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a b s t r a c t

The contact mechanics of a fibrillar micro-fabricated surface structure made of

poly(dimethyl siloxane) (PDMS) is studied. The attachment and detachment of

individual fibrils to and from a spherical indenter upon approach and retraction are

detected as jumps in force and stiffness. A quantitative model describes the stiffness

values by taking into account the deformation of the fibrils and the backing layer. The

results emphasize the importance of long-range interactions in the contact mechanics

of elastic materials and confirm some of the important concepts underlying the

development of fibrillar adhesive materials.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fibrillar microstructures of elastic materials interacting with substrates by short-range molecular forces, such as van
der Waals attraction, have recently attracted attention as dry adhesives (Arzt et al., 2003; Boesel et al., in press; Del Campo
and Arzt, 2008; Del Campo et al., 2007; Gorb et al., 2007; Greiner et al., 2007; Huber et al., 2005; Kim and Sitti, 2006; Lee
et al., 2007; Peressadko and Gorb, 2004). Their development is motivated by the study of adhesion in biological systems
exemplified by the feet of some insects and geckos (Arzt et al., 2003; Autumn, 2006; 2007; Autumn, et al., 2000; Huber
et al., 2005; Sun et al., 2005). Such fibrillar architectures exhibit high adhesive strengths for a variety of reasons that have
been summarized by Majumder et al. (2010) and subsequently by Kamperman et al. (2010). Such reasons include a higher
peeling resistance, better conformation to rough surfaces, strengthening due to contact splitting (Arzt et al., 2003), the
achievement of maximum van der Waals adhesive strength for a given area in contact (Gao and Yao, 2004), and better
defect tolerance (Hui et al., 2004; McMeeking et al., 2008; Spuskanyuk et al., 2008).

Many of the systems that have been developed so far are produced by an integrated moulding process involving an
elastomer, so that the fibrils are backed by a layer of the same elastic material. Efforts have been made to understand the
pull-off mechanics of such systems. Long et al. (2008) used an elastic foundation to model the deformation of the fibril
array while the deformation of the finite backing layer was modelled using linear elasticity theory. They found out that the
normalized pull-off force is inversely proportional to both the thickness of the backing layer and the radius. Long and Hui
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(2009) used a similar approach with fibrils modelled as an elastic layer, and predicted the pull-off force for a prismatic
circular indenter. They deduced that the pull-of force for a compliant backing layer should be less than that for a stiff one.
Furthermore, Kim et al. (2007) modelled their fibrillar system as a foundation consisting of elastic springs between the
rigid indenter and a backing layer. They focused mainly on the situation where a large number of fibrils are in contact. They
found that very thin backing layers promote equal load sharing, maximizing adhesion. In the other extreme, very thick
backings can lead to reduced adhesion, because of edge stress concentration similar to a rigid punch in adhesive contact
with a half space. Noderer et al. (2007) observed an enhanced work of adhesion during the detachment of a glass indenter
from an array of film-terminated fibrils, and deduced that the enhancement arose due to detachment trapping within the
fibrillar system. In addition, they developed a successful model for the compliance of the film-terminated fibrillar array,
deduced from the integrated effect of a large number of discrete fibrils.

In this study, following Noderer et al. (2007), we quantify the combined elastic response of fibrils and backing layer, and
show that the measured stiffness of the system is strongly influenced by elastic deformations of the backing layer, even for
the small strain deformations applied. Such long-range deformation of the substrate is an essential ingredient in recent
models of the mechanical response of elastic systems (Persson, 2001). We focus mainly on the approach of a stiff sphere
into contact with a fibrillar system, addressing this phenomenon with both experiments and a model. The high sensitivity
of a nanoindenter allows us to register the sequence of attachment of individual fibrils. Investigating attachment, rather
than detachment, allows us to avoid the non-linear effects of large strain and viscoelastic response, which often hamper
the quantitative analysis of adhesion experiments involving elastomers. In our model we describe the combined
deformation of fibrils and backing layer in a linear elastic analysis at small strains, as pioneered by Noderer et al. (2007).
The combination of experiment and model allows us to understand the measured stiffness as a function of the number of
fibrils in contact and to determine the elastic modulus of our material by in-situ measurements on individual fibrils on the
backing layer. Finally we briefly discuss the compliance identified in experiments during retraction of the indenter, and
extend our model for a single fibril in contact to include finite strains, observed during retraction.

2. Materials and methods

The PDMS samples, pillars integrated with the backing layer, were prepared using a soft-moulding process. A 10:1 ratio
of Sylgard 184 prepolymer and cross-linker was mixed, degassed, and poured on a silanized SU-8 pattern containing
cylindrical holes in a hexagonal packing arrangement. The mould was previously covered by a fluorinated polymer layer to
favor the separation of the polymeric material. After curing at 60 1C and 600 mbar, during 24 h, the material was carefully
demoulded, to obtain a structured PDMS surface on top of the backing layer. The tested area consisted of an arrangement of
7 fibrils of radius a=5 mm each and of height H=18.7 mm, measured by means of a white light interferometer (Zygo New
View 5010). They are arranged in a hexagonal pattern; separated by a distance sij=20 mm between the centre of
neighbouring fibrils with nos. i and j (see Fig. 1 for a schematic top view). The backing layer is 2.570.3 mm thick.

Nanoindentation tests were carried out using a TI 900 instrument with a Performech controller (Hysitron TriboIndenter,
Hysitron Inc., Minneapolis, MN, USA). A spherical sapphire indenter (radius RE348 mm) was used. The radius of the sphere
was calibrated through a series of indents into polycarbonate (PC) with a maximum penetration depth of 140 nm. The
radius was confirmed by means of imaging with an optical microscope, and also by scanning a cube-corner indenter tip
under imaging mode with the above mentioned instrument (TI 900). Fig. 2 is a schematic of the cross-section of the centre
fibril and two of its closest neighbours. Note the large radius of curvature of the indenter tip compared to the diameter of
the fibrils. The contact between each fibril and the indenter can be described as a local ‘‘flat punch’’ contact.
Fig. 1. Schematic top view of the hexagonal fibril arrangement. The fibrils have a radius of a=5 mm and a centre-to-centre distance between neighbours

of sij=20 mm.



Fig. 2. (a) Cross-section of the centre fibril, two neighbours, and the indenter. The fibrils have a height of H=18.7 mm, the indenter a radius of R=348 mm.

The scheme represents the situation where there is no interaction between indenter and fibrils. (b) Cross-section of the centre fibril, two neighbours, and

the indenter just after attachment of the centre fibril to the indenter by long-range attractive forces. The scheme shows the elongation of the centre fibril,

the deformation of the backing, and the resulting upward displacement of the neighbouring fibrils. The deformation is exaggerated for better

visualization.

G.M. Guidoni et al. / J. Mech. Phys. Solids 58 (2010) 1571–1581 1573
By means of an optical microscope, the indenter was approximately located above the centre fibril. The approach was
done from a height where there was no contact and where no attractive or repulsive forces were registered. All
measurements were done under displacement control, at an approach and retraction rate of 200 nm/s using a close-loop
feedback displacement control.
3. Experimental results

Fig. 3 shows typical load–displacement curves for approach and retraction into a flat region and into a region with a
hexagonal fibril structure on the same PDMS sample. The shape of the approach–retract curve recorded for flat PDMS
has the curvature and the large hysteresis expected for indentation into an elastomer (e.g. see Fig. 1 in Ebenstein and
Wahl (2006)). The curve recorded for the fibrillar structure generally resembles that for the flat surface, but with
interesting differences. The individual attachment and detachment of the seven fibrils can be recognized through sudden
jumps in the force. The attachment of the first fibril upon approach always generated a force drop into tension. This
can be seen more clearly in Fig. 4, which is the approach curve shown on an enlarged scale. Subsequent to the first jump
into contact, the curve is composed of linear sections with different slopes separated by force jumps. As we will discuss
later in detail, this observation reflects step-wise increments in contact area. While the maximum tensile force during
retraction is similar for the flat and the structured regions, the adhesion hysteresis, i.e. the area between the approach and
retraction curves representing energy dissipated, is just over three times larger for the structured sample compared to the
flat case.

