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In this paper, we propose a new adhesive system of dimpled surfaces. The principle is derived from a
contact mechanics model. The material is assumed to be linear elastic and isotropic, and attraction
between the surfaces of the half-spaces is modeled via the concept of a specific adhesion energy. It is
found that large and small detachments are unstable and will either grow or shrink spontaneously
when their sizes are perturbed. It is shown that this phenomenon can lead to a new bi-stable adhesive
system in which weak adhesion can be converted to strong adhesion by the application of pressure.
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Fig. 1. Two isotropic, linear elastic half-spaces, one with a flat surface and the othe
having a dimple with effective radius b and depth d0. The upper half-space has Young’
modulus E1 and Poisson’s ratio n1, whereas the lower half-space has properties E2 and n2
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Adhesion due to molecular interactions such as van der

Waals forces is of great importance for many technological

and biological systems.[1] In regard to such adhesion,

innovative patterned surfaces are currently causing a change

of paradigm, and are creating new opportunities for sticky

devices. Examples are gecko-like fibrillar surfaces (for a

review see[2]), and devices with microfluidic channels.[3] In

these cases, detachment is inhibited by the heterogeneous

nature of the adhered structures, enhancing the energy

dissipated even in cases where the adhering area is a fraction

of the total available surface. Within this context, we propose

in the current paper a new adhesive system characterized by

arrangements of dimples on one or both surfaces.We also note

that the present paper demonstrates that useful developments

in new materials can originate from theoretical modeling.

When bodies interacting with each other adhere at

non-planar surfaces, elasticity plays an important role in

determining the adhesive and repulsive interactions. Exam-

ples include the case of a sphere adhering to a half-space, as

modeled by Johnson, Kendall, and Roberts (JKR),[4] where
there is elastic flattening of the sphere and elastic indentation

of the half-space. In the JKR problem, adhesion is modeled

through an energy balance involving changes of surface and

elastic energy, with details of the interaction at a distance

neglected. This aspect of the behavior was relaxed by

Maugis,[5] who augmented the JKR solution with a model

having a constant traction when the bodies are closer than a

critical distance. Further refinements of the Maugis[5] solution

were provided by Kim et al.[6] The JKR solution for a single

spherical protrusion has also been extended to multiple

asperities, represented as periodic waviness, to model

adhesion of rough surfaces.[7–10]

An equivalent problem is adhesion of a flat surface to

another one having a dimple (Fig. 1). As half-spaces are

brought toward each other, the surfaces far away from the

dimple will adhere to each other first, and the attached area

will grow progressively. Completion of the adhesion will

be resisted by the elastic distortion necessary for the flat

surface to be pulled into the dimple. If the dimple is deep, the

materials are stiff or the adhesion isweak, it will be difficult for

the attraction of adhesion to eliminate detached regions,

unless significant compression is applied. Conversely, if the

dimple is shallow, thematerials are compliant, or the adhesion

is strong, complete adhesion may be achieved spontaneously

without the application of compression, unless trapped air
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Fig. 2. The two half-spaces adhering completely to each other and under applied load.
The tensile stress at the interface is indicated.

Fig. 3. The adhered half-spaces under applied load with a detachment of radius a at the
interface.
resists the tendency for spontaneous closure of the detach-

ment.[7,8] Analysis of this problem, without regard to trapped

air, is undertaken below. The outcome bears some similarity to

results presented for adhesion involving periodically wavy

surfaces.[7–10] Due to its simplicity, the problem of a single

dimple on an otherwise featureless surface furnishes some

insights otherwise not readily available.

Model

Consider the undistorted shapes of a half-space with a flat

surface and a half-space with a dimple in its surface as shown

in Figure 1. The shape of the dimple has been chosen for ease

of analysis, but its characteristics are representative of any that

is isolated. The dimple is axisymmetric with a shape given by

d ¼ 2

p
d0"

r

b

� � r

b
� 1 (1a)
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where d0 is the maximum depth of the dimple, e(u) the complete

elliptic integral of the second kind of its argument u, and k(u) is

the complete elliptic integral of the first kind of its argument u.

When they are brought into contact, the surfaces of the

half-spaces adhere to each other such that the reduction of

potential energy per unit adhered area is given by

w0 ¼ g1 þ g2 � g12 (2)

where g1 and g2 are the surface energies of the upper and lower

half-space, and g12 is the energy of the interface between the

half-spaces in contact.

The half-spaces are linear elastic and isotropic, with

Young’s moduli E1 and E2 and Poisson’s ratios n1 and n2.

The dimple is considered to be shallow (i.e., d0<<b), so that

elastic distortions caused by tractions applied to the surface of

the half-space containing the dimple can be computed as the

displacements of a half-space having a flat surface. As noted

by Johnson,[11] when a uniform pressure p is applied around

the origin to a circular region of radius b on the surface of a

half-space with a flat surface, the surface displacements in the

z direction are given by Equation (1a and b) with d0 replaced

by 2pb=E0, where the resulting displacements are in the same

direction as the normal pressure p, and E0 ¼ E
�

1� n2
� 	

. It then

follows that the shape of the surface of the upper half-space

can bemade to be identical to the shape of the lower one when

both are subject to a tensile traction T on their surfaces within

the region at the origin having radius b, where

T ¼ d0E�

2b
(3)

with E� the combined modulus, given by

1

E� ¼
1� n21

E1
þ 1� n22

E2
(4)

When the two surfaces are completely adhered to each other

with no detached area, and a uniform tensile traction is applied,
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as depicted in Figure 2, there is a stress at the interface given by

szz ¼ sA þ d0E�

2b

r

b
� 1 (5a)

szz ¼ sA

r

b
� 1 (5b)

where sA is the applied tensile stress. Note that there are no

shear tractions or shear stresses of any kind at the interface, so

that the resulting stress state represents the case of frictionless

adhesion. Note that the above solution is used by Gao and

Yao,[12] but in a different context.

The Effect of a Detachment under Applied Load

Now introduce a detachment of radius a as shown in

Figure 3. This feature will relax to zero the stresses of Equation

(5) previously present at the interface within the region r� a.

Since these stresses are tensile, there will be a driving force, G,

the energy release rate, for extending the detachment.[11] In

Appendix I we compute G. The equilibrium requirement that

G is equal to the adhesion energy w0 provides the relationship

between the detachment length and the applied stress as

follows:

sA ¼ E�
ffiffiffiffiffiffiffiffiffiffi
pw0

2aE�

r
� d0

2b

� �
a � b (6a)

sA ¼ E�
ffiffiffiffiffiffiffiffiffiffi
pw0

2aE�

r
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2b
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r !" #
a > b (6b)
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Fig. 5. Graphs of the pull-off stress, sP, as a function of bw0

�
E�d2

0, and the detachment
radius, am, at which pull-off occurs.

Fig. 4. Plots of the applied stress, sA, in equilibrium with a detachment of radius a for an adhesion energy w0; (a) shows the relationship for a pair of surfaces with a relatively deep
dimple, a relatively high effective elastic modulus, E�, a relatively small dimple radius, and a relatively low adhesive energy; the dashed line shows our estimate of the behavior for a
system with finite adhesive strength and interaction distance; (b) shows the relationship for a pair of surfaces with a relatively shallow dimple, a relatively low effective elastic modulus,
a relatively large dimple radius, and a relatively high adhesive energy.
The result from Equation (6) giving sA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b=pw0E�

p
versus

a/b is shown in Figure 4, where two cases are illustrated. In

Figure 4(a), d20E��bw0 > 2p (a value of 9.425 has been chosen

for clarity), and as a result, there is a region of the plot where

the applied stress in equilibrium with the detachment is

compressive (i.e., negative); this relationship is shown as

the full line in Figure 4(a). In Figure 4(b), d20E��bw0 < 2p

(a value of 4.712 has been chosen for clarity), and in this case

the applied stress at equilibrium is always tensile (i.e.,

positive).

A detachment is stable if it maintains its current length and

is unstable if it grows or shrinks spontaneously. In Appendix

II we show that stability of the detachment is assured if

@sA=@a > 0. As a consequence, stability in the equilibrium

state occurs in the range b < a < am (see Fig. 4), where am is the

radius of the detachment at which the applied stress in

equilibrium with it has a maximum. In the stable condition, a

perturbation of the diameter of the detachment will be

eliminated spontaneously; i.e., if the diameter is increased,

the detachment will shrink back to its equilibrium size, and if

the diameter is reduced, the detachment will grow back to its

equilibrium size. The equilibrium configuration is unstable for

values of a lying outside the range b < a < am. When an

unstable, equilibrium detachment with its radius in this range

is perturbed by having its length increased at constant applied

load, it will spontaneously continue to lengthen; when it is

perturbed by being made smaller, it will spontaneously

continue to shrink.

Attachment and Detachment

Weak Adhesion, Stiff Materials, or a Shallow Dimple

Now consider adhesion between half-spaces having the

interaction shown in Figure 4(a), i.e., d20E��bw0 > 2p. As a

starting point, assume that the surfaces are already adhered

with a finite detachment radius but with no applied stress.

Inspection of Figure 4(a) indicates that, for it to be in stable

equilibrium, the detachment must have the radius a0, whose
ADVANCED ENGINEERING MATERIALS 2010, 12, No. 5 � 2010 WILEY-VCH Verl
value can be found by setting sA to zero in Equation (6b) and

selecting the root a0> b. If a tensile stress is applied and

gradually increased under load control, the detachment will

grow stably at first, consistent with the graph of Figure 4(a).

Such stable growth will continue until the radius a reaches the

value am. Any attempt thereafter to increase the applied stress

will lead to unstable propagation of the detachment, and the

half-spaces will separate from each other. The radius, am, at

which this pull-off will occur can be computed by obtaining

@sA=@a from Equation (6b) and setting it to zero (see Appendix

II). The result for am,

am
b
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þ
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(7)

is plotted in Figure 5 versus w0b
�
E�d20. The consequent stress at

pull-off, sP, obtained by inserting am in place of a in Equation

(6b), is plotted also against w0b
�
E�d20 in Figure 5. It should be
ag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 391
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noted that even if the applied stress is reduced once the

condition a > am is reached to try to keep the system in

equilibrium [i.e., in an attempt to keep the applied stress at its

equilibrium value as shown in Figure 4(a)], the detachment will

continue to grow since the equilibrium state in this regime is

unstable; any small perturbation of the system, whether

thermal, acoustic, or due to instrumental imprecision, will

induce detachment growth.

Now return to the original configuration with a stable

detachment of radius a0 at zero applied stress. Let a

compressive stress be applied, with a gradually increasing

magnitude. The curve in Figure 4(a) indicates that in this

situation, the detachment will diminish in radius, doing so

stably until it reaches b. At this stage, the configuration

becomes unstable, since @sA=@a < 0 for perturbations of a that

take it below b. As a consequence, the detachment radius will

reduce in an unstable manner, until it disappears. Thus,

complete adhesion in a vacuum can be achieved if sufficient

compressive stress is applied. In analogy to the situation

with pull-off, the unstable disappearance of the detachment

cannot be halted by an attempt to increase the applied stress

to keep the system in equilibrium. Once the attachment

process commences with a reducing below b, the system is

in an unstable state even if the stress is in equilibrium with

the radius of the detachment consistent with Figure 4(a). In the

presence of trapped air, the increase in pressure as the

detachment closes will inhibit such closure, eventually

terminating it. This situation, for multiple detachments within

periodically wavy surfaces, has been commented upon by

Johnson[7] and analyzed by Hui et al.[8]

Note that since d20E��bw0 > 2p, the phenomena we have

just described are associated with a relatively deep dimple

both absolutely and relative to its diameter, a pair of relatively

stiff materials andweak adhesion between the half-spaces. For

these reasons, the dimple presents some resistance to the

processes needed to achieve complete adhesion, because of

the significant elastic strain energy required to distort material

into the dimple. This strong resistance is not compensated for

adequately by the modest adhesive energy. As a consequence,

this case exhibits bi-stable adhesion, at least in a vacuum or in

a situation where there is a vent, so that air trapped in the

dimple can escape. That is, a stable detachment of radius a0
can exist at zero applied load, in which case the two surfaces

may be separated relatively easily by the application of

tension. However, if compression is applied to the system, the

detachment can be eliminated completely, and we can expect

this configuration to be difficult to pull apart. This latter point

is explored in the next paragraph.

Staying with the same condition, d20E�
�

bw0 > 2p, we now

consider the configuration in which the two half-spaces are

adhered completely, with no detachment present, i.e., a¼ 0. To

detach the half-spaces from each other, one would apply a

tensile stress, which is predicted to be infinite.[4,5] To

overcome this difficulty, Johnson[7] postulated the presence

of small initial detachments in an otherwise completely

attached adhesion. An alternative remedy is the introduction
392 http://www.aem-journal.com � 2010 WILEY-VCH Verlag GmbH & C
of a more realistic model for the adhesive interactions, such as

van der Waals phenomena.[1] Failing that, a simpler, but

credible approach is the use of a Dugdale style interaction, or

cohesive (i.e., adhesive) zone, as introduced into the adhesion

literature byMaugis,[5] in which the surfaces of the half spaces

attract each other with a constant tension, sad, in those regions

where they are closer to each other than a critical distance, Dad.

The product sadDad equals w0.
[5] In their work, Hui et al.[8]

utilized such a Dugdale style cohesive zone, and Carbone and

Mangialardi[9] adopted a variant. Let us assume that a

Dugdale style cohesive zone is appropriate for our problem,

and consider a gradually increasing tensile stress, sA, applied

to the completely adhered pair of half-spaces, so that within

the dimple, the stress at the interface is given by Equation (5a).

The half-spaces will remain adhered to each other without any

detachment until the stress in Equation (5a) is equal to sad, i.e.,

until

sA ¼ sad �
d0E�

2b
ð8Þ

At this stage an incipient detachment will develop,

but at first the separating surfaces within it will continue to

attract each other with a tensile stress sad between them.

Since Equation (8) implies that the tensile stress across

the interface everywhere within r� b is equal to sad, we

assume that this entire region begins to separate when the

applied stress reaches the level given by Equation (8).

Furthermore, the region that is detaching will immediately

spread beyond b because the Dugdale model requires the

stress intensity factor to be equal to zero so that there is no

singularity in the stress. The stress intensity factor is now

given by[13]

KI ¼
2

p
sA þ d0E�

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

c2

r !
� sad

" # ffiffiffiffiffi
pc

p
ð9Þ

where c is the radius of the circle that is experiencing

detachment (while still feeling mutual attraction). Since the

stress intensity factor has to be zero, the relationship between c

and the applied stress from Equation (9) is

c ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

sA � sad � d0E�

2b

� 	
d0E�

2b

" #2vuut
ð10Þ

so that as the applied stress rises above sad � d0E�=2b, this

radius increases beyond a in a stable manner.

This process will continue as given by Equation (10) until

the distance across the gap in the center of the detachment

reaches Dad. Thereafter, a zone without adhesive interaction

will develop in the center of the detachment, i.e., the

radius, a, of the traction free zone becomes non-zero and

grows, and the stress intensity factor is no longer given by

Equation (9). Further calculations illustrating this point are

beyond the scope of the current paper. However, we can
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2010, 12, No. 5
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sketch out the following scenario. We infer that the system

becomes unstable as soon as the traction free zone appears. In

the absence of a proper analysis of the axisymmetric situation,

we conclude that instability will set in from consideration

of an assessment of the equivalent plane strain problem

that is summarized in Appendix III. Consequently, as a

increases from zero, the applied stress will fall while the

magnitude of a will steadily approach that of c, i.e., the

zone free of adhesive traction will grow more rapidly than

the rate of increase of c and the annulus having the adhesive

traction sad will shrink. As the difference c–a shrinks, the

relationship between the applied stress, sA, and the radius, a,

of the traction free zone will approach the relationship

between sA and a shown as the full line in Figure 4(a).We have

shown a schematic for this situation as a dashed line in

Figure 4(a), marked sad 1; Dadh i0.
The relationship shown as a dashed line for sad 1; Dadh i0 in

Figure 4(a) and the remaining segment of the full line it

merges with have an interesting feature. Starting with

completely adhered half-spaces, we apply tensile stress, sA,

and above a critical level a detachment of radius a will appear.

However, the spreading of the detachment immediately

becomes unstable, since the value of applied stress, sA, in

equilibrium with the detachment radius, a, now begins to fall.

If the applied stress can be reduced quickly enough, the

propagation of the detachment can be arrested on the stable

branch of the full line in Figure 4(a), in the region in which

b< a< am. To extend the detachment further, the applied

stress, sA, must be increased once more to sP, at which stage

unstable pull-off will occur.

Thus, we have inferred that for realistic adhesive interac-

tions such as the Dugdale model, there may be a bi-stable

configuration of adhesion, as follows. A weak, stable,

state of adhesion can be achieved with a finite zone of

detachment present (i.e., with b< a< am) that can be pulled off

relatively easily. If sufficient compression is applied to this

state of adhesion of the half-spaces, they will jump

together to adhere completely to each other. This state of

adhesion is strong, with separation only possible by the

application of a relatively high applied stress, as suggested in

the schematic dashed line marked sad 1; Dadh i0 in Figure 4(a).

Note that the transition between these two possible adhered

states occurs in a non-equilibrium manner, and additional

energy over and above the adhesion energy, w0, will be

dissipated or recovered in going back and forth between these

states. Such additional dissipation, associated with possible

adhesion hysteresis, has been addressed by Johnson,[7] Hui

et al.,[8] and Guduru.[10]

Strong Adhesion, Compliant Materials, or a Shallow Dimple

Now consider adhesion between half-spaces having the

interaction shown in Figure 4(b), i.e., d20E��bw0 < 2p. This case

is less interesting because there is no stable detachment of

finite size at zero applied stress. Instead, for stable detach-

ments, a finite applied stress must be applied, with pull-off

occurring if it rises above the level sP. Similarly, if, for a stable
ADVANCED ENGINEERING MATERIALS 2010, 12, No. 5 � 2010 WILEY-VCH Verl
detachment, the applied stress is relaxed belowffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pw0E�=2b

p
� d0E�=2b (i.e., the value of the equilibrium

applied stress at a¼ b), the half-spaces will be drawn unstably

into complete adhesion with a falling to zero. The model

shows that an infinite applied stress is then required to pull

the half-spaces apart again; as in the previous discussion, this

feature is a limitation of the model and a van der Waals or

Dugdale model of interaction between the surfaces would

provide a finite separation strength. It should be noted that the

feature in this case in which there is no stable, finite

detachment size at zero applied load arises because the

adhesion energy is sufficiently strong that it overcomes the

elastic resistance to closure of any finite detachment.

Discussion

It has been shown that a dimple on the surface of an elastic

half-space adhering to the boundary plane of another elastic

half-space introduces interesting features into the phenomena

of adhesion. When the adhesion is weak, the elastic materials

involved are relatively stiff, and the dimple is sufficiently deep

[i.e., as in Fig. 4(a)], bi-stable adhesion prevails. In the

completely adhered state, a large applied stress is required to

initiate detachment of the surfaces. This process will occur at

first in a stable manner as the applied stress is increased, with

the detachment radius gradually and stably becoming larger.

At a critical level of the applied stress, the process becomes

unstable, leading to complete detachment if the applied load is

maintained. On the other hand, if the applied stress is reduced

quickly to zero while this unstable detachment is occurring,

the detachment radius can be arrested in a stable configura-

tion. If the applied load is thereafter increased, stable

extension of the detachment can be reinitiated. This process

will continue until a second, lower, critical value of the

applied stress is reached, whereupon unstable extension of the

detachment will again commence, this time with the two

half-spaces pulling away from each other to become

completely detached.

These processes can be reversed, with adhesion being

initiated by bringing the two surfaces into contact with each

other to create a weakly adhered state with a finite region of

detachment present. This weakly adhered state can be

converted to a strongly adhered state by application of

compression up to a critical level, whereupon the finite,

detached segment at the interface will disappear. Thus, the

system can be made to switch back and forth between a

strongly adhered state and a weakly adhered condition. The

weakly adhered state can be converted to the strongly adhered

condition by the application of compression. Similarly, with

careful control of the applied tension, the strongly adhered

state can be converted to the weakly adhered condition.

These bi-stable states of adhesion controlled by the

presence of a dimple may have practical significance, e.g., if

it is desirable to instigate adhesion of the two bodies so that

they can be readily pulled apart in some situations, but not in

others. The usefulness of a one way system that can be
ag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 393
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converted from the weak state to the strong state is obvious. It

can be used in processes such as placement where a final,

strong state of adhesion is undesirable until it is ascertained

that the placing of the adhered component is correct. A

disadvantage of the envisaged design of the paired surfaces is

that the conversion from the strong state of adