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In engineered systems where thermal strains and stresses are
limiting, the ability to tailor the thermal expansion of the
constituent materials independently from other properties is
desirable. It is possible to combine two materials and space in
such a way that the net coefficient of thermal expansion (CTE)
of the structure is significantly different from the constituents,
including the possibility of zero and negative thermal expansion.
Bimaterial lattices that combine low, negative, or an otherwise
tailored CTE with high stiffness, when carefully designed, have
theoretical properties that are unmatched by other known
material systems. Of known lattice configurations with tailor-
able CTE, only one geometry, a pin-jointed lattice, has been
shown to be stretch dominated and thus capable of having
stiffness that approaches its theoretical upper bound. A related
lattice with bonded joints, more amenable to fabrication, is
developed that has a stiffness and CTE similar to the pinned
structure. Analytical models for this rigid-jointed lattice’s CTE
and stiffness are developed and compared successfully with
numerical results. A near space-filling, negative thermal expan-
sion version of this lattice is devised and fabricated from
titanium and aluminum. CTE measurements on this lattice are
made and are well predicted by the analytical and numerical
models. These insights guide the design of a family of bonded
lattices with low areal density, low or negative CTE, and high
stiffness to density ratio. Such lattices are shown to have a
thermomechanical response that converges on pin-jointed beha-
vior when the lattice elements are long and slender.

I. Introduction

RECENT assessments have elucidated bimaterial, planar lattice
concepts that attain zero (or low) thermal expansion

coefficients (Fig. 1).1–5 Among these, only the configuration
depicted in Fig. 1(d) is known to combine low thermal expan-
sion with high stiffness and strength. The lattice in Fig. 1(b) is
the result of topology optimization and has biaxial stiffness near
theoretical bounds, but has poor uniaxial stiffness, suffers from
edge effects in lattices with limited periodicity, and has a
complex geometry.2 Furthermore, the lattice in Fig. 1(d), hereby
known as the UCSB lattice, has properties that are transversely
isotropic. Other stiff, strong, planar lattices have been identified
that have zero, negative, or low thermal expansions in specific
directions within its plane,6 but are anisotropic, with significant
thermal expansions in other in-plane orientations.

In the lattice of Fig. 1(d), the members that govern its
response are defined within the unit cell depicted in Fig. 2. In
this lattice, the outer, hexagonal (type I) members (length L1 and
width w1) have the lower coefficient of thermal expansion (CTE)
a1, while the triangular, inner (type II) members (length L2 and
width w2) have relatively higher CTE, a2. At the nodal points A,
J, F in the lattice (Fig. 2), the ratio of the effective thermal
expansion �a to the CTE of the type I material a1 is dictated
by the constituent CTE ratio, l5a2/a1, and by the skewness
angle, y, depicted in Fig. 2. For a pin-jointed lattice, the
expansion coefficient, �a has been derived as5:

�a
a1
¼ 1� ð1=2Þl sinð2yÞð1=

ffiffiffi
3
p
þ tan yÞ

1� ð1=2Þ sinð2yÞð1=
ffiffiffi
3
p
þ tan yÞ

(1)

For a representative material combination, Al alloy and Ti
alloy, with l�2.6, zero expansion prevails for a pin-loaded
lattice at skewness y�251.5 When the lattices are bonded, or
otherwise mechanically attached at the nodes to make them
rigid joints, bending moments are introduced into the type I
members and the thermal expansions are larger.5

To assess these predictions, lattices based on Ti and Al alloys
have been made, and their thermal expansion characterized.7

Measurements obtained for a pin-jointed unit cell are in close
agreement with the prediction of Eq. (1). Those measured for
lattices assembled using mechanical (dovetail) attachments, i.e.
with rigid joints, give larger thermal expansions. A variety of
features adversely affect the reliability and the repeatability of
the thermal expansion of such rigid-jointed lattices: (i) local
plastic strains induced by the thermal expansion difference
between constituents at the bimaterial attachment. (ii) Bending
moments associated with the reduction in effective member
lengths due to member overlap at the nodal points where six
type I members from three neighboring unit cells converge (Type
J Node, Fig. 2). (iii) The reduction in effective length of type I
members due to the intersection of struts at Type J and D nodes.
(iv) The reduction in effective length of type I members due to
material added at the dovetail bimaterial interface. A previous
assessment has demonstrated that the detrimental effect of
plasticity at the bimaterial attachment is minimal, because the
plastic strains are highly localized, facilitating shakedown after
the first few cycles.7 Consequently, while the CTE mismatch
at the attachment generates a nonlinear, hysteretic contri-
bution to the thermal strain during the first cycle, the thermal
expansion remains repeatable during all subsequent cycles. A
preconditioning treatment is sufficient to initialize the system
and stabilize the thermal expansion.

The detrimental influence of the nodal geometry on the
bending moments is more substantive. The elevation in the
bending stiffness of the type I members associated with nodes
of Type J significantly increases the overall thermal expansion
coefficient, as determined both experimentally and by finite-
element (FE) analysis.7 This detriment motivates a systematic
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study that seeks geometrically straightforward configurations,
amenable to manufacture, that impart thermal expansion closer
to the pin-jointed prediction of Eq. (1), while retaining high
stiffness and strength. The objective of this article is to seek such
configurations, but with a focus, for the time-being, on stiffness.

The thermal expansion characteristics to be pursued empha-
size designs that reduce the bending moments in the slender type
I members. Analytic results are presented in Section II for the
original design and extended to an alternative, offset design
(Fig. 3). The alternative design is comprehensively analyzed in
Section III by the FE method and specific designs discussed. It
will be demonstrated that bonded, offset configurations can be
conceived that have thermal expansions essentially the same as
the pin-jointed lattice. Given the minimal-member bending
stiffness for these new lattices, basic elasticity results are derived
for pin-jointed systems in Section IV. These specify the salient
trends in elastic response. Thereafter, a series of FE results for
rigid-jointed systems are generated to ascertain deviations in
stiffness from pin-joint predictions.