The maximum penetration depth registered over all experiments on the structured sample was 1.4 mm, where this
distance indicates how far into the fibrillar array the sphere was pressed. When its lowest point is 1.4 mm below the fibril
tips, those as far away radially as 31 mm from the lowest point of the sphere will come into contact with the sphere. The
group of seven fibrils on the sample is circumscribed by a circle of 25 mm in radius, and therefore we expect to make
contact progressively with all seven fibrils in the course of approach.

In Fig. 4 each force jump upon approach has been numbered for clarity, corresponding to consecutive contact formation
with individual fibrils. The increasing slope of the linear sections separating the force jumps quantifies the increments in
the stiffness of the system as fibrils progressively make contact. Correspondingly, a decrease in slope between force jumps
is observed in the retraction data (see Fig. 3) as the number of fibrils in contact decreases.

The stiffness (ki) of the pillar structure (fibrils and backing), where i is the number of fibrils in contact, was determined
for each section of the curve by linear fitting. Table 1 summarizes the average stiffness values from a series of approach
curves. While the stiffness does increase monotonically, it does not scale linearly with the number of fibrils in contact as
would be expected if the fibrils were acting as independent identical springs in parallel. The stiffnesses during retraction
were also evaluated, and are shown in Table 2. The stiffness values during retraction differ from those found for the same
number of fibrils in contact during approach. In particular, when there is only one fibril attached, the stiffness during
retraction is almost exactly half that during approach; note that the force applied to a single fibril during retraction is about



Fig. 3. Load vs. depth curve for approach and retraction on a PDMS sample. The upper graph is recorded on flat region of the sample while the bottom

graph is recorded on a fibril structure as depicted in Fig. 1 of the same sample. For the structured sample, the detachment of individual fibrils is numbered

in the order of occurrence.

Fig. 4. Magnified view of the approach data of the load vs. depth curve for the fibril structure presented in Fig. 3. The seven force jumps indicate the

attachment of individual fibrils. Red linear fitting curves were superimposed on the experimental data to evidence the linearity of the response between

sudden drops of load. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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10 times that applied during approach, so that the fibril strains involved are very different. The differences in magnitude
notwithstanding, the stiffness during retraction are monotonic with the number of fibrils in contact, just as during
approach.

The stiffness of the nanoindenter is 1.4 mN/nm, 35 times larger than the highest stiffness values measured in our
experiments. Therefore, the deformation of the force sensor was neglected in the determination of the stiffness values.



Table 1
Average stiffness ki, for i fibrils in contact with the approaching indenter. The ratio ki/k1 is presented to show the deviations from a simple parallel spring

model. The values kE = 2.15 MPa correspond to the stiffness data calculated using the model based on an elastic modulus of E=2.15 MPa. The data are also

plotted in Fig. 4.

Experimental Model

kaverage (N/m) Ratio ki/k1 kE = 2.15 MPa (N/m)

k1 7.7 1.00 6.7

SD k1 0.3
k2 13.9 1.82 13.0

SD k2 1.1
k3 16.3 2.13 18.8

SD k3 1.7
k4 24.1 3.15 24.4

SD k4 0.9
k5 26.8 3.50 29.8

SD k5 1.2
k6 31.9 4.17 35.0

SD k6 0.8
k7 38.9 5.08 39.9

SD k7 0.3

Table 2
Average values for contact stiffness during retraction of the indenter from the surface. The ratio is given with respect to the stiffness of the first fibril in

contact during approach, i.e. with respect to the stiffness of one fibril in a low-strain configuration.

Unloading Average (N/m) Ratio ki/k1
approach

k1 3.8 0.49
SD k1 0.126
k2 7.9 1.03
SD k2 0.165
k3 12.2 1.58
SD k3 0.0151
k4 16.6 2.16
SD k4 0.0155
k5 20.6 2.68
SD k5 0.00706
k6 26.7 3.47
SD k6 0.0144
k7 35.0 4.54
SD k7 0.0222
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4. Elastic deformation of fibrils and backing layer

If the backing layer was rigid, it would not contribute to the deformation and the total combined stiffness of the system
would be the sum of the individual stiffnesses of each fibril in contact. With each additional fibril in contact, the stiffness
would increase by the same amount. However, the data in Table 1 clearly indicate that the increase in stiffness is less than
predicted by the sum of the stiffnesses of the individual fibrils.

In the following, we introduce a model which predicts the stiffness of the PDMS structure as a function of the number of
fibrils in contact with the indenter, including the effect of the deformation of the backing layer. The indenter is very stiff
and is treated as rigid. This model was first developed by Noderer et al. (2007) and used by them to estimate the stiffness of
a large collection of fibrils attached to a rigid indenter. The PDMS structure is treated as a deformable half-space with
deformable fibrils (Fig. 2(a)). The fibrils are analyzed as one-dimensional elastic elements subject to infinitesimal strain.
The stress in each fibril is considered to be uniform, and applied as traction on a circular patch of the surface of the half-
space of PDMS. The displacement of the surface of the half-space of PDMS is computed as the combined effect of all of the
fibrils carrying stress (i.e. in contact with the indenter). The displacement of the surface of the PDMS half-space under a
given fibril is computed as the effect due to the stress in the given fibril plus the effect of all the other fibrils; the latter
contribution is approximated as the displacement of the point on the PDMS half-space at the centre of the fibril. The half-
space is assumed to be held motionless far away from the fibrils. Fig. 2(b) shows a cross-section of the deformed surface
structure, introducing the parameters used in the following model.
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4.1. Elastic response of one fibril

Consider an individual fibril with relaxed height H, radius a, and elastic (Young’s) modulus E. Upon applying a tension P

that generates an infinitesimal strain in the fibril, it will be elongated by PH=ðpa2EÞ. Now consider the corresponding
deformation of the half space. We assume that the stress in the fibril is applied as traction on the surface of the half-space.
The half-space deflection caused by such a uniform traction on a circular patch of the surface of the half-space has been
given by Johnson (2003). It is sketched in Fig. 2(b). The average upward displacement of the circular patch, i.e. of the
bottom displacement, ub, of the fibril, is ub ¼ 16ð1�u2ÞuP=ð3p2aEÞ. The displacement of the top of the fibril ut is then the sum
of the two contributions

ut ¼
PH

pa2E
þ

16ð1�n2ÞP

3p2aE
¼

H

ð1�n2Þa
þ

16

3p

� �
ð1�n2ÞP

paE
ð1Þ

We introduce the compliance, C, of the fibrillar structure, defined as the displacement of the top of the fibrils in contact
with the indenter divided by the applied load, and find for one fibril in contact

C11 ¼
H

ð1�n2Þa
þ

16

3p

� �
ð1�n2Þ

paE
ð2Þ

The stiffness k1, upon loading one fibril, is the inverse of C11.

4.2. Loading of one fibril—displacement of all other fibrils

Johnson (2003) gives the upward displacement uz of the surface of the half-space outside of the circular, uniformly
loaded patch as

uz ¼
4ð1�n2ÞP

p2aE

r

a
J

a

r

� �
� 1�

a2

r2

� �
K

a

r

� �� �
ð3Þ

where r is the distance from the centre of the fibril, J the complete elliptic integral of the second kind and K the complete
elliptic integral of the first kind. We use this to estimate the displacement at the bottom of fibril j when fibril i is loaded, by
assuming its value at the centre of fibril j gives its average value, ub. Designating the bottom displacement of fibril j as ub

j ,
we then obtain, due to the loading of a single fibril i,

ub
j ¼

4 1�n2
� 	

Pi

p2aE

sij

a
J

a

sij

� �
� 1�

a2

s2
ij

 !
K

a

sij

� �" #
ð4Þ

where Pi is the load applied to fibril i and sij (iaj) the distance from the centre of fibril i to the centre of fibril j.

4.3. Multiple loaded fibrils

Now consider the case where n fibrils are loaded. The displacement at the bottom of each fibril will arise due to the
effect of the force on each of the loaded fibrils. Consider a loaded fibril, i. The difference in displacement between its top
and bottom will be given by

ut
i ¼ ub

i þ
PiH

pa2E
ð5Þ

The displacement will be given by the equivalent of Eq. (1) due to the load on fibril i plus a contribution given by Eq. (4)
from each of the other loaded fibrils. Therefore,

ut
i ¼

H

ð1�n2Þa
þ

16

3p

� �
ð1�n2ÞPi

paE
þ

4ð1�n2Þ

p2aE

Xn

j ¼ 1, jai

Pj

sij

a
J

a

sij

� �
� 1�

a2

s2
ij

 !
K

a

sij

� �" #
ð6Þ

re-written as

ut
i ¼

Xn

j ¼ 1

CijPj ð7Þ

where

Cij ¼
4ð1�n2Þ

p2aE

sij

a
J

a

sij

� �
� 1�

a2

s2
ij

 !
K

a

sij

� �" #
iaj ð8aÞ

Cij ¼ C11 ¼
H

ð1�n2Þa
þ

16

3p

� �
ð1�n2Þ

paE
i¼ j ð8bÞ
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The matrix Cij is the compliance matrix for the system of loaded fibrils, giving the same results as derived by Noderer
et al. (2007).
4.4. Specific examples for a hexagonal array of fibrils

Consider a hexagonal array of fibrils arranged and numbered as shown in Fig. 1. The numbering indicates the
order in which contact is made between the indenter and the fibrils as the indenter is brought towards the fibrillar
surface. The order of attachment is caused by the spherical shape of the indenter and the experimental fact that the point
on the sphere closest to the surface of the PDMS half-space lies somewhere closer to fibril 1 than to fibrils 2 and 3, and
closer to fibril 2 than to 3. The fibril spacing is such that s is the distance from the centre of one fibril to that of a
neighbouring one. Note that Cii ¼ C11 and Cij ¼ Cji and that for this geometry C12 ¼ C13 ¼ C14 ¼ C23 ¼ C24 and C34 ¼ C25 are
similar.

In the following, we determine the stiffness ki ¼ dF=dD of the structure as measured by the indenter with i fibrils in
contact where

dF ¼
Xi

j ¼ 1

Pj and dD¼ ut
j for all jr i

For one fibril in contact, we have

k1 ¼
dF

dD
¼

1

C11
ð9Þ

with

C11 ¼
H

ð1�n2Þa
þ

16

3p

� �
1�n2

paE

For two fibrils we find that

C11 C12

C12 C11

" #
dP1

dP2

( )
¼

dD
dD


 �
ð10Þ

from which we obtain

k2 ¼
dF

dD
¼

dP1þdP2

dD
¼

2

C11þC12
ð11Þ

Similarly we proceed for increasing the number of fibrils in contact with the indenter. The results for the stiffness are
compiled in Table 3. As a last example, which also indicates the symmetries in the compliance matrix we give the result for
Table 3
Contact stiffness, ki, as described in the text.

No. of loaded fibrils i Stiffness ki

1
1

C11

2
2

C11 þC12

3
3

C11 þ2C12

4
4C11�6C12 þ2C34

C2
11
þC11 ðC12 þC34 ÞþC12 C �34�4C2

12

5
3ðC12 þC34�C11�C45 ÞðC11�C12 Þþ ðC11�C34 Þð3C12�C34�2C11 Þ

ðC11 þ2C12 ÞðC12 þC34�C11�C45 ÞðC11�C12 Þþ ðC11�C34 Þ½C11 ðC12�C34 Þ�2C12 ðC11�C12 Þ�

6

6C4
11�2C3

11ð6C12þC34þ5C45Þ�C2
11ð6C2

12�C12ð19C34þ22C45Þþ5C2
34�4C34C45�2C2

45ÞþC11ð14C3
12

�4C2
12ð3C34þ2C45Þ�C12ð3C2

34þ13C34C45þ8C2
45ÞþC3

34þ5C2
34C45�2C34C2

45þ2C3
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12�2C3
34ð8C34þ3C45Þ

þ2C2
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34þC34C45þC2
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12



Fig. 5. Stiffness ki of the combined structure of fibrils and backing as a function of number of fibrils in contact. Circles represent the average of the

experimental values and squares the result of the model. An elastic modulus of E=2.15 MPa has been chosen for the model by minimization of the sum of

quadratic deviations from experimental stiffness values.
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seven fibrils in contact
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and

k7 ¼
dF

dD
¼

7C11�10C12þ2C34þC45

C11ðC11þ2C12þ2C34þC45Þ�6C2
12

ð13Þ

Values for stiffness have been calculated and are compared with experimental results in Table 1 and in Fig. 5. The only
adjustable parameter is the elastic modulus E, with the assumption that n=0.5 is an appropriate value for the Poisson ratio
of PDMS. The elastic modulus has been determined to be E=2.1570.10 MPa by minimization of the sum over k1–k7 of
quadratic deviations from experimental averages.
4.5. Further approximations

If we neglect the interactions other than with the nearest neighbour fibrils, we obtain significantly simpler expressions
than those derived above. The results are obtained by setting all compliances to zero other than C11 and C12. This
approximation should be valid when the spacing between fibrils is significant compared to their diameter, which is
however not the case in the system presented in this paper.
5. Discussion

In this section we discuss our experimental data and compare the results of our model. We proceed chronologically
through the events observed as the indenter approaches the structured surface and is retracted from it.

The indenter approaches the sample surface starting from a distance at which no force is detected between it and the
indenter. The first significant deviation from zero force is a sudden drop in load when the first fibril makes contact with the
indenter; see Fig. 4, where this event is marked with the no. 1. The first contact always results in a tensile force, evidencing
attractive forces between indenter and fibrils. The linear increase of the force after its drop yields a value for the stiffness of the
sample and the nanoindenter load cell combined when one fibril is attached to the sphere. The average value from several
experiments is k1=7.7 N/m, almost two-orders of magnitude lower than the stiffness of the load cell. We conclude that the
jump into contact of the first fibril occurs through a sudden stretching of the fibril plus deformation of the backing, with
negligible motion contributed from the load cell. The net displacement can be calculated as the force drop divided by the
stiffness k1, and regarded as the deformation of the fibril and the backing layer combined. The resulting values vary between
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190 and 450 nm, i.e. the typical strain in the fibril after the first jump into contact is of the order of 2%, an estimate we obtain by
ignoring the deformation of the backing layer.

Zero depth in Figs. 3 and 4 has been chosen retroactively to be the sphere’s location when it is attached to one fibril at zero
load. This calibration is achieved by extending the straight line in Fig. 4 that denotes the system response after load drop 1, and
by doing so until the extension passes through zero load, which is then defined as the origin of the graph. This choice for zero
depth reflects the position of the indenter where one fibril in contact would be unstrained on average. Due to the surface
curvature of the indenter and the fact that the lowest point on it is not guaranteed to be located exactly over the centre of fibril
1 (see Figs. 1 and 2), this zero depth differs from the sphere position where a perfectly rigid fibril would make first contact with
the indenter by up to 36 nm, given by the height variation of the spherical indenter across the 5 mm radius of the fibril.

The deduced range of the attractive interaction (154–450 nm) is significantly larger than expected for pure van der
Waals attraction. There is debate regarding the forces acting in micro-structured adhesive systems, addressing whether
they are mainly van der Waals forces (Autumn, 2006; Autumn et al., 2002) or include other contributions like capillary
forces (Huber et al., 2005). Our results strongly indicate that long-range electrostatic forces have to be considered for the
case of PDMS interacting with sapphire. This conclusion is confirmed by preliminary results for the experiment repeated
with both indenter and sample immersed in water. In water we observe no initial jump into tension when the indenter
makes contact with the fibrils during approach, but the same discrete detachment of fibrils occurs in tension during
retraction. These results suggest that an electrostatic attraction between sapphire and PDMS present in air has been
screened by the water when the experiment is carried out in the submersed condition.

Returning to the sequence of events that occur during indenter approach in air, we consider Fig. 4 further. The jump-
into-contact events recur in time as the indenter moves toward the sample and the number of fibrils in contact increases.
At a certain indenter position, the force sensed by the indenter will change from tension to compression since the
stretching of the latest fibrils into contact is compensated by the compression of the earlier attached fibrils. The force vs.
depth curve becomes steeper with each additional fibril in contact, reflecting the expected increase in stiffness. The
linearity of the section in between force drops indicates that each fibril immediately makes complete contact. Such
increase of contact area in well-defined steps is very helpful for the quantitative evaluation of elasticity parameters. In our
system, the gain in adhesion energy is large enough to elastically stretch and deform the fibrils such that full contact is
established once the fibrils come close to the indenter. This observation is a clear demonstration of the enhancement of
contact formation by micro-structuring surfaces, a core concept of fibrillar biomimetic adhesive materials.

The stiffness increases sublinearly with the number of fibrils in contact. Our model explains this trend taking into
account the deformation of the backing layer. Fig. 5 compares the experimental ki values with the model data. The straight
line represents the stiffness assuming a rigid backing layer. The model correctly predicts the stiffness relations. The only
adjustable parameter is the elastic modulus E. It was found, by minimizing the sum of the squares of the differences
between the model and the averaged experimental ki data, to be E=2.1570.10 MPa, as stated above. Note that the
combination of our experimental method and our model allows for the unique determination of the elastic modulus of
PDMS fibrils within a given micro-structure in situ. The elastic modulus of PDMS polymers similar to our material has been
determined by a variety of methods and values scatter between 1.3 and 4 MPa (Bar et al., 1999; Deuschle et al., 2008;
Gupta et al., 2006; Schneider et al., 2008; Song et al., 2008). Our method avoids the contact size problems usually
encountered in indentation of flat elastomer samples (Deuschle et al., 2008; Ebenstein and Wahl, 2006) and takes into
account possible variations of the elastic modulus for a material which is cured in a confined geometry.

The formulae describing the stiffness for several fibrils in contact could be simplified if only interactions between nearest
neighbour fibrils would be considered. Such simplification would set to zero all compliances other than C11 and C12. However, an
analysis of the relative contributions shows that this is not a valid approximation for fibril structures in which the distance
between fibrils is comparable to their diameter. In our structure, the displacement of the first-loaded fibril, u11, is 28 times higher
than that of the nearest first neighbour, u12, but the displacement of the second nearest neighbour, u34 is still half of that of the
first neighbour, u12.

Upon retraction of the indenter, a significant adhesion hysteresis is observed in Fig. 3. The seven fibrils are detached one
after the other. However, detachment of the first of seven fibrils occurs only far into the tensile regime. The highest
attractive force of about 100 mN is encountered with four fibrils in contact and the indenter about 5 mm above where the
undeformed surface would be, i.e. under a strain in the fibrils of approximately 25% if we neglect the deformation of the
backing. The force vs. distance curve during retraction is step-wise linear between the force jumps, similar to the approach.
The values for the stiffness decrease monotonically with decreasing number of fibrils in contact; they are listed in Table 2.
Note that Table 2 indicates that the stiffness of the system during retraction with only 1 or 2 fibrils attached is significantly
lower than that for the approach with the same number of fibrils in contact. The difference in compliance between
retraction and approach with just one or two pillars in contact seems to be largely due to the fibril strain in each case,
namely 25–35% during retraction, but only a few percent during approach. Therefore, to investigate the compliance
difference between retraction and approach, we estimate the system stiffness just prior to detachment of the last fibril
taking into account the finite strain. We model the material as an incompressible Mooney rubber (Treloar, 2005). The
Mooney formulation of the strain energy density allows for Gaussian chain elasticity constrained by chemical cross-links
and entanglements, where the entanglements evolve and gradually release under tension. Although the model has its
deficiencies in compression and at large stretches, it is reasonably reliable at modest strains under tension (Treloar, 2005).
The derivation of our estimate is presented in the Appendix. We find a stiffness of the system of 4.2 N/m just before the last
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fibril detaches, significantly lower than the small strain stiffness when one fibril is attached, as recorded in Table 1.
Consulting Table 2, we find that the measured stiffness for the system when there is only one fibril left attached is 3.8 N/m,
only 10% off the predicted value. However, we can expect that finite strain effects in the backing layer of PDMS near the
bottom of the fibril will contribute a further reduction of the stiffness, an effect we have ignored in our model.

Finally, we briefly discuss the adhesion properties of our sample although that is not the focus of this article. In Fig. 3,
the shape of the adhesion hysteresis for the fibril structure resembles the curve measured on a flat PDMS surface. While the
maximum tensile force during retraction is similar, the adhesion hysteresis is larger by a factor of approximately three,
emphasizing once more the function of the microstructure in terms of the adhesive properties. A quantitative analysis
shows that the average nominal stress transmitted through the contacting fibrils at maximum tension is just over 5 times
the stress on the JKR contact (Johnson et al., 1971) between the sphere and the flat PDMS surface at its maximum tension.
We recognize that the stress on a JKR contact is not always a meaningful measure of the effectiveness of its adhesion, but
we quote it to enable comparison on a specific basis relative to the fibrillar surface. This result illustrates the adhered,
structured surface’s superior ability to transmit tension.

In the absence of detachment defects, frictionless flat punch contacts show a strong resistance against peeling as there
is no stress singularity at the edge as in sphere-on-flat situations. Similarly, when the more realistic case of a flat punch
contact with friction is considered, also in the absence of detachment defects, the driving force for detachment is low
compared to the JKR setup of the sphere on a flat (Ebenstein and Wahl, 2006; Spuskanyuk et al., 2008). We believe that this
feature is responsible for the tenacity of the fibrillar adhesion exhibited by the structured surface. Additionally, the
strength of adhesion compared to the softness of the fibrils at the micrometer scale yields perfectly flat contacts, enabling
accommodation of a degree of surface roughness without detachment defects.

6. Conclusions

In conclusion, we have performed contact mechanics experiments on a fibrillar micro-structured PDMS surface.
Attachment and detachment of individual fibrils have been detected in force and stiffness measurements. Small
deformations during approach of an indenter have been quantitatively modelled taking into account deformation of both
the fibrils and the backing layer. The results emphasize the importance of long-range interactions via the substrate for the
contact mechanics of elastic materials. The discrete growth of the contact area with increasing number of fibrils in contact
allows an accurate in situ determination of the elastic modulus of the PDMS to be 2.15 MPa.

Appendix

In order to understand the comparatively low stiffness values found for the last fibrils in contact during retraction, we
model the deformation of one fibril in contact including the effects of finite strain. As before, we assume the fibril is
deforming in uniaxial stress, so that the stress and strain are uniform. The material is modelled as an incompressible
Mooney rubber having strain energy density per unit mass (Treloar, 2005)
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where r is the density and li, i=1,2,3, are the orthogonal principal stretch ratios. By incompressibility l1l2l3=1. In the form
chosen for (A1), the two conventional constants for the Mooney rubber have been set equal to each other as a special case.
Normally the ratio of these constants would be determined by the degree of entanglement versus the density of chemical
cross-links. In the absence of such information the ratio has been chosen as unity.
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where p is the hydrostatic pressure in the material. The transverse stress has been set to zero consistent with the
conditions in the fibril, allowing the pressure to be calculated and inserted into Eq. (A2a), providing
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where the subscript indicating the axial direction has been dropped. To obtain Eq. (A3), we have used axial symmetry so
that l1=l2, and then invoked incompressibility in the form l1

2=1/l3. Note that at a stretch ratio l=1.24 and with
E=2.15 MPa, the nominal stress from Eq. (A3) is 0.38 MPa. Given the cross-sectional area of the fibril, equal to
0.79�10�10 m2, this gives an axial load on the fibril equal to 30 mN, consistent with the tensile load at which the last fibril
detaches (Fig. 3).
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The displacement of the top of the one attached fibril may now be estimated as

ut ¼Hðl�1Þþub ðA4Þ

a formula equivalent to Eq. (1) but without specialization to infinitesimal strain. We now assume that the displacement of
the bottom of the fibril can still be computed from infinitesimal strain theory, so that we obtain

ut ¼Hðl�1Þþ
16ð1�n2ÞP

3p2aE
ðA5Þ

After differentiation of Eq. (A5) with respect to ut, we obtain an expression for the stiffness of the system in the form
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where we have used the relationship P=pa2T, consistent with the definition of nominal stress, in order to express dl/dut

through dP/dut. Eq. (A3) provides us with
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Note that when l=1, d(T/E)/dl=1, consistent with conditions at infinitesimal strain. We now investigate the predictions
of Eq. (A6), with n=½ for incompressibility, H/a=3.74 as in the experiments, and E=2.15 MPa as calibrated to those same
experiments. For fibrils having a radius a=5 mm as in the experiments, the stiffness from Eq. (A6) when the strain is
infinitesimal (i.e. l=1) is given by 6.7 N/m as used for the model result for the single fibril case in Table 1. Just before the
last fibril detaches, when l=1.24, we find that Eq. (A7) predicts that d(T/E)/dl=0.55, and the stiffness of the system from
Eq. (A6) is 4.19 N/m. This prediction is discussed in Section 5.
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