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The objective of the article is to present a unified model for the
dynamic mechanical response of ceramics under compressive
stress states. The model incorporates three principal deforma-
tion mechanisms: (i) lattice plasticity due to dislocation glide or
twinning; (ii) microcrack extension; and (iii) granular flow of
densely packed comminuted particles. In addition to analytical
descriptions of each mechanism, prescriptions are provided for
their implementation into a finite element code as well as
schemes for mechanism transitions. The utility of the code in
addressing issues pertaining to deep penetration is demonstrated
through a series of calculations of dynamic cavity expansion in
an infinite medium. The results reveal two limiting behavioral
regimes, dictated largely by the ratio of the cavity pressure p to
the material yield strength rY. At low values of p/rY, cavity
expansion occurs by lattice plasticity and hence its rate dimin-
ishes with increasing rY. In contrast, at high values, expansion
occurs by microcracking followed by granular plasticity and is
therefore independent of rY. In the intermediate regime, the
cavity expansion rate is governed by the interplay between mi-
crocracking and lattice plasticity. That is, when lattice plasticity
is activated ahead of the expanding cavity, the stress triaxiality
decreases (toward more negative values) which, in turn, reduces
the propensity for microcracking and the rate of granular flow.
The implications for penetration resistance to high-velocity pro-
jectiles are discussed. Finally, the constitutive model is used to
simulate the quasi-static and dynamic indentation response of a
typical engineering ceramic (alumina) and the results compared
to experimental measurements. Some of the pertinent observa-
tions are shown to be captured by the present model whereas
others require alternative approaches (such as those based on
fracture mechanics) for complete characterization.

I. Introduction

CERAMICS have been used extensively for armor protection.
When confined within a metallic medium, their exceptional

dynamic strength in compression causes impacting projectiles to
deform and erode. Absent the confinement, the tensile stresses
induced in the ceramic cause extensive cracking that eliminates
the benefit. The practical challenge is to conceive designs that
maintain the confinement for a sufficient duration to realize the
full benefit. Current design practice has been developed through
extensive testing but has limited scope given the large design
space; the most efficient approach would incorporate numerical
simulations.

Various computational tools have been developed and dy-
namic constitutive models devised that characterize the response
of ceramics to extreme loads.1–6 In general, two approaches have
been used:

(i) Phenomenological damage mechanics, wherein the ce-
ramic is regarded as an elastic–plastic material subject to a no-
tional damage process that reduces the strength as the
deformation proceeds.

(ii) Micromechanically motivated models that incorporate
aspects of the physics governing compressive damage and plastic
deformation.

Each of these approaches has its benefits and draw-backs.
The micromechanical models give insight into the mechanisms
at play but are computationally too expensive to be used in
large-scale structural simulations. On the other hand, while the
phenomenological approaches are suited to large-scale compu-
tations, they require extensive calibration and typically have a
regime of applicability that is limited to scenarios resembling the
calibration schemes. Among the phenomenological models, the
one that is most complete is that devised by Johnson and Holm-
quist.5 The model incorporates a phenomenological law inspired
by the response of ceramics impacted at high velocity under
highly confined conditions. It embodies a Drucker–Prager yield
surface7 that evolves with damage through the effective plastic
strain (analogous to that in the Johnson–Cook model8 for met-
als). The representation has multiple coefficients and exponents
that require calibration through dynamic measurements. It does
not incorporate any microstructural characteristics (such as
grain size) or normative material properties (such as toughness
and hardness). Nevertheless, when a material has been cali-
brated in accordance with the proposed protocol, projectile pen-
etration can be simulated with adequate fidelity.9 The evident
limitation is that, for each candidate ceramic, the coefficients
and exponents must be recalibrated, because they are not con-
nected to basic microstructure/property relationships.

Recently, Deshpande and Evans10 (subsequently referred to
as DE) devised a micromechanically motivated model that is
amenable to large-scale dynamic structural computations. Two
specific inelastic phenomena have been included in this model.
The first is lattice plasticity due to dislocations and twins, char-
acterized by the von Mises stress relative to the (rate-dependent)
flow strength of the material. This property can be probed using
hardness measurements conducted with a spherical indenter.
The second is damage in the form of microcracks that emanate
from preexisting flaws. They evolve subject to a combination of
local deviatoric and hydrostatic stresses. The microcracks have
dimensions and separations that scale with the grain size. They
extend in a manner dictated by the short crack toughness of the
ceramic. The constitutive law embodying these mechanisms has
been used to successfully simulate the influence of normative
material properties, including grain size, hardness, and tough-
ness, on the extents of plastic deformation and damage that oc-
cur in polycrystalline alumina upon impact of a hard spherical
projectile11 and upon quasi-static penetration by a hard
sphere.12 The limitation of the foregoing representation is that
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the mechanical response beyond the point at which the damage
becomes saturated (namely, the microcracks have coalesced) has
yet to be addressed. The present article establishes an approach
for representing the behavior of a damage-saturated ceramic
and combines with the foregoing lattice plasticity and damage
models to produce a unified model that can be used to simulate
deep penetration.

The fully comminuted ceramic created within the highly con-
fined environment beneath an impacting projectile is in a unique
state. It consists of grain-sized particles bounded by narrow
separations between them (Fig. 1) and has a relative density very
close to unity because the volume occupied by the separations is
small. This state differs from that found in particulate materials
such as soils and in powder compacts, which have relative den-
sities around 60%. When subjected to a combination of com-
pressive and shear stress, the particles can slide and rotate past
one another: a phenomenon hereafter referred to as granular
plasticity.

The article is organized as follows: it begins with a description
of the unified model, its physical interpretation, and the associ-
ated constitutive law. Thereafter, preliminary features of the
constitutive response are elucidated via the predicted stress/
strain response of a prototypical hard ceramic (namely alumina)
under varying levels of stress triaxiality. Subsequently, two spe-
cific loading scenarios are examined and, where possible, used
to interpret phenomena found experimentally. The first is
the expansion of a spherical cavity in an infinite medium. The
objective is to characterize the development and propagation of
elastic, plastic, and damage waves as well as understand the in-
terplay between plasticity and damage. The second considers
quasi-static and dynamic penetration. Here comparisons are
made of the predictions of the original DE model and the cur-
rent constitutive law, with emphasis on the damage evolution
pattern and the load versus displacement response.

II. Development of the Constitutive Model

The inelastic deformation of ceramic polycrystals occurs in ac-
cordance with the foregoing three primary mechanisms (Fig. 1)
proceeding partially in series and partially in parallel. We
envisage the ceramic with a population of preexisting flaws or
heterogeneities that, under stress, can extend into microcracks.
Before microcracks form, plastic deformation can only occur by
dislocation slip or twinning: termed lattice plasticity. Its onset is
characterized by the von Mises yield criterion, depicted in effec-
tive stress (se)�mean stress (sm) space as a horizontal line
(Fig. 2). When microcracks grow and coalesce, the ceramic
transitions into a granular medium comprising narrowly

separated granules with dimensions dictated typically by the
grain size. The fully comminuted ceramic has a small shear yield
strength governed by friction between the particles. Its yield cri-
terion has a form similar to Drucker–Prager for granular media.
The transition between these two yield surfaces with increasing
microcrack density is depicted in Fig. 2. At each level of damage,
D, yield is characterized by a sloping line in se�sm space; as
described below, we shall assume that all of these lines intercept
the lattice plasticity line at the same location. Upon full commi-
nution, inelastic deformation can occur by one of two mecha-
nisms: granular plasticity of the comminuted particles or lattice
plasticity within the particles themselves.

To devise a mechanism-inspired model from the foregoing
physical picture, the following four elements must be incorpo-
rated:

(i) A lattice plasticity model.
(ii) A criterion for the evolution of damage due to micro-

cracking.
(iii) The transition between the yield surfaces for lattice and

granular plasticity.
(iv) The incorporation of elasticity (with lattice and granular

plasticity) to give the overall constitutive description.

(1) The Constituent Models

(A) Lattice Plasticity: In structural ceramics, lattice
plasticity occurs in accordance with two limits: at low strain
rates, resistance from the lattice governed by the Peierls stress
and, at high rates, phonon drag.13 With this in mind, we
approximate the effective plastic strain rate _eple versus the von
Mises effective stress se relationship by

_eple
_e0
¼

_e0
_et

� �ð1�nÞ=n
2se

s0
� 1

� �
2se > s0

_et
_e0

� �1=n

þ1
" #

2se

s0
� 1

� �n

s0 < 2se � s0

_et
_e0

� �1=n

þ1
" #

0 2se � s0

8>>>>>><
>>>>>>:

(1)

where s0(ee
pl) is the flow stress at an equivalent plastic strain ee

pl,
while _e0 and n are the reference strain rate and strain rate sen-
sitivity exponent, respectively, and _et is the transition strain-rate
above which plasticity becomes phonon drag limited. Note that
the exponent n sets the strain rate sensitivity of the ceramic in the
low strain rate regime. Strain hardening is characterized by a
conventional power law, notably:

s0 ¼
sY

2
½1þ ðeple =eYÞ

M� (2)

where sY is the uniaxial yield strength, eY the plastic strain at
which s05sY, and M the strain hardening exponent. Associ-
ated flow is assumed with a flow potential, Gp�se. The plastic
strain rate is then

_eplij ¼ _eple
qGp

qsij
(3)

(B) Microcrack Evolution: The model envisages an ar-
ray of f microcracks per unit volume, subject to principal
stresses s1 and s3 and growing in an otherwise elastic medium
(Fig. 3). Each microcrack develops from an initial flaw, radius a,
by means of two wings, length c, extending parallel to X1

(Fig. 3). The inclined flaws are subject to Coulomb friction,
with friction coefficient m. The radius and separation of the flaws
scale with the grain size as a5 g1d and 1/f 1/35 g2d, respectively,
where g1 and g2 are parameters. The initial and current levels
of damage are expressed respectively as D0 5 (4/3)p(aa)3f
and D5 (4/3)p(l1aa)3f, where a�tan c is a shape factor to
account for the angle of the initial flaw as shown in Fig. 3. The

Polycrystal
ensemble

Lattice plasticity

Slip

τ

Microcracking
(0 < D < 1)

Granular plasticity
(D =1)

τ

σ1

σ2

Fig. 1. The inelastic mechanisms included in the constitutive model for
ceramics.
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development of the microcracks is governed by the mode I stress
intensity,KI, at the tip of the wing cracks. In turn, KI depends on
the stress triaxialility, l�sm/se, in accordance with three be-
havioral regimes (I, II, III) with four associated nonlinear func-
tions of damage and friction (A, B, C, and E, defined in the
Appendix A). In Regime I (lr�B/A), the cracks are shut, with
KI 5 0. In Regime II, frictional slip occurs along the initial flaw
surfaces, with

KI=
ffiffiffiffiffiffi
pa
p

¼ Asm þ Bse (4)

In Regime III, l � AB/[C2�A2], contact along the faces of
the initial flaw is lost, where upon

KI=
ffiffiffiffiffiffi
pa
p

¼ ðC2s2
m þ E2s2

eÞ
1=2 (5)

The crack growth rate, _‘ is related to the stress intensity
factor by

_‘ ¼ min _‘0ðKI=KICÞm;
ffiffiffiffiffiffiffiffiffiffiffi
G=r0

ph i
D < 1

0 otherwise

(
(6)

where KIC is the mode I (short-crack) fracture toughness, m is
a rate exponent, and _‘0 the reference crack growth rate
at KI 5KIC. The crack speed is limited by the shear wave
speed

ffiffiffiffiffiffiffiffiffiffiffi
G=r0

p
, where G and r0 are the shear modulus and

density of the intact ceramic, respectively. When D-1, the
microcracks coalesce, causing KI-N (in Regimes II and III),
thus requiring that the microcracking model be supplanted by
the ensuing model for granular plasticity. This is where the new
model deviates from that originally proposed by Deshpande and
Evans.10

(C) Granular Plasticity: The comminuted ceramic is
modeled as a granular medium using a nonassociated, visco-
plastic, Drucker–Prager type constitutive law, with an effective

stress, ŝ, defined as

ŝ � se þ ðtanoÞsm

1� tano=3
(7)

where o is the friction angle. The factor in the denominator en-
sures that, under a uniaxial compressive stress s, the effective
stress ŝ � jsj.

The effective stress is used to define an effective strain rate _ege ,
motivated by the following considerations. Under compressive
hydrostatic stress states (smo0), the flow of the comminuted
ceramic is expected to follow a Bagnold-type granular flow
law,14 wherein the effective stress for the medium scales with
the square of the effective strain rate. This relation arises be-
cause the stresses generated in the medium at high-strain rates
are not associated with interparticle friction but, rather, are due
to repeated collisions between particles. During these collisions,
both the momentum change per collision and the number of
collisions per unit time are proportional to the strain rate, re-
sulting in the quadratic scaling. In contrast, for tensile hydro-
static stress states (sm40), particle interactions are negligible,
violating the assumptions that underpin Bagnold flow. These
features suggest an overstress model of the form:

_ege
_es
¼

ŝ
Sc
� 1

� �s

ŝ > Sc

0 otherwise

8<
: (8a)

where Sc is the uniaxial compressive strength of the ceramic and
_es a reference strain rate (specified subsequently in Section
II(2)). Consistent with Bagnold scaling, the exponent is selected
to be s5 0.5 when smr0: whereupon (8a) gives the Bagnold
scaling _ege �

ffiffiffiffî
s
p

in the limit ŝ� Sc. Conversely, when sm40, s
needs to be large (typically s5 s0 � 10) to ensure that ŝ does
not significantly exceed the uniaxial strength, Sc, thereby pre-
venting the comminuted ceramic from attaining unreasonably
high-tensile stresses. To ensure that the strain rate _ege is contin-
uous around sm 5 0, a piecewise function for s is specified, with

Damage transition

(0 < D < 1)

Lattice plasticity

(D = 0)

Granular plasticity

(D =1)

D = 0.6

D = 0.7

D = 0.8τ

Effective stress
σe

ω0

Mean stress σm

Fig. 2. Schematic of the yield surface transition from lattice to granular plasticity.
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the transition from s5 0.5 to s0 occurring over the range
�ScrsmrSc and given by

s ¼

s0 sm � Sc

s0 þ
1

2
ðs0 � 0:5Þ sm � Sc

Sc

� �q

0 � sm < Sc

0:5þ 1

2
ðs0 � 0:5Þ sm þ Sc

Sc

� �q

�Sc � sm < 0

0:5 otherwise

8>>>>>><
>>>>>>:

(8b)

where the exponent q governs the transition rate.
To complete the characterization, a flow rule is specified. Ex-

periments by Bagnold14 and others suggest that, when defor-
mation is governed by particle collisions, flow is nonassociated
such that the flow potential is not determined by ŝ. To ensure
this generality, a flow surface Gg is defined as

Gg �
se þ tan dð Þsm sm < 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eStð Þ2þs2
e

q
þ Sc

St
sm otherwise

8<
: (9a)

where St is the hydrostatic tensile strength, given by setting ŝ ¼
Sc and sm/se 5 1/3 in Eq. (7)

St �
Scð1� tano=3Þ

tano
(9b)

The quantity d is the flow dilatation angle of the comminuted
ceramic defined such that, when d5 0, the flow is volume con-
serving under compressive hydrostatic stress states. The param-
eter e is a nondimensional regularization parameter (taken as
0.01) used to ensure that the flow is purely dilatational under
hydrostatic tension. The granular strain rate follows from the
flow surface Gg as

_egij ¼
_ege
B
qGg

qsij
(10a)

where the normalization parameter is

B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
þ 1

3
tan dð Þ2

r
sm < 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3=2Þs2
e

ðeStÞ2 þ s2
e

þ 1

3

Sc

St

� �2
s

otherwise

:

8>>><
>>>:

(10b)

The factor B is included in the flow rule so that

1

B
qGg

qsij

� �
1

B
qGg

qsij

� �
� 1 (11)

i.e., the magnitude of the effective granular plastic strain rate is

set solely by _ege with _ege �
ffiffiffiffiffiffiffiffiffi
_egij _e

g
ij

q
, while the direction of plastic

straining is given by qGg
qsij

.