II. Design Principles for Low Thermal Expansion

Predicated on the foregoing assessment that the thermal expan-
sions in excess of the pin-jointed lattice are primarily affected by
the bending moments in the type I members, a beam theory
methodology has been devised that identifies geometrically
straightforward designs that converge to pin-jointed behavior.
Two design layouts are considered: (i) One conforms to Fig. 2,

with the effective rigidity of the material around the joints taken
into account. (ii) The other allows the unit cells to be separated
by spacers (Fig. 3), both relaxing the joint rigidity limitation and
permitting greater motions of type I members. The latter feature
allows the implementation of a unit cell with a negative thermal
expansion, so that, when averaged with the positive expansion
of the spacer, the lattice has a zero or extremely low CTE. The
joints are represented as circular flanges (Fig. 2), having radius
R1 (for Type A, F, and J) and radius R2 (for Type B, C, and D).
The radius R1 is defined as the convergence of struts of type AD
and CJ, and R2 by the convergence of struts of type AD with
type BD and CD. The rigidity of the flanges reduces the effective
length of the adjacent struts.

By considering the incremental changes in member length
during thermal expansion, and eliminating the increment of y,
we find for the original design of Fig. 2

DL
L
¼

ffiffiffi
3
p

DL1

L1
� sin yðcos yþ

ffiffiffi
3
p

sin yÞ DL2

L2

cos yð
ffiffiffi
3
p

cos y� sin yÞ
(2)

where

L1 ¼
L

2 cos y
(3)

L2 ¼
L

2
ð1þ

ffiffiffi
3
p

tan yÞ (4)

and the symbol D followed by the letter L, with or without
subscripts, indicates change of length. Because type II struts do
not bend, but sustain only an axial load T2, their strain is

DL2

L2
¼ T2

E2A2
þ et2

� �
1� 2

R2

L2

� �
þ 2êt2

R2

L2
(5)

where E2 is Young’s modulus for type II members, A2 is their
cross-sectional area, et2 is the thermal strain in the struts and êt2
is the effective thermal strain of joints of type D. Type I struts
bend and stretch, and their axial strain is given by

DL1

L1
¼ T1

E1A1
þ et1

� �
1� R1 þ R2

L1

� �
þ êt1

R1

L1
þ êt2

R2

L1
(6)

where T1 is the tension in these members, E1 is Young’s modulus
for type I members, A1 is their cross-sectional area, et1 their
thermal strain and êt1 is the effective thermal strain of joints of
type J.

Type I struts sustain a uniform shear force V and a nonuni-
form bending momentM (Fig. 4). Equilibrium at joints A and D
requires that

T1 ¼
cos yþ

ffiffiffi
3
p

sin yffiffiffi
3
p

cos y� sin y
V (7)

and

T2 ¼ �
2ffiffiffi

3
p

cos y� sin y
V (8)

Inspection of Fig. 2 reveals that, by geometry, the transverse
bending deflection of AD is given by

d ¼ L1Dy ¼
DL2 � ðcos yþ

ffiffiffi
3
p

sin yÞDL1ffiffiffi
3
p

cos y� sin y
(9)

while Euler–Bernoulli beam theory gives

d ¼ VðL1 � R1 � R2Þ3

12E1I1
(10)

Fig. 1. Concepts for low thermal expansion lattices; (a) the Lakes
lattice1; (b) the lattice obtained by topology optimization2,3; (c) the
AFRL design4; and (d) the UCSB lattice.5
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Fig. 2. Unit cell and joint geometry.
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where I1, for type I members, is the second moment of area of
the cross section about the neutral axis, so that E1I1 is the
bending stiffness of type I members, specified for bending in the

plane of the lattice. Elimination of d and V among Eqs. (7)–(10)
provides

T1 ¼
12E1I1L1ðcos yþ

ffiffiffi
3
p

sin yÞ2 DL2

L2
� DL1

L1

� �
ðL1 � R1 � R2Þ3ð

ffiffiffi
3
p

cos y� sin yÞ2
(11)

and

T2 ¼
24E1I1L1ðcos yþ

ffiffiffi
3
p

sin yÞ DL2

L2
� DL1

L1

� �
ðL1 � R1 � R2Þ3ð

ffiffiffi
3
p

cos y� sin yÞ2
(12)

Use of Eqs. (5) and (6) allows a solution for the strut
tensions as

T1 ¼

12E1I1L1ðcos yþ
ffiffiffi
3
p

sin yÞ2 et2
L̂2

L2
þ 2êt2

R2

L2
� et1

L̂1

L1
� êt1

R1

L1
� êt2

R2

L1

� �
L̂3
1

ffiffiffi
3
p

cos y� sin y
� �2þ 12I1

A1L̂
2
1

2E1A1L̂2

E2A2L̂1
þ ðcos yþ

ffiffiffi
3
p

sin yÞ2
h i	 


(13)

and

T1 ¼

24E1I1L1ðcos yþ
ffiffiffi
3
p

sin yÞ et2
L̂2

L2
þ 2êt2

R2

L2
� et1

L̂1

L1
� êt1

R1

L1
� êt2

R2

L1

� �
L̂3
1

ffiffiffi
3
p

cos y� sin y
� �2þ 12I1

A1L̂
2
1

2E1A1L̂2

E2A2L̂1
þ ðcos yþ

ffiffiffi
3
p

sin yÞ2
h i	 


(14)

where the notation

L̂1 ¼ L1 � R1 � R2 (15)

and

L̂2 ¼ L2 � 2R2 (16)

has been introduced. When these results are inserted into Eqs.
(5) and (6) and the outcome used in Eq. (4), the thermal
expansion of the lattice becomes

When the bending stiffness is negligible (I15 0), and the joint
radii R1 and R2 are neglected, this result simplifies to Eq. (1).

The result in Eq. (17) highlights the two effects of bonded
joints. The first involves the finite extent of the joints (R1 and R2

are nonzero), implied by the first term on the right hand side.
The second arises because the bending of type I struts adds
strain to the thermal response, signified by the second term on
the right hand side.

