvalue (unforced, undamped) analysis. It showed that
resonance occurred around the 140th mode so that the lower frequency modes did not greatly
contribute to damping and a was assumed to be zero throughout the work. The b coefficient is
characteristic of the acoustic wave propagation which in a piezoelectric material requires the
knowledge of the material stiffness, piezoelectric and dielectric constants and attenuation data.
Compared to other piezoelectric materials such as ZnO [7] or PZT [18] used in similar
applications, material properties of AlN are still scarce. Consequently, we assumed that values
of attenuation in AlN were comparable to those of silicon. The reasoning was that the device
was resting on a silicon substrate and similar damping behaviors in the two materials were
needed to insure continuity of wave attenuation. In addition, AlN has a coefficient of thermal
expansion comparable to that of silicon that insures continuity of stress due to temperature
gradient. We proceeded to solve the one-dimensional viscoelastic wave equation using the
material properties of silicon

c20ð@
2w=@z2Þ þ m=rð@3w=@t@z2Þ ¼ ð@2w=@t2Þ, ð9Þ

where c0¼O(Y/r) is the wave speed in the undamped material, Y is the material elastic
stiffness (C33), m is the material viscosity in a Maxwell model for viscoelastic response, so that
the viscous stress is m(@2w/@t@z) where w is the particle displacement in the z-direction. The ratio
m/Y has the unit of time and consequently, it can be evaluated from the results of attenuation
and velocity measurements.
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Solutions of (9) can be written in the form wðz,tÞ ¼Ae7ðl1þjl2Þzþjot where A is a constant
and

l1,2 ¼
o

c0
ffiffiffi
2
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðmo=Y Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
mo
Y


 �2rs
81: ð10Þ

These solutions are waves traveling and decaying in the negative and positive z directions,
determined by the upper and lower signs respectively. The imaginary part l2 is associated
with the velocity at which the wave propagates (o/l2) while the real part l1 referred as the
attenuation coefficient characterizes the damping and is a measure of the decrease in amplitude
of the wave with distance.
For frequencies in the UHF range (fZ1 GHz), the ratio (mo/Y) is small compared to unity

and approximations show that the wave speed drops from O(Y/r) to O(2mo/r). In the same
manner, the coefficient l1 can be approximated as l1E(o2mOr)2Y3/2 yielding the approximate
value of the damping coefficient b in terms of material constants as b¼m/YE(2l1/o

2)O(Y/r).
Values of attenuation coefficients are commonly given in units of dB/m and can be expressed
in the form of attenuation per unit travel-distance of the propagating wave. From the
attenuation data in silicon (6.5 dB/cm at f�1 GHz [33]), the value of l1 was calculated to be
l1¼74.8 m

�1 and substitution of the material constants of silicon (Table 1) into the relevant
expression yielded b¼2.82� 10�14 s. This is the value used in the finite element simulations to
account for material damping in AlN. Later on, Ref. [34] in which a value of damping in AlN
is reported (b¼3.2� 10�14 s) came to our attention. The difference between the two values is
due to the fact that we initially used a Poisson’s ratio n¼0.28 yielding C33¼130 GPa whereas
using n¼0.22 would have yielded C33¼165.7 GPa and b¼3.2� 10�14 s. Note that using
b¼2.82� 10�14 s and oa¼ (2p)x 3.17.109 rad/sec in (1/Q¼a/oaþboa) yields Q¼1780, a
value very close to the one retuned from the simulations as we will see next. Also note that
using b¼3.2� 10�14 s with the same value of oa would yield Q¼1598, a value close enough
to the previous to warrant that simulations need not be redone.
6. Simulation results

The material properties used in the simulations are summarized in Table 1. All simulations
use an eight-node, three dimensional piezoelectric brick element (C3D8E) with four degrees of
freedom per node, corresponding to three components of displacement and one component of
electrical potential. Careful evaluation of meshes has shown that the gain in accuracy was
minimal with mesh refinement so a somewhat coarse mesh was used throughout the work.
For each simulation, we generated the electrical impedance frequency response and

calculated the performance figures K2 and Q. Each simulation has set of indices that refer
to the resonator’s geometry and dimensions, namely: diameter, number of beams, beams
length and thickness. For instance, d300-4l-100-1.7 is a resonator 300 mm in diameter with
four beams 100 mm long and 1.7 mm thick. The beam widths are all 24 mm wide. The beams
and the resonator have the same thickness.
Fig. 4 is an illustration of the electrical impedance frequency response generated from

the simulations of the d300-4l-100-1.7 resonator. The sharp pick at 3.17 GHz indicates the
value of the frequency at which (anti)-resonance takes place and where the resonator is clearly
strained in the thickness direction as evidenced by the picture. A simple one dimensional



Fig. 4. Electrical impedance frequency response of the resonator (d300-8l-300-1.7). The sharp pick at 3.17 GHz

indicates the (anti)-resonance frequency at which the resonator is clearly strained in the thickness direction. Also

shown is the resonator at rest.
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analysis gives a value of 3.21 GHz and compares well with the simulation value. The small
discrepancy is due to the fact that the simulations are three-dimensional and include damping.
As expected, the damped system (simulated) resonates at a frequency lower than the one that
would result in an undamped system.
6.1. Resonator thickness

The effect of the resonator thickness on the magnitude of the (anti)-resonant frequency is
illustrated in Fig. 5. It shows the decaying variation of the (anti)-resonant frequency with the
material thickness. The simulations obtained for four-beam resonators (d300-4l-100)
confirmed that for a lightly damped system, anti-resonant frequencies values are very close
to the one dimensional undamped system. It also shows that theoretically, frequencies above
the 3 GHz range can be attained using AlN as the piezoelectric material. However, this would
be difficult to reach in practice because there is a limit to how thin the device can be.

Plotted in Fig. 6 are the performance coefficients K2 and Q obtained as a function of the
resonator thickness. K2 remains almost unaffected by the resonator thickness topping at
about 6.15%, a value very close to the one obtained with the one dimensional undamped
model calculated with the equation K2

¼e33
2 /(e33C33þe33

2 ) [25] (the subscript 3 representing
material properties of AlN in the thickness direction) and yielding K2

¼6.24% in excellent
agreement with the one measured experimentally (6.3% [24]). (Note that [21] reports
K2
�6.5% but uses slightly different material properties). Q’s obtained from the simula-

tions range from 997 to 4475 and increase linearly with the thickness. Furthermore, the
expression Qa¼h/(bpVp) is readily obtained by substituting the one dimensional model for
the first resonant frequency (fa¼Vp/2h) into the expression Qa¼1/(boa) assuming a¼0

making it clear that Qa values are proportional to the resonator thickness. Thus, thick
resonators are capable of achieving high Q’s but at the same time they resonate at a lower
value which illustrates some of the design trade-off.



Fig. 5. Anti-resonant frequencies as a function of the resonator’s thickness. The simulations are performed on

resonators d300-4l-100-nn. The results of the simulations agree well with those predicted by a one-dimensional

theory.

Fig. 6. Electromechanical coupling coefficient K2 and Q-factor as a function of the resonator’s thickness. The

simulations are performed on d300-4l-100-nn resonators. The results of the simulations agree well with those

predicted by a one-dimensional theory. The theoretical one dimensional value K2
¼6.24% is obtained with

material’s properties.
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6.2. Beam length

Fig. 7 represents the variations of the electrical impedance frequency response for a
resonator with eight beams (d300-8l-nn-1.7) with the beam length. It clearly shows the
presence of spurious modes between the resonant and anti-resonant frequency that become
stronger with longer beams and also shifts to the right. On the other hand, the results
suggest by extrapolation that if the beams are too short, the spurious modes would be in
the proximity of the resonant frequency and would result in greater dissipation during
resonance and a degraded Qr.

Table 2 shows that resonators with shorter beams have a slightly higher value of K2

(6.15%) but an almost constant Q factor (Q�1750). (The value of Q dropping to 1650 for
200 mm beam length seems to be an artifact of the simulations.) During the resonant phase,
most of the energy is dissipated in the central portion of the resonator so the beam length
Fig. 7. Effect of beam-length on the electrical impedance frequency response. The spurious modes become

stronger as the beam length is increased. The simulations are performed on resonators d300-8l-nn-1.7.

Table 2

Effect of beam length on the performance coeffecients.

Beam

length (mm)

K2
(%) Q K2Q

100 6.15 1789 110.0

150 6.15 1730 106.4

200 6.09 1650 100.4

300 6.09 1786 108.7
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has minimal effect. Resonators with other beam lengths have also been fabricated at UCSB
and test data [24] confirm the above result.
6.3. Number of beams

Fig. 8 shows how the number of beams affects the electrical impedance frequency
response of d300-nn-100-1.7 resonators. The interesting feature is that the resonator with
three beams experiences resonance at 3.21 GHz or about 20 MHz higher than the
resonator with four or eight beams, so we would expect a lower Q as explained above.
However, the three-beam device has the highest Q (�1950) of all as seen in Table 3. Even
though the eight-beam resonator has a slightly higher K2, the combined product is higher
for the three-beam resonator (K2Q�118.7) and resonates at a higher frequency which
makes it a better candidate in terms of performance. An explanation is that the three
beams are approximately aligned with the three principal crystallographic directions of
AlN (1200 apart each), where material properties are identical and damping is minimal.
Fig. 8. Effect of number of beams on the electrical impedance frequency response. The three-beam resonator

experiences (anti-) resonance at a higher frequency value than the resonator with four or eight beams. The

simulations are performed on resonators d300-nn-100-1.7.

Table 3

Effect of number of beams on the performance coefficients.