(2) The Transition from Lattice to Granular Plasticity

Now that the basic models have been established, linkages must
be provided. Namely, because the granular plasticity model is
valid for all states of the comminuted ceramic (over the entire
range D0rDr1), evolution equations of the granular plasticity
parameters from D5D0 to D5 1 are required. These equations
are specified through four parameters: (i) the uniaxial compres-
sive strength Sc; (ii) the friction angle o; (iii) the flow dilatation
angle d and (iv) a reference granular strain rate _es. In its initial
intact state (with D5D0), the ceramic behaves as a von-Mises
plastic material (with no contribution from granular plasticity).
Accordingly, the granular plasticity parameters are chosen to
ensure that, whenD5D0, the Drucker–Prager model reduces to
the von-Mises model and that the granular strain rate is zero.
The following evolution equations then ensue.

(i) Uniaxial compressive strength Sc. As D increases, Sc de-
creases from the plastic yield strength s0 to the fully comminu-
ted strength sc, specified using

Sc ¼ s0 � ðs0 � scÞ
D�D0

1�D0

� �q

ð12Þ

The exponent q governs the transition rate with respect to D.
(ii) The friction angle o. When the granular strength Sc is

equal to the plastic yield strength s0, the friction angle o5 0.
The angle increases with damage, reaching a value o0 upon
complete comminution. Its evolution with the current material
strength is specified by:

tano ¼ ðs0 � ScÞ tano0

s0 � scð1� tano0=3Þ � Sc tano0=3
ð13aÞ

Thus, the granular yield surface evolves by pivoting about a
coordinate in stress space defined by se 5s0 and

sm ¼
s0 � sc

tano0
þ sc

3
ð13bÞ

This evolution is depicted in Fig. 2.
(iii) The flow dilatation angle d. Because the intact ceramic

behaves as an incompressible plastic medium, the flow dilatation
angle should vary between d5 0 at D5D0 to that for the fully

Fig. 3. Schematic of a microcracked solid containing an array of wing
cracks.
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comminuted ceramic, d0, at D5 1. Thus, analogous to Eq. (12),
the angle varies as

d ¼ d0
D�D0

1�D0

� �q

ð14Þ

(iv) Reference granular strain rate _es. Granular straining
does not occur in the undamaged ceramic. Thus _es is varied be-
tween _es 5 0 at D5D0 to _eso for the fully comminuted ceramic
at D5 1, in accordance with:

_es ¼ _eso
D�D0

1�D0

� �q

ð15Þ

It remains to estimate the reference strain rate _eso. The Bagn-
old14 analysis suggests that the strength sc of the fully comminu-
ted material scales as

sc �
eð1þ eÞp

6

�r1=3

1� �r1=3

� �2

r0d
2

" #
_e2so (16)

where d is the particle size, e is the co-efficient of restitution be-
tween particles while the relative packing density �r specifies the
interparticle spacing. Given values of �r and sc, Eq. (16) can be
used to estimate _eso.

(3) The Overall Constitutive Model

The lattice and granular plasticity models are combined with
elasticity to complete the overall model. The dynamic response
is dominated by lattice plasticity and granular flow with negli-
gible energy absorption involved in microcracking.11 Moreover,
the elastic strains are small compared to those for lattice plas-
ticity and granular flow. Thus, unlike the model of Deshpande
and Evans,10 the elastic response upon microcracking is left un-
modified, i.e. no stiffness reduction compared to the undamaged
ceramic for all D. The total strain rate _eij is the sum of the con-
tributions from elasticity and lattice and granular plasticity.
Thus, the elastic strain rate is given by

_eeij ¼ _eij � ð _eplij þ _egijÞ (17)

The deviatoric elastic response is specified by an isotropic
Hooke’s law, with strain rate

_Dij ¼ _eeij � _eekkdij (18a)

and deviatoric stress rate _Sij related via

_Sij ¼ 2G _Dij (18b)

where G is the shear modulus.
Two alternate formulations are used for the pressure, pro-

viding the flexibility needed to examine the importance of shocks
within the ceramic under high rates of loading. (i) The linear
formulation uses the isotropic Hooke’s law, with bulk modulus k
related to shear modulus G and Poisson’s ratio n by

k ¼ 2Gð1þ 2nÞ
3ð1� 2nÞ (19a)

with pressure then related to the logarithmic volumetric elastic
strain by

p � �skk

3
¼ �keekk (19b)

where eekk ¼
R

_eekkdt. (ii) In order to allow for shock formation at
high pressures, an alternative formulation wherein pressure is

specified by an equation of state can be used. The Mie–Grünei-
sen equation of state expresses the pressure in terms of the nom-
inal volumetric elastic strain Z and the internal energy per unit
mass Em. The internal energy is evaluated using the evolution
equation

qðrEmÞ
qt

¼ sij _eij (20a)

where r is the current density of the damaged ceramic, while the
nominal compressive elastic strain is

Z ¼ 1� expðeekkÞ (20b)

These two state variables are related to the pressure by

p ¼ r0c
2
0Z

ð1� WZÞ2
1� G0Z

2

� �
þ G0r0Em (21)

where r0 is the initial density of the ceramic, c0 the initial p-wave
speed (r0c0

2 being equivalent to the elastic bulk modulus at small
nominal strains), while G0 and W are dimensionless material
constants measured from shock experiments. This equation pre-
dicts a linear shock velocity (us) versus particle velocity (up) re-
lation of the form

us ¼ c0 þ Wup (22)

In a finite element (FE) implementation, an artificial viscosity
is included in Eq. (21) to enable the numerical solution to cap-
ture the development and propagation of the shock. Thus Eq.
(21) is modified as

p ¼ r0c
2
0Z

ð1� sZÞ2
1� G0Z

2

� �
þ G0r0Em þ pbv (23)

where pbv is the contribution to the pressure from the viscosity.
Following von Neumann, a quadratic dependence of the viscous
pressure on volumetric strain rate is typically employed:

pbv ¼
0 _ekk � 0
r0ðb1Le _ekkÞ2 otherwise

�
(24)

where b1B1.2 is the damping constant and Le the characteristic
length of the element in the FE mesh. We note in passing that an
artifical shear viscosity is usually not required to stabilize the
numerical calculations as both granular and lattice plasticity
endow the material with a shear rate dependence.