Appropriate choices for the joint radii (Fig. 2) are

R1 ¼
3w1

p� 6y
(18)

and

R2 ¼ max
3ðw1 þ w2Þ
2p� 6y

;
3w2

p

� �
(19)

Fig. 3. Spaced lattices with y5p/6, with no additional material (a), undersized stiffener (b), and appropriately sized spacer (c and d) where axial
member loads can be transmitted directly to adjacent unit cells. Spacer has characteristic dimension H while the stiffener has radius Sr.
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L
¼

ffiffiffi
3
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et1
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� êt1

R1

L1
� êt2
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� �
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3
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ffiffiffi
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3
p
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 ð17Þ

Fig. 4. Type I members sustain an axial load, T, shear, V, and bending
moment, M.
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The thermal expansion for nodes A, J, F is

êt1 ¼ et1 (20)

An appropriate choice for nodes B, C, D is a weighted
average of the expansion of type I and II materials,

êt2 ¼
1

3
ð2et1 þ et2Þ (21)

Results for the linear thermal expansion for various material
combinations are plotted against y in Fig. 5, with a range of
values for the bending stiffness parameter I1=A1L

2
1used for

illustration.
The above results affirm that the design of joints of Type A,

J, F is critical to the realization of low thermal expansion
behavior, because the low angle included between type I
members from adjacent unit cells leads to excessively large
R1. This limitation is obviated by using an offset design wherein
the centers of neighboring unit cells are displaced, allowing R1

to become small even when y-p/6. Such offset designs are
achieved by insertion of a spacer made from type I material, as
shown in Fig. 3. The spacer removes the coupling of L̂1 and y,
for a fixed L, enabling the use of larger values of y. Offset
designs can have negligible bending, whereupon, the thermal
expansion can be closely approximated by the first term on the
right hand side of Eq. (17), with R1 and R2 neglected. The CTE
for the offset lattice is thus

�a
a1
¼

ffiffiffi
3
p
� lFðyÞffiffiffi
3
p
� FðyÞ

L

LþH

� �
þ H

LþH
(22)

where H is the size of the spacer and FðyÞ ¼ ðcos yþffiffiffi
3
p

sin yÞ sin y. When H is zero, Eq. (1) is recovered once
more. The formula in Eq. (22) can be used to guide low thermal
expansion lattice designs; specifically, Eq. (22) predicts that
zero thermal expansion of the lattice occurs when

H

L
¼ lFðyÞ �

ffiffiffi
3
pffiffiffi

3
p
� FðyÞ

(23)

This design has unit cells that contract upon heating, com-
pensating for the expansion of the spacers. Such solutions
are feasible when

ffiffiffi
3
p

=l < F yð Þ <
ffiffiffi
3
p

(note that, within this
range, the unit cell has negative thermal expansion). The upper
limit of this range coincides with y5 p/3. For illustration, when
l5 2, the lower limit is y5 p/6. Beyond these limits is the
requirement that joints A, J, F remain physically small, requir-
ing that �H

ffiffi
3
p

w1 sin y
FðyÞ , whereupon the type I elements from

neighboring unit cells have no intersection. From Eq. (23),
this requirement provides

w1

L
� ½lFðyÞ �

ffiffiffi
3
p
�FðyÞ

½
ffiffiffi
3
p
� FðyÞ�

ffiffiffi
3
p

sin y
(24)

revealing that the slenderness of type I elements has to be
respected. Consequently, when y5 p/6, Eq. (24) gives w1/
Lr(l�2), indicating that the design can be satisfied provided
that l5 a2/a142, ensuring that w1 is positive. Moreover, any
material combination with l slightly in excess of 2 (say more
than 2.1) is acceptable, because w1/L must be small to ensure
low bending stiffness.

Alternatively, Eq. (24) can be recast as a condition on y with
l and w1/L already selected. The outcome is not transparent
because it involves a combination of trigonometric functions
of y without obvious simplification. Nevertheless, inspection
indicates that any y slightly above the lower limit FðyÞ ¼

ffiffiffi
3
p

=l
will satisfy Eq. (24). Specific cases should be assessed numeri-
cally to ensure a satisfactory design, as elaborated below.

A chosen design is limited in its range of temperature opera-
tion by the requirement that the triangle of type II elements has
space into which material can expand when the lattice is heated.
The critical condition occurs when joint C (Fig. 2) touches its
counterparts from the two adjacent unit cells. It is straightfor-
ward to ascertain that the strain increment in type II bars that
causes this critical condition is

et2 ¼
cos y�

ffiffiffi
3
p

sin yþ 2H
L

cos y

cos yþ
ffiffiffi
3
p

sin y
(25)

Consequently, the operating temperature range must be
chosen to ensure that thermal straining of type II elements
is smaller. For yBp/6 and greater a careful choice of H

L
is

needed, because cos y�
ffiffiffi
3
p

sin y � 0 for y � p/6.

III. Specific, Low Expansion, Offset Designs

(1) FE Method

Lattices are modeled using a representative volume element
(RVE) FE technique. Three-dimensional models are subject to
periodic boundary conditions for the two in-plane dimensions in
the form of uniform macroscopic strains. The relative displace-
ments between pairs of boundary nodes are controlled by tying
their displacements together consistent with the strains we wish
to impose.8,9 The third, z-direction, is left free. A single node on
the interior of the model is held fixed in space to prevent rigid-
body translations. The commercial FE code ABAQUS10 is used
for mesh generation and to perform analysis. MATLAB11 code
is used extensively to manipulate meshes, apply boundary
conditions, and for postprocessing. Periodic boundary condi-
tions were implemented in Cartesian coordinates. A typical
RVE is pictured in Fig. 6. Typical meshes consist of B20000
to B70 000 eight-noded linear hexahedral elements (type
C3D8R). The number of elements varies greatly with the relative
density of the lattice geometry being analyzed, which ranged
from 8% to 98% for slender to space-filling designs, respec-
tively. Mesh sensitivity is studied to ascertain model resolution
at which solutions converge. Because the average strains are
small, there is no distinction between the macroscopic Cauchy
stress and the macroscopic nominal stress, so that the macro-
scopic stress can be computed by simply dividing force resul-
tants by section areas for the undeformed volume of the RVE.