Number

of beams

K2
(%) Q K2Q

3 6.09 1950 118.7

4 6.09 1880 114.5

8 6.15 1789 110.0



Fig. 9. Free–free and clamped circular resonator with intermediate cases. The three-beam case applies the least

constraint to the resonator while the eight-beam applies the most. The beam-points of attachment to the circular

resonator – not the beams themselves – are shown in the figure. (a) free-free, (b) 3 beams, (c) 4 beams, (d) 6 beams,

(e) 8 beams, and (f) clamped.
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Fewer beams apply less constraint or disturbance to the vibration modes of the center of the
resonator and tend to eliminate rotational and/or radial components of the displacement. This
is illustrated in Fig. 9. The resonant mode becomes closer to the ideal pure longitudinal mode
where the circular portion of the resonator expands only in the thickness direction and for
which Q is the highest. We note that this result contradicts test data which have pointed to a
higher performance for the eight-beam resonator [24].

6.4. Damping coefficient

Our simulations have yielded Q�1900 for a 1.7 mm thick resonator, a value in good
agreement with the one predicted by a one-dimensional theory (Q�1756) in which anti-
resonance is dominated by the behavior of one frequency isolated mode. However, this is
about ten times higher than the value measured for the device fabricated at UCSB [24]
suggesting that damping modeling be revised altogether.

The most obvious difference between the model used in the simulations and the actual
device is that electrodes have been neglected in the analysis. A subsequent model of the
resonator with electrodes has been implemented [26] and simulations have retuned values of Q

on the order of 1100. A silicon substrate has also been added in the model and has shown
minimal additional effect with simulations results yielding Q�1000 [27]. Another reason for
the discrepancy may be in the enforced condition that the ends of the beams are fixed in
position (see Fig. 3) preventing energy dissipation into the substrate. This condition is too strong
and should be relaxed. The UCSB team [24] has advanced that electrodes and silicon surface
roughness as well as the electrical resistance of the transmission line were primarily responsible



Fig. 10. Effect of damping coefficient b on the electrical impedance frequency response. The spurious modes are

masked when the damping coefficient is increased. The simulations are performed on resonators d300-8l-300-1.7

using b¼2.82� 10�14 s.
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for degrading the Q-factors. Propagation of surface wave in the resonator may also result in
energy loss [22]. This has not been modeled explicitly in our simulations but is not precluded.
This raises the possibility that the Rayleigh damping coefficient used in the simulations

(b¼2.82� 10�14 s) did not represent reality. Fig. 10 shows the electrical impedance
frequency response for resonators d300-8l-300-1.7, when b is increased by ten and one
hundred folds. As b is increased, the anti-resonance peak becomes less sharp as expected.
Increasing b by a factor of ten decreases Q by a factor of ten, from Q�1900 to Q�190, a
result expected from the elementary model (Qa¼h/pVpb). In such case, the damping ratio z
is 0.5%, a value still acceptable for a lightly damped system. However, increasing b one
hundred times yields Q�9 while the elementary model predicts a value about twice
as much. The damping causes negligible change to the anti-resonance frequency so the
discrepancy is not from that source. Instead, the inability of the elementary model to
predict the Q-factor is probably due to interference among different modes, so that the
assumption that Q can be estimated based on the response within one mode no longer
holds. The fact that the spurious modes, visible for the lowest damping coefficient between
the resonant and anti-resonant frequencies, are masked by the response with the largest
damping coefficient is a clue that it is modal interference that is causing the discrepancy.
The electromechanical coupling coefficient is almost constant K2

�6.0% for the three cases
showing that the damping coefficient b does not greatly affect the value of K2.

7. Summary

An optimal design configuration for an aluminum nitride MEMS resonator in the
shape of a trampoline and designed for UHF filtering applications was investigated using
three-dimensional finite element simulations. Performance was evaluated by means of the
electromechanical coupling coefficient K2 and the quality Q-factor which were calculated
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from the magnitude and phase of the electrical impedance frequency response plots. The
electrodes were assumed of negligible thickness so the magnitude of the resonant frequency
was not affected by mass-loading effect. Material damping was accounted for in the
simulations. Each resonator was forced by a harmonically varying electrical current
oriented in the thickness direction over a range of frequencies containing the resonator’s
first natural frequency so that longitudinal resonant conditions could be observed.

The results indicated that (i) K2 was insensitive to geometry (K2
�6.5%), (ii) Q increased

linearly with the AlN thickness attaining Q�1900 for a 1.7 mm thick resonator and (iii) a
trampoline resonator with three beams had a better performance capability than the
resonator with four or eight beams with a figure of merit reaching K2Q�120 and
resonating at a higher frequency value (3.21 GHz) than its counterpart resonators.

The trends and results compared well with those obtained from a one dimensional
theory suggesting that key performance parameters could be evaluated from a simple one
dimensional analysis. The main concern remained the discrepancy between the simulated
and measured values of Q reported in [24] to being about ten times lower. However,
electrodes which are well known mechanisms for energy dissipation were neglected in the
analysis. This justified the need for a second-phase investigation in which the effects of
electrodes were accounted for. Future work may also include a damping model other than
Rayleigh damping which may not the best candidate to characterize the level of anisotropy
of piezoelectric materials. Finally, losses due to thermal dissipation of the current should
also be investigated.
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