With the deviatoric and mean stresses specified, the total
stress sij follows directly as

sij ¼ Sij � pdij (25)

(4) Choice of Material Parameters

In the subsequent section, the main features of the constitutive
model are demonstrated through computations of various load-
ing scenarios, with emphasis on effects of stress triaxiality. Ex-
cept where otherwise noted, all computations use material
parameters representative of alumina with a grain size d5 3
mm. These parameters have been carefully calibrated via a series
of experiments reported in the companion paper Gamble et al.15

The ceramic is elastically isotropic with Young’s modulus
E5 405 GPa, Poisson’s ratio n5 0.22, density r05 3810 kg/
m3, and fracture toughness KIC 5 3 MPam1/2. Based on a rep-
resentative Vickers hardness, the yield strength and strain are
taken as sY5 5.75 GPa and eY 5 0.002, respectively, with
M5 0.1 chosen to give a mildly strain hardening response.
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The strain rate sensitivity parameters are chosen as n5 34,
_e0 5 10�3 s�1 and _et 5 106 s�1 while the crack growth parame-
ters are taken to be _l0 5 10 mms�1 andm5 30. Following Ashby
and Sammis,16 the geometrical constants are taken as b5 0.45,
a ¼ 1=

ffiffiffi
2
p

and g5 2.0 (see Appendix A) with a friction coeffi-
cient m5 0.75. The assumed flaw size and spacing parameters
are g25 6 and g15 1/2, which yield f5 1.74	 105 mm�3 and
D05 8.57	 10�4. The granular plasticity parameters are: fric-
tion angle o0 5 701, flow dilatation angle d05 01, and uniaxial
compressive strength of the comminuted ceramic sc 5 1 MPa.
The transition exponent is set as q5 5 while the granular rate
sensitivity exponent in the hydrostatic tensile regime is chosen to
be s05 10. Taking e5 1 and �r ¼ 0:99 in Eq. (16) gives the ref-
erence granular strain rate as _eso 5 2	 104 s�1. The pressure is
specified using the linear (Hookean) formulation (i.e., shock
effects as modeled by the Mie–Grüneisen equation of state are
neglected).

III. Effects of Triaxiality on Intrinsic Material Response

The intrinsic stress versus strain response of the material was
computed by integrating the constitutive equations detailed
above for a total imposed strain rate of _ee �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ _edij _edij

q
¼ 100 s�1, neglecting inertial or wave effects. The

results are plotted in Fig. 4(a) for several selected values of stress
triaxiality, representative of low (l5�0.1) to high-confining
pressure (l5�0.5).

The predictions are qualitatively similar to those of the DE
model.10 For l5�0.1 and �1/3 (uniaxial compression), the
response is approximately linear elastic up to a peak stress,
whereupon a sharp load drop occurs. The drop corresponds to a
sudden increase in D from D0 to unity. Thereafter, continued
deformation in both cases occurs by granular plasticity at the
much reduced stress value of sc. For higher levels of imposed

pressure, characterized, for instance, by l5�0.5, cracking does
not occur and inelastic deformation occurs by lattice plasticity
alone. The key difference between the behavior of the current
model and the DE model is that, after the onset of damage, the
DE model predicts a dilatant response, dictated by the extent of
crack opening. By contrast, the addition of granular plasticity in
the current formulation means that the postcracking dilatation
is controlled independently: in the present computations, with
the selection d05 01, no volume change occurs under compres-
sive hydrostatic stresses.

Another feature of both the original DE model and the
current one is that, once fully comminuted, the material can
sustain considerable stresses provided sufficiently high-confin-
ing pressures are imposed during subsequent loading. This
feature is illustrated in Fig. 4(b). Here the loading occurs in
two steps. In the first, the ceramic is loaded at a strain rate
_ee 5 100 s�1 while the triaxiality is fixed at l5�1/3 (as in
Fig. 4(a)). Following the load drop at se
6 GPa, continued
straining (up to ee 5 0.012) occurs at a negligible stress. In the
second step, the confining pressure is increased, to l5�0.6,
and deformation continued at _ee 5 100 s�1. Under these con-
ditions, granular plasticity is suspended and the ceramic is able
to sustain high stresses and deform by lattice plasticity within
the comminuted particles.

IV. Dynamic Cavity Expansion

The dynamic elasto-plastic field induced by a pressurized spher-
ical cavity expanding in an infinite medium is widely used as a
protocol for ascertaining the key phenomena accompanying
penetration. An extensive review of early work has been given
by Hopkins17 with emphasis on metals characterized by Mises
plasticity. More recent interest in penetration into concrete and
other geomaterials has instigated investigations of dynamic
qcavity expansion in pressure-sensitive solids described
by Mohr–Coloumb or Drucker–Prager constitutive laws.18–20

More recently, analogous approaches have been used for
ceramic targets.21–22 However, in contrast to the present formu-
lation, the ceramic models used in the aforementioned studies do
not differentiate explicitly between lattice and granular plastic-
ity. When the two are indeed decoupled from one another in the
constitutive law, the computations of dynamic cavity expansion
reveal important interactions between the two deformation
mechanisms. This feature is highlighted here.

(1) Boundary Value Problem

A spherical cavity of initial radius a0 in an infinite medium is
pressurized by a constant and spatially uniform pressure p. Spe-
cifically, the pressure is zero at time t5 0� and equal to p0 at
t � 0 (Fig. 5). Neglecting symmetry-breaking modes of defor-
mation, the active components of the Cauchy stress are the
radial stress sr and the hoop stresses sy5sf, and the radial

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8

S
tr

es
s 

σ e
 (

G
P

a)

Strain εe

Strain εe

0.00 0.02 0.04 0.06 0.08
0

2

4

6

8
λ = Ð1/2

λ = Ð1/3 λ = Ð0.6

Ð1/3

Ð1/10

S
tr

es
s 

σ e
 (

G
P

a)

(a)

(b)
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alumina with reference properties at a strain rate of 100 s�1. (b) Illus-
trative example showing effects of a change in stress triaxiality, from
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Fig. 5. Sketch of the boundary value problem for the expansion of a
spherical cavity in an infinite medium.
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equation of motion is given by

q
qr
ðr2srÞ � 2rsy ¼ r€ur2 (26)

where r denotes the radial position of a material point in the
current configuration, u is the radial displacement of that point,
the overdot denotes differentiation with respect to time, and r is
the material density in the current configuration. Equation (26)
is solved using an updated Lagrangian scheme, detailed in
Deshpande and Evans.10 In the FE calculations, the outer ra-
dius of the medium being analyzed is taken to be sufficiently
large so as to ensure that the elastic wave does not reach the
outer boundary over the time-span of the calculations reported
here, thereby simulating an infinite medium. Unless otherwise
specified, the computations use the property values for alumina
(summarized in Section II(4)). The focus of subsequent numer-
ical results and discussion is on the early time response, wherein
dynamic effects dominate. For the expansion of a spherical
cavity in an infinite elastic medium, Hopkins17 has shown that
the stress distributions near the vicinity of the cavity are well
approximated by the corresponding quasi-static result at times
�t � cet=a0 > 4, where ce is the p-wave speed. Thus, all results
presented here are for times �t < 4.

(2) Effect of Pressure

The predicted temporal variation of the radial displacement U/
a0 of the cavity surface is plotted against time �t in Fig. 6 for three
levels of the cavity pressure. The cavity displacement increases
approximately linearly with time for the three pressure levels
considered here. We proceed to investigate in further detail the
cases in which p05 12 and 24 GPa.

First consider the case where p05 12 GPa. The spatial
distributions of damage D, effective lattice plastic strain ee

pl

and effective granular plastic strain ee
g are plotted in Fig. 7(a)

at three select times. Note that ee
pl and ee

g are the time integrals of
the strain rates given by Eqs. (1) and (8a), respectively. The
distributions are plotted as a function of R/a0, where R is the
radial coordinate in the undeformed configuration. Full commi-
nution of the ceramic (i.e., D5 1) first occurs at a finite distance
from the cavity surface, viz. at R/a0
1.5. The damage zone then
expands radially inwards while simultaneously expanding out-
wards. However, while the damage zone continues to expand
outwards for the duration of the computations, the progression
of the damage zone toward the surface to the cavity halts at time
�t 
 1:4 when the inner boundary of the damage zone reaches R/
a0
1.1, i.e., the damage zone does not extend up to the cavity
surface. We shall show subsequently that this feature is due to
the fact that the large lattice plastic strains near the cavity

surface reduce the stress triaxiality and thereby reduce the
propensity for microcracking. The spatial distributions of ee

pl

included in Fig. 7(a) show that, for �t > 1:4, the lattice plastic
strain rises sharply for R/a0o1.1, i.e., the region over which
damage does not occur. Correspondingly, the distribution of
granular plastic strains clearly show that significant granular
plasticity only occurs over the region whereD5 1. Note that the
total inelastic strains (i.e., lattice plus granular plastic strains)
are continuous across the boundary of the damage zone near the
surface of the cavity; while ee

g drops to zero across the boundary
where the damage variable transitions fromD5 1 toD5Do, ee

pl

rises sharply in order to keep the total inelastic strain approx-
imately continuous.

At the higher applied cavity pressure of p05 24 GPa, the
qualitative picture discussed above remains unchanged. How-
ever, the higher pressure means that the stress triaxiality near the
cavity surface is further reduced and hence microcracking initi-
ates even further away from the cavity surface at R/a0
2.2 and
expands only away from the cavity surface, where the stress
triaxiality increases. The discontinuity in the value of ee

pl across
the damage zone interface near the surface of the cavity is now
more obvious. However, similar to the p0 5 12 GPa case, the
total inelastic strains are approximately continuous across this
interface, with granular plasticity inside the damage zone re-
placed by lattice plasticity.

Insights into the effects of lattice plasticity on stress triaxiality
(which in turn affect microcracking) are gleaned from compu-
tations in which the damage is artificially suppressed, by setting
KIC 5N. The results are plotted in Fig. 8 for three times and
three values of yield strength, selected such that p0/sY 5 1.71,
1.5, and 0 when p05 24 GPa. For the purely elastic case (p0/
sY 5 0), the triaxiality is at its lowest (most negative) at the
elastic wave front (as noted by Hopkins17). Thus, absent lattice
plasticity, damage initiates at the cavity surface, where both the
stresses and the stress triaxiality are greatest, and propagates
radially outward, trailing the elastic wave front. When lattice
plasticity is activated, as in the cases of p0/sY 5 1.71 and 1.5,
plasticity initiates on the cavity surface, where the deviatoric
stress is highest, and subsequently spreads radially outward.
This plasticity results in a reduction in the stress triaxiality in the
plastic zone, as evident upon comparison of the results for p0/
sY 5 1.71 and 1.5 with those of the elastic case. The magnitude
of this effect increases with increasing plastic strain. Moving ra-
dially outward from the cavity surface, the plastic strain dimin-
ishes and hence its effect on stress triaxiality decreases.
Eventually, the triaxiality reaches the value corresponding to
the elastic case at the elastic/plastic interface. Because of the
opposing effects of elastic wave propagation and plasticity on
stress triaxiality—the elastic wave reducing triaxiality with in-
creasing R/a0 and the near-surface plasticity reducing triaxiality
as R/a0-1—the triaxiality attains a maximum value at a finite
distance away from the cavity surface. For cases where damage
is activated (such as that shown in Fig. 7), damage initiates at or
near this location and then spreads radially both inward and
outward. A corollary of the results presented in Fig. 8 is that the
stress triaxiality decreases with increasing values of p0/sY, due to
the increased levels of lattice plasticity. This is evident from
comparisons of the results for p0/sY 5 1.71 and 1.5 in Fig. 8.
The reductions in the stress triaxiality for higher values of p0/sY

result in damage initiating further away from the cavity surface
as observed in Fig. 7(b).

(3) The Interplay Between Plasticity and Damage

The results in the preceding section demonstrate the interplay
between lattice plasticity and stress triaxiality. Its connection to
damage development and cavity expansion emerges from a se-
ries of computations for a cavity pressure p0 5 12 GPa and three
values of yield strength sY (all other material properties being
kept fixed at their reference values, including the finite fracture
toughness). The variation in the displacement of the cavity sur-
face U/a0 with time �t for each of these cases is plotted in
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Fig. 6. The evolution of the radial displacement of the cavity surface
with time. Results are for alumina with reference properties.
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Fig. 9(a). Interestingly, the cavity expansions are approximately
equal for the sY5 5 and 9 GPa cases (indeed, slightly lower for
sY5 5 GPa) but significantly higher for sY 5 3 GPa. In order to

parameterise this information we plot the cavity displacement
Uc/a0 at a time �t ¼ 3 against yield strength sY in Fig. 9(b) for
cavity pressures p0512 and 24 GPa. Three regimes emerge: one
is dominated by damage, at high values of sY, wherein Uc/a0 is
independent of sY; a second dominated by lattice plasticity,
wherein Uc/a0 increases with decreasing sY; and an intermediate
regime in which lattice plasticity and damage occur simulta-
neously. Thus, there exists a critical value of sY above which
Uc does not decrease any further. This clearly shows that in-
creasing the yield strength of the ceramic indefinitely will not
bring any further performance benefits as the response becomes
dominated by the microcracking deformation mode. However,
the critical value of sY increases with increasing applied pressure;
for the parameters considered here, the critical yield strength in-
creases from sY
5 to 8 GPa as p0 increases from 12 to 24 GPa.

V. Indentation

The fidelity of the model has been assessed in two companion
studies (B. Compton et al., unpublished data).15 Here we high-
light some of their results in order to illustrate the applicability
of the model. All tests were performed on an armor-grade
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alumina (Corbit 98, produced by Industri Bitossi, Sovigliana
vinci, Florence, Italy) with an average grain size d5 3 mm. It
consists of 98% alumina and minor amounts of a glassy phase,
the latter being situated predominantly at triple grain junctions.
Details of the properties of this material and the model param-
eters (listed in Section II(4)) as well as the procedures used to
obtain their values are in.15

(1) Quasi-static Indentation

The quasi-static penetration resistance was probed using a sphe-
roconical diamond indenter with a 200 mm tip radius and 1201
cone angle, mounted on a conventional servo-hydraulic
mechanical test system.15 Displacements were measured with
submicrometer accuracy using a one-armed extensometer posi-
tioned on the alumina surface. Additionally, corrections for
machine compliance and elastic (Hertzian) deformation of the
indenter were used to remove displacements external to the in-
dentation site. Corresponding FE computations were performed
using the current model and the original DE model. (The
parameter set of the DE model is a subset of the current model,
i.e., all parameters of the current model expect those associated
with granular plasticity. To make a fair comparison between
the current and DE models we use the values parameters
listed in Section II(4) in the calculations with the DE model
as well.)

Figure 10 shows a comparison between predictions and mea-
surements of both the load–displacement response and the dam-
age immediately under the indenter at an applied load of 200 N.
The current model is shown to accurately predict both the extent
of the damage immediately under the indenter and the load ver-
sus penetration response. By contrast, the DE model predicts
significantly greater damage and unrealistically large surface
uplift around the indent periphery. This large damage manifests
as large inelastic displacements during loading and hence the DE
model also does not predict the measured load versus penetra-
tion response with an adequate level of accuracy. These discrep-
ancies of the DE model are a consequence of the elastic
dilatation associated with the cracks but not associated with
granular plasticity.

(2) Dynamic Indentation

Constrained alumina tiles, each 50mm	 50mm	 12mm thick,
were impacted by 7.14 mm diameter steel spheres at velocities in
the range 300–800 ms�1 (B. Compton et al., unpublished data).
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Three situations were considered: (i) tiles with no face sheet; (ii)
tiles with a 0.5 mm thick 304 stainless-steel face sheet; and (iii)
tiles with a 1-mm-thick 304 stainless-steel face sheet. After the
tests, the tiles were stained with a blue dye and impregnated with
an epoxy resin in order to contain the comminuted ceramic.
They were then sectioned in half in order to reveal the damage
pattern directly beneath the impact site. Comparisons between
the observations and the predictions (from both current and
original DE models) for an impact velocity 750 ms�1 are pre-
sented in Fig. 11. The current model captures the observations
for the three scenarios of present interest with reasonable fidel-
ity, including the observation that the extent of damage is sig-
nificantly reduced by the presence of the steel face sheets. By
contrast, in line with the quasi-static indentation simulations,
the DE model overestimates the damage significantly in all
cases.

VI. Limitations of the Model

The micromechanical model for ceramics presented in this study
has some inherent limitations that fall into two catagories: (i)
limitations related to microstructural assumptions and (ii) lim-
itations related to the neglecting of the statistical aspects of ce-
ramic failure. Here we briefly discuss these limitations.

Three inelastic mechanisms have been accounted for in the
approach presented here, viz. microcracking from preexisting
flaws presumed to be present at grain boundaries, lattice plas-
ticity and granular plasticity. Cracking in polycrystalline ceram-
ics is however known to occur from numerous other sources of
heterogeneities such as inclusions and voids,23 glass present at
grain boundaries24 and surface flaws. The modeling framework
presented here is sufficiently general that these mechanisms can
be included in the constitutive model, albeit at the cost of greater
complexity and additional material parameters that will inevi-
tably require calibration. We thus expect to include these addi-
tional mechanisms as additional experimental data that suggests
the need to incorporate these mechanisms becomes available.

It is well known that the failure strength of ceramics is both
statistical in nature and size dependent. This is often well rep-
resented by the Weibull distribution.25 The statistical effects give
rise to the well-known observation that nominally identical ce-
ramic specimens have different mechanical properties including
sometime markedly different ballistic responses. To account for
these statistical variations, Leavy et al.26 included uncertainty
into a deterministic model such as the Johnson and Holmquist5

model. This enabled them to not only capture the observed fail-
ure patterns in a Brazilian test but including a distribution of
strengths also significantly alleviated the mesh dependency prob-
lems inherent in these ceramic models that are based on a dam-
age mechanics approach. Inclusion of uncertainty into the
present model is a necessary next step in developing a predic-
tive ceramic model for armor applications.

VII. Conclusions

A unified model for the dynamic inelastic response of ceramics
under compressive stress states has been developed. It incor-
porates three inelastic deformation mechanisms: (i) lattice plas-
ticity due to dislocation glide or twinning; (ii) microcrack
extension; and (iii) granular flow of densely packed comminu-
ted particles. In addition to analytical descriptions of each of
these mechanisms, prescriptions have been provided for their
implementation into a FE code as well as schemes for transi-
tioning between mechanisms.

The utility of the code in addressing issues related to deep
penetration has been demonstrated through a series of calcula-
tions of dynamic cavity expansion in an infinite medium subject
to a fixed internal pressure p. The results reveal two limiting
behavioral regimes: one dictated by lattice plasticity and another
by granular plasticity. The competition between these two de-
formation mechanisms along with the interplay between plas-
ticity and stress triaxiality lead to an optimal value of yield
strength at which the cavity expansion rate is minimized. This
result suggests that, once the damage and fracture parameters
are specified, an optimal yield strength exists for superior pen-
etration resistance at a prescribed pressure. It remains to be es-
tablished whether this effect can be exploited in designing
ceramics to resist penetration over a targeted range of loadings.

Granular plasticity proves to be an essential ingredient in the
constitutive law, as demonstrated by the quasi-static and dy-
namic indentation studies. When neglected (as in the original
DE model), the spatial extent of damage and the magnitude of
the strains are strongly overpredicted. Nevertheless, the model
fails to capture all features in the indentation response. Most
notably, the formation of lateral subsurface cracks during the
unloading phase of indentation cannot be predicted. To capture
this feature along with the ensuing spallation that commonly
accompanies indentation, the model would need to be expanded
to include a fracture mechanics-based component for modeling
‘‘macro’’ rather than ‘‘micro’’ cracking.
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Appendix A: Summary of Microcrack Growth Coefficients

The coefficients used in Section II(1) are defined as follows. The
parameters A and B are given as

A � c1ðc2A3 � c2A1 þ c3Þ (A-1)

and

B � c1ffiffiffi
3
p ðc2A3 þ c2A1 þ c3Þ (A-2)

where

c1 ¼
1

p2
23=4

D
D0

� �1=3
�1þ b

ffiffiffi
2
p� 	3=2 (A-3)

c2 ¼ 1þ 2
D

D0

� �1=3

�1
" #2

D
2=3
0

1�D2=3

 !
(A-4)

and

c3 ¼ p2
D

D0

� �1=3

�1
" #2

(A-5)

while

A1 ¼ p

ffiffiffi
b
3

r
½ð1þ m2Þ1=2 � m� (A-6)

and

A3 ¼ A1

1þ m2

 �1=2þm
1þ m2ð Þ1=2�m

( )
(A-7)

Here b is a coefficient introduced by Ashby and Sammis16 to
convert exact two-dimensional solutions to three-dimensional
stress states. The coefficients E and C are defined as

E2 ¼ B2C2

C2 � A2
(A-8)

and

C � Aþ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2
p D

D0

� �1=3
s

(A-9)

with g a constant used to match tensile data.
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