(2) Offset Lattices

In stretch-dominated structures, where loads are well distribu-
ted, stress contours are rather uniform, and consequently the
structure is relatively efficient in its utilization of material. On
the other hand, FE calculated thermomechanical stress distribu-
tions in the original lattice design reveal large nonuniform

Fig. 5. Lattice coefficient of thermal expansion as a function of skew
angle y and type I member aspect ratios.
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bending stresses associated with rigidity and member intersec-
tion at the joints (Fig. 7(a)). The lattices analyzed to obtain these
results are modeled with the temperature-dependent properties
of Ti and Al alloys listed in Table Ib and subject to a tempera-
ture excursion from 401 to 2501C. The bimaterial interface, in
reality press-fit, is considered to be perfectly bonded for simpli-
city. Simulations that model the interface between sublattices
with contact in compression, and a frictional coefficient of m5 1,
give results that are negligibly different from welded models.

The maximum tensile equivalent stress (also known as the von
Mises stress) is located in the bimaterial joint region and results
from CTE mismatch between constituents. In the temperature
range analyzed, the maximum tensile equivalent stress is lower
than the tensile yield stress in both materials.

Constraints on the motion of the lattice’s components drive
the macroscopic CTE toward that of the constituents. By
placing a spacer (Fig. 3), with characteristic dimension H,
between unit cells and eliminating excess material around the
bimaterial joint, the lattice geometry can be designed so that it
behaves according to the original concept for low CTE, i.e. with
negligible stress (Fig. 7(b)). Contours for the revised design show
greatly reduced bending stresses and the overall lattice behavior
is in good agreement with new analytical predictions (Fig. 8).

Fig. 7. Finite-element thermomechanical stress distribution in Ti and Al
lattices given the material properties listed in Table I and subject to a 1751C
temperature excursion—(a) original design and (b) new offset design.

Fig. 6. (a) Perimeter of unit cell used for computations. (b) Representative finite-element mesh that consisted of 50000–70 000 three-dimensional
elements. (c) Detail of a bimaterial joint region.

Table Ia. Temperature Average Values of Material
Properties—For the Range 401–2151C

Coefficient

of thermal

expansion

(ppm/1C)

Young’s

modulus

(GPa) sy (MPa)

Type-1 material Ti–6Al–4V 9.4 110 800
Type-2 material 7075-T6

aluminum
24.3 70 400

Table Ib. Temperature-Dependent Material Properties

Coefficient

of thermal

expansion

(ppm/1C)

Young’s

modulus

(GPa)

sy

(MPa)

Temperature

(1C)

Type-1
material

Ti–6Al–4V 9.2 110 1100 20
9.6 858 300

Type-2
material

7075-T6 22.9 70 434 20
26.3 391 200

339 300
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(3) Lattice Design

For any pair of constituent materials and their associated
properties, there is a range of skew angles, y, over which a
desired lattice CTE can be achieved. Properties such as stiffness,
the Poisson ratio, and strength vary over this range so that any
one solution may be superior to others depending on design
requirements. For a unit temperature change, DT5 1 so that
eti ¼ ai, Eq. (17) gives the thermal expansion coefficient of the
lattice and can be inserted into Eq. (26),

�a ¼ DLþHa1
LþH

(26)

to calculate the expansion of a spaced lattice. The macroscopic
thermal strain in a spaced lattice is the weighted sum of the
lattice and spacer strain, the latter having thermal expansion
coefficient a1. Equation (26) can be used to identify regions of
design parameter space where lattices with the desired thermo-
mechanical response exist. Designs in this neighborhood can
then be investigated through FE to address specific geometries
and to investigate their thermomechanical response in compar-
ison with the results in Section II.

The thermomechanical strain response of the bimaterial joints
in Eq. (21) is assumed to be an average of the constituents.
While this approximation is sufficient for exploratory investiga-
tions, specific mechanical bimaterial interface geometries must
be considered when designing real structures, as their behavior
may differ substantially from this idealization. The dovetail
joints used by Steeves et al.,5,7 and in the current effort, are
examples of bimaterial attachments. Mechanical connections
capable of carrying tensile loads are necessary for transmitting
all applied macroscopic loading situations except biaxial ten-
sion. The size of these joints, given by their characteristic
dimension, R2, reduce the effective length of members (L̂1

and L̂2, Eqs. (15) and (16)).
For fixed values of w1 and w2, the thermomechanical response

of the system is a strong function of the member effective
lengths, and therefore of R1 and R2. In many designs, a single
radius R2 does not exist by which both type I and II members
are reduced equally at the Type D joints (Eqs. (15) and (16)).
The actual reduction in effective length of members at these
nodes is a function of member width and the relative angle at
which they are incident to the joint. To identify designs with a
tailored and well-predicted CTE, which is amenable to fabrica-
tion, more detailed modeling is necessary.

The addition of the spacer (Fig. 3) allows practical access to
previously unachievable skew angles and corresponding higher
relative densities. In previous designs without the spacer, at skew
angles approaching 301, members from adjacent unit cells

intersect to an extent, and prevent the desired thermomechanical
response, and the desired CTE cannot be realized. A skew angle
of 301, without a spacer present, results in type I members in
adjacent cells being parallel and a hexagonal unit cell appear-
ance. If only the area bounded by the unit cell is considered,
these designs can achieve near-maximum areal density as an
assembly of hexagonal cells with small gaps between them. The
size of the gaps between unit cells is directly related to the size of
the spacer H. Upon temperature excursion from the reference
state, type I members expand, distort, and rotate, causing Type
D nodes to translate away from the center of the unit cell. The
size of the spacer and the corresponding gap is dictated by the
maximum outward deflection of these nodes in the specified
temperature range while considering the need to avoid adjacent
unit cells impinging upon each other after thermal straining. For
some designs with skew angles near or above 301, an upper use
temperature exists at which initially nearly parallel type I
members in adjacent cells deform to contact each other causing
the lattice to densify. For these designs, the upper use tempera-
ture can be increased by expanding the size of the spacer at the
cost of driving the CTE of the system toward that of the type I
material (Eq. (26)). Densification may also significantly influ-
ence the stiffness and strength of these lattices and may be a
beneficial feature in some applications. If material continuity is
beneficial, such as for aerodynamic surfaces, densified lattices
can be useful.

In some spaced lattice designs where the dimension of the
spacer is on the order of w1, no additional material is needed to
achieve this offset. In others, designs with skew angles in the
neighborhood of 301, unit cells may intersect minimally or not at
all (Fig. 3) and the strength and stiffness joint will suffer. A disk
of material centered on the spacer, a stiffener with radius Sr can
be added to the lattice to maintain continuity and transmit
stresses between unit cells. If the disk of material is too small,
stress concentrations in these regions can be design limiting. An
appropriate radius for this disk is one where axial loads in type I
members can be directly transmitted to adjacent cells (Figs. 3(c)
and (d)). This stiffener has a dimension independent of the
spacer and may be useful in facilitating a connection between the
lattice and a substructure.

As type II members are not subject to thermally induced
bending stresses, members with geometries other than truss or
beam-like forms can be considered without altering the me-
chanics of the system.5 In Fig. 10, the lattices pictured in the
middle and on the right (b and c) are variations of the lattice on
the left (a) incorporating type II members that are not simple
prismatic beams. Stiffening of type II members drives the
thermal expansion of the system to lower values. The increased
stiffness of these members can be modeled by using an effective
modulus E2

� for E2 in Eqs. (13) and (14). The only restriction in
geometry is that the type II members not impinge on, and reduce
the effective length of the slender type I members when thermo-
mechanically strained. Previous fabricated designs have used
truss and solid triangular inner type II members (Figs. 9(a) and
(b)).5,7 To explore the potential space-filling properties of this
lattice, a hexagonally shaped type II sublattice geometry was
chosen for fabrication in this work.

If in-plane geometries of members are specified to have a
finite width centered on the lines shown in Fig. 2, the width of
the bimaterial joint is limited by the width of type II members,
w2 (for the geometry considered in this work). Selecting a small
bimaterial joint resulted in a small value of w2 in Eq. (17). To
account for the much larger cross section of the hexagonal
geometry used, an effective modulus of E�2 ¼ 10E2 is utilized in
the analytical model. The order of magnitude increase in stiff-
ness is an estimate; further increases do not significantly influ-
ence results. By choosing a slightly skewed, but nearly hexagonal
type II element, an upper use temperature densification event
can be engineered between high and low CTE sublattices. When
both adjacent unit cells and sublattices contact each other at the
same DT, a nearly or completely densified and continuous
structure can be formed.

Fig. 8. Comparison of results from finite-element analysis for coeffi-
cient of thermal expansion and experiment.
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The dovetail joint dimensions were chosen to maximize the
effective length of type I members. Joint dimensions were
minimized to reduce R2 with practical consideration for the
interface size and the need to maintain a robust mechanical

connection between sublattices. Lattices previously investi-
gated5,7 used dovetail joints where the high CTE type II material
composed the inner, male side of the connection. Additional
material was added to the lattice at these locations to help
facilitate a robust connection. This added material served to
reduce the effective length of members resulting in a poorly
predicted thermal response (Fig. 8). In the current design, the
inner male component is now composed of the low CTE type I
material, and the bimaterial joint is relocated to be enclosed in
the inner type II member. Switching the low CTEmaterial to the
male side reduces thermal stresses resulting from the expansion
of the high CTE material, which was previously confined by the
low CTE constituent. It is hoped that plasticity can be avoided
altogether with this configuration, in contrast to the previous
dovetail joint design.

The test specimen designed and fabricated in this work was
chosen to have a skew angle of 301 and nearly space-filling inner
type II member. By specifying the geometric parameters
w15 3.0 mm, w25 0.4 mm, y5 301, H5 2.0 mm, Sr 5 3.80
mm, and unit cell length L5 50.0 mm, the designs in Fig. 10
are achieved. FE and analytical predictions for the geometries
shown are listed in Table II.

(4) Lattice Fabrication

A metallic lattice was fabricated for CTE measurement pur-
poses. The type I lattice was electro discharge machined from
3-mm-thick sheets of Ti–6Al–4V. The type II members were
machined from 7075-T6 aluminum alloy. Sublattices were press-
fit together. Tolerances were such that assembly with hand
pressure was possible; however, a mechanical press was used
to ensure proper assembly. The structure consists of 10 unit cells
arranged so that two cells in the interior are separated from the
edge by another unit cell to minimize edge effects (Fig. 10).

(5) CTE Measurement Methodology

Thermal expansion measurements on the Ti and Al lattice were
performed using a two-dimensional (2D) digital image correla-
tion (DIC) system. A high contrast black and white speckle
pattern was applied using spray paint. Lattices were heated on a
laboratory hot plate (Wensco, model #H1818RA4000) at a rate
of 601C/h from room temperature to 2201C. A frame of

Fig. 9. Thermal stress distributions in Ti- and Al-fabricated lattice geometry with thin type I members (a), triangular type II member (b), and space-
filling design (c).

Fig. 10. Lattices of Ti alloy (struts) and Al alloy (hexagonal units)
fabricated for measurement of the coefficient of thermal expansion.
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common silica insulation, approximately 1.5 in thick, was placed
around the lattice with a glass plate on top. The temperature was
recorded by four self-adhering K-type thermocouples (Omega,
model SA1XL-K-SRTC, Omega Engineering Inc., Stamford,
CT) located on the upper face of the lattice, two each on Ti and
Al. Acetone was used to remove the applied paint at the location
of the thermocouple attachments to increase heat transfer. The
temperature of the lattice was taken to be the average of the
four. Digital images were captured by CCD camera (AVT
Dolphin F-201B, Allied Vision Technologies, Newburyport,
MA) with a zoom lens (Tamron AF 70-300 1:4-5. 6, Tamron
USA Inc., Commack, NY) positioned approximately 2 m from
the specimen. The focal length was maximized subject in the
confines of the laboratory space to minimize the effect of out of
plane deformations on in-plane measurements. Images were
taken every 5 s to record deformations. Two 300W incandescent
lights in hoods were positioned close above the glass plate for
imaging purposes. Using the Vic-2D (Correlated Solutions,
Correlated Solutions Inc., Columbia, SC) software, virtual
extensometers placed on the reference image, and tracked
through the images, measured the displacement between pairs
of pixel subsets. A typical area of interest consisted of one unit
cell with three Type D nodes visible. Strains were calculated
from the relative displacement between pairs of subsets that
were typically 232 pixels. Strains were measured in the Al and Ti
and were calculated as the average of six virtual extensometers.
Lattice strains were calculated as the average of three virtual
extensometers placed between the three Type D nodes surround-
ing an interior unit cell. Temperature average CTE was mea-
sured by linear fitting to strain–temperature plots, where the
average CTE over the temperature range is the slope of the
resulting straight line. Extensometers were placed upon rela-
tively unstressed material regions to measure the CTE of the
constituents.

Image distortion from convective currents emanating from
the specimen is a common problem when using DIC to record
thermomechanical strains. A frame of silica fiber insulation was
placed around the lattice and a glass plate on top to help
thermally isolate the specimen from the camera. A fan is used
to mix the air directly above the glass plate and carry hot air
away from the lights.

(6) CTE Results

A typical experimental strain versus temperature plot is shown
in Fig. 11 along with FE prediction. Temperature average CTE
for the lattice and the constituent materials is reported in Table
III. Although the DIC software is capable of measuring micro-
strains, scatter on the order of 1000 microstrain was present in
the measurements due to image distortion. Convective currents
emanating from the lighting were sufficient to cause visible
inhomogeneous lensing in successive images. Measurements on
the Ti were limited to the Type D joints resulting in short gauge
lengths and larger scatter.

The average value of CTE for the constituent materials is
measured to be B4% higher than reported values (24.3 ppm/C
for Al, and 9.4 ppm/C for Ti) (Table Ia), but are within
experimental error. The lattice has an average measured CTE

of �0.9 ppm/C that is well predicted by FE of �1.1 ppm/C, and
close to the analytical prediction of �1.4 ppm/C.

3.7 Discussion—Thermal Expansion

Measured thermal expansions of the lattice agree well with
analytical and FE predictions. Differences between measured
and FE prediction are believed to be due to the reduced effective
length of the type I members resulting from fabrication imper-
fections causing premature contact between sublattices. The
hexagonally shaped aluminum members had visible machining
imperfections on some edges where they were cut from stock.
The small wing-shaped gap between high and low CTE mem-
bers results in a structure that is more imperfection sensitive
than a lattice with triangular or prismatic beam-type members.
Geometric imperfections in this gap can cause sublattices to
impact each other before the predicted upper use temperature,
reducing the effective length of type I members and driving up
the CTE. Space-filling lattices with these features, such as
aerodynamic surfaces, may be adversely affected by debris in
these small gaps.

No plasticity is predicted in the revised dovetail geometry.
The limited plasticity present in other designs7 was a function of
the bimaterial joint geometry used and is not inherent to the
functional mechanics of the lattice itself.

Scatter in CTE measurements results from several sources.
Convective currents in the air column between the specimen and
the camera distort images through their associated density
gradients and lensing effects.12 Efforts were made to mitigate
convective currents coming from the specimen and hotplate, but
the incandescent lighting used for imaging proved a sufficient
source of interference. A cold light source or a camera orienta-
tion that minimizes the effect of convective currents, by posi-
tioning it outside the affected area, would reduce the effect. The
large scatter in the CTE measurements for Ti is due to the lattice
geometry studied, the size of the unit cells, and the short lengths
of relatively unstressed material available for measurements
taken in the Type D node region.

The analytical model developed in Section II does a good job
of predicting lattice thermal expansion. The model uses the
simple assumption that the thermal expansion of the type II
joint region is a weighted average of the constituent materials
(Eq. (21)). In reality, a distinct material interface exists between
the constituents, and the thermal response is much more com-
plicated. The analytical CTE prediction of �1.4 ppm/C for the
lattice is close to the FE predicted value of �1.1 ppm/C and

Table II. Analytical and FE CTE Predictions for Thin,
Triangular, and Hexagonal Type-2 Member Lattices Pictured

in Fig. 9

Coefficient of thermal

expansion (ppm/1C) Thin Triangular Hexagonal Fabricated

Analytical prediction 2.6 �1.4 �1.4 �1.4
Finite element 1.4 �1.6 �1.6 �1.1

Constituent properties and FE results are temperature average values from

Table 1b from 201 to 701C. Thin Type-2 members elastically buckled under

compression for larger temperature excursions.

Fig. 11. Thermal strains measured in Al alloy, Ti alloy, and the lattice.
Significant scatter in Ti measurements is due to the relatively short gauge
lengths that had to be used.
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sufficiently accurate to help characterize the design space to
locate geometries of interest.

CTE measurements performed on a titanium and aluminum
lattice using 2D DIC were able to validate the analytical and FE
predictive models used in its design. The metal lattice behaved
elastically over a temperature range of 1751C, exhibiting con-
sistent negative thermal expansion. The design space identified
through the analytical model suggests the ability to realize a
family of structures with a wide range of stiffness and thermal
expansion properties.

IV. Stiffness

(1) Basic Stiffness Results for Pin-Jointed Lattices

(A) Elastic Properties: The unit cell of the design with-
out spacers, shown in Fig. 12(a), is loaded by a set of forces,
parameterized by P, Q, and S. It is presumed that the lattice has
been designed in the manner described above, such that the
bending stiffness of struts of type I are very low, whereupon
their behavior is stretch dominated. In such a situation, the
lattice can be analyzed as if it were pin-jointed.

The resulting behavior is isotropic in the plane of the lattice,
and stated as

exx ¼
sxx

E
� nsyy

E
þ aDT (27a)

eyy ¼
syy

E
� nsxx

E
þ aDT (27b)

exy ¼
sxy

2G
(27c)

where E, n, G, and a are the in-plane Young’s modulus, the
Poisson ratio, shear modulus, and CTE, respectively, of the
lattice.

The biaxial stiffness is the ratio of the biaxial stress to the in-
plane strain under equibiaxial loading,5 and can be deduced as

Sb ¼
ð
ffiffiffi
3
p

cos y� sin yÞ2

2
ffiffiffi
3
p

L1
1

E1w1
þ 2 sin2 y

3E2w2
ðcos yþ

ffiffiffi
3
p

sin yÞ
h i (28)

Note that this corrects a misprint in the previously published
formula in Steeves et al.,5 which is missing the leading 2 in the
denominator. The shear modulus is

G ¼ ð
ffiffiffi
3
p

cos 2yþ sin 2yÞ2

8
ffiffiffi
3
p

L1
1

E1w1
þ 2 sin2 2y

3E2w2
ðcos yþ

ffiffiffi
3
p

sin yÞ
h i (29)

In these expressions for Sb and G, L1 is used rather than L
because L1/w1 is the aspect ratio of type I elements.

The Poisson ratio for the lattice may be computed from

n ¼ Sb � 2G

Sb þ 2G
(30)

and the Young’s modulus

E ¼ 2Gð1þ nÞ (31)

Note that, in certain circumstances, the Poisson ratio will be
zero or negative. For example, when E2 � E1, the Poisson ratio
reduces to

n ¼ cos 2y�
ffiffiffi
3
p

sin 2y

3þ 2ð
ffiffiffi
3
p

cos yþ sin yÞ sin y
(32)

As a consequence, it is zero at y5p/12, and negative for
y4p/12.

The introduction of a stiff spacer, as in Fig. 3, has no effect on
the elastic properties of the lattice. If the spacer is a stiff
component (e.g., composed of a solid plate rather than a set
of truss or beam elements), the elastic properties of the lattice
are still given by the values in Eqs. (28) and (29). This situation
arises because for a stiff spacer, when we neglect its deformation
and treat it as rigid, both stress and elastic strain scale in the
same way with the size of the spacer. To show this for the case of
equibiaxial stress, the loads in Fig. 12(b) are

P ¼ ðLþHÞsB (33a)

Q ¼
ffiffiffi
3
p

2
ðLþHÞsB (33b)

where sB is the applied biaxial stress. Because the spacers are
rigid, the forces experienced by the adjacent nodes are the same.
The stress are

s11 ¼
2Qffiffiffi
3
p

L
(34a)

Fig. 12. Pin-jointed unit cell subject to loads P, Q, and S used in
stiffness calculation (a). Spaced lattice unit cell with applied loads P
and Q (b).

Table III. Measured CTE of Lattices and Constituent Materials (95% Confidence Bounds), and FE Prediction for Lattice using
Measured Values (ppm/1C)

Aluminum (measured) Titanium (measured) Lattice (measured) FE prediction

Exp. 1 26.1 (25.9–26.3) 10.4 (10.0–10.7) �1.5 (�1.7 to �1.3) �0.8
Exp. 2 24.9 (24.7–25.1) 10.0 (9.6–10.7) �0.8 (�0.9 to �0.6) �0.6
Exp. 3 25.5 (25.4–25.6) 9.1 (8.6–9.6) �0.6 (�0.7 to �0.5) �2.6
Exp. 4 24.9 (24.8–25.0) 9.1 (8.7–9.5) �0.8 (�0.8 to �0.6) �2.2
Average 25.4 9.7 �0.9 �1.3
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s22 ¼
P

L
(34b)

And the changes in dimensions of the lattice are

Du1 ¼ e11L ¼
1

E

2Qffiffiffi
3
p � nP
� �

(35a)

Du2 ¼ e22

ffiffiffi
3
p

L

2
¼

ffiffiffi
3
p

2E
½P� nQ� (35b)

The strains are

�e11 ¼
Du1

LþH
(36a)

�e22 ¼
2Du2ffiffiffi

3
p
ðLþHÞ

(36b)

Using Eqs. (30), (31), and (32), with (36), the strains become

e11 ¼ e22 ¼
1

E
½sb � nsb� (37)

showing that the strains are not a function of the size of the
spacer.

For the case of shear loading for a lattice with spacer with an
applied shear stress t, the forces in Fig. 12(b) are

P ¼ ðLþHÞt (38a)

Q ¼ �
ffiffiffi
3
p
ðLþHÞt
2

(38b)

Because the spacer is rigid, the resulting macroscopic strains
are
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E
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This indicates that there is no stiffness penalty upon intro-
duction of a stiff spacer.

(2) In-Plane Compression Measurements

In-plane compression experiments have been used to generate
stress/strain measurements. The objectives are two-fold: (i) allow
calibration of the mechanical robustness and stiffness of repre-
sentative lattices, and (ii) provide validation data for the ensuing
FE calculations. For these purposes, it suffices to fabricate
monolithic lattices from 1-mm-thick plates by laser cutting. To
probe the yielding and strain-hardening characteristics, one set
of lattices has been generated from 304 stainless steel. During
testing, out of plane buckling was prevented by constraining the
lattice between two 12.7-mm-thick tempered glass plates, bolted
to an aluminum frame. The experiments were performed in an
MTSt 810 servohydraulic testing system under displacement
control, using a displacement rate of 0.5 mm/min. Images of the
lattice were recording every 15 s during the tests using a CCD
camera connected to an image correlation system.

Two different type II member geometries were used. The
stress–strain behaviors, shown in Fig. 14, reveal robust beha-
vior, characterized by yielding followed by strain hardening. In

all cases, yielding occurs in the type I members at critical stress
levels in the range, 15rscr18 MPa. The bright regions in the
images (Fig. 13) indicate the occurrence of out-of-plane plastic
buckling. Unload–reload measurements reveal hysteresis and
decreasing stiffness with increase in plastic strain.

(3) Experimental and FE Results

Stress strain curves generated from FE modeling (FEM) are
plotted alongside experimental results in Fig. (14). The 304
stainless steel was modeled by linear elastic response followed
by yielding with isotropic hardening. Twenty node biquadratic
elements (C3D20R) were used in these calculations. Homoge-
neous strains were applied to the RVE in two directions. The
influence of the glass plates used to confine specimens out of
plane was not modeled.

Notable features of the experimental stress–strain curves
include a reduction in elastic stiffness with increasing strain
past initial yield as evident in the unload–reload regions, and
significant hysteresis in these regions. No reduction in stiffness is
seen in models restricted to in-plane deformations. Models
seeded with imperfections to initiate buckling show the same
reduction in stiffness with strain as experiments. Frictional
interactions between the lattices and the glass plates used to
constrain out-of-plane motion are attributed as the source of
hysteresis observed in the experiment. The collapse modes,
plastic buckling of type I members oriented most obliquely to
the loading direction, and out-of-plane plastic hinging in the
same yielded members are accurately captured by the FE results
(Fig. 15).

(4) Comparison of Pinned and Bonded Stiffness

To compare pin-jointed analytical and FE-bonded predictions
for stiffness, the equations in Section II were used to identify
lattice geometries with zero thermal expansion and maximum
stiffness. For a given skew angle y and lattice unit cell length L,
Eq. (17) can be used to identify values of w1 and w2 that produce
maximum stiffness for a given pair of constituent materials.
Using the temperature-average properties of Ti and Al (Table
Ia), a variety of zero CTE lattices as predicted by Eq. (17) are
identified (Fig. 16). The associated aspect ratio of type I
members, L̂1=w1, decreases with increasing skew angle from
20.4 to 5.0 (Figs. 16(a–d)). The stiffness of the analogous pin-
jointed structures, those having the same member dimensions, is
plotted along with FEM results in Fig. 17, where Vf,i is the
fraction of solid material of type i.

Fig. 13. The 304 stainless steel lattice compressed along the vertical
axis. Bright areas indicate out-of-plane deformation associated with
member buckling.
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(4) Discussion—Stiffness

Experimental and FE results for 304 steel lattices in axial
compression show that the geometries tested are prone to out-
of-plane deformations, suggesting relatively good in-plane prop-
erties. FE analysis of an RVE shows good agreement with
experiments conducted on steel lattices. To avoid the complex
loading interactions between glass plates used to confine test
specimens, thicker lattices not prone to out-of-plane plane
deformations should be tested. Lattices incorporated into other
structures and attached at nodal locations will have reduced out-
of-plane degrees of freedom, such as when they are used as the
face sheet in a sandwich panel, and will also be less prone to
buckling in this manner. Additional boundary conditions or
structural elements within the RVE technique can be used to
model the behavior of more confined lattices.

Analytical models for pin-jointed biaxial stiffness and CTE
give results that are similar to those from FE analysis of bonded
lattices with slender members. Bonded lattices have increased
CTE and stiffness over analytical predictions at higher relative
densities. Decreasing member slenderness causes more overlap
of members near joints leading to potentially larger deviations
from the assumptions in Section II regarding the thermomecha-

nical response of the joint region. Beam theory cannot accu-
rately predict the deformation of members with aspect ratios less
than about 10; in this case, Ti and Al lattices with y 4B261.
However, the associated geometries still have a CTE very close
to the value predicted by Eq. (26). Stress distributions in lattices
subjected to equibiaxial tensile straining show greater uniformity
at lower relative densities suggesting more efficient and stretch-
dominated behavior. The stiffness of the pin-jointed lattice is
clearly recovered in bonded lattices with slender members as
predicted in Section II.

IV. Concluding Remarks

Modifications to the geometry and modeling assumptions of
previous bonded lattice designs of the UCSB lattice have
resulted in a design scheme capable of rapidly identifying
geometries that inherit the CTE and stiffness properties of the
parent pin-jointed structure. The pin-jointed structure has been
shown to be near optimal in stiffness over a wide range of
densities.4 Similar bonded lattices have obvious advantages in
terms of fabricability. The behavior of these lattices is elastic and

Fig. 15. Finite-element stress distributions in uniaxially compressed 303 stainless steel lattices. Yielding occurs in struts linking triangle vertices to six-
member joints and involves out-of-plane displacements. This behavior agrees well with experimental results.
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amenable to fabrication on length scales ranging from aerospace
structures to those relevant to nanotechnology.

The behavior of the bonded structure tends toward that of the
pin-jointed lattice at lower relative densities in maximum stiff-

ness lattices having slender members. At higher densities, lattice
members have aspect ratios too low for beam-theory-based
models to accurately predict their behavior. CTEs in these
structures are still significantly different from the mean of the
constituents. Three-dimensional computer-aided design and FE
can be used to identify and fabricate rigid-jointed lattices with a
tailored thermal expansion coefficient that is well predicted by
modeling.

A lattice composed of Ti–6Al–4V and 7075-T6 Al was
designed, fabricated, and measured to have a negative thermal
expansion coefficient. Design space illustrated by the analytical
model developed in this work shows the possibility for realizing
material systems with a wide range of CTE including signifi-
cantly negative thermal expansions. Such negative CTE materi-
als can be used in a limited capacity in systems composed mostly
of more conventional positive CTE materials, so that the system
average is zero or low. The demonstrated ability of this design
approach opens the door for the investigation and application of
a wide family of materials with novel properties including high
stiffness and low thermal expansion.

Further extension of these analytical and numerical techni-
ques can be used to investigate the introduction of anisotropy by
allowing geometry to vary among members of the same type in a
unit cell allowing properties to be tailored in two directions.
Rapid prototyping and other direct fabrication techniques can
be used to fabricate volumetric lattices with properties tailored
in three dimensions. The analytical and FE techniques can be
extended to consider these variations.

Possible combinations lattice constituent materials include
ceramics, glasses, and glass ceramics. In high-temperature ap-
plications, the thermal strains in these materials can be tailored
to match the thermal strains experienced in significantly cooler

Fig. 17. Results for the coefficient of thermal expansion and biaxial
stiffness for lattices shown in Fig. 16. Analytical results derived from a
pin-jointed model are shown as are results from finite-element analysis of
lattices having bonded joints.

Fig. 16. Stress distributions in lattices made from Ti alloy and Al alloy with maximum biaxial stiffness as predicted by the pin-jointed analytical model,
subject to 0.1% biaxial tensile strain. Skew angles range from 24.51 to 301 and volume fractions of solid from 14% to 46% (a–g). Stress distributions
become more uniform with increasing slenderness moving toward behavior similar to the pin-jointed response.
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supporting substructures. A low CTE glass, such as Zerodur,
used as the type I material will offer a large CTE ratio, l, when
paired with a wide range of other higher expansion materials
making available a wide range of achievable CTE (Fig. 5).

Other considerations exist in the design of these systems.
These include (i) transient heating effects resulting from mis-
matches in thermal conductivity between constituents and non-
uniform heating, (ii) the net CTE of the lattice is a function of
the relative thermal strain between sublattices that may be
varying due to transients and inhomogeneous thermal loading,
which can affect the response, and (iii) aerodynamic surfaces are
often curved surfaces so that nonflat shapes with a tailored
thermal expansion coefficient may be desired. The techniques
developed and exercised in this paper can be extended to address
these issues, and the strength and failure modes of systems can
also be addressed.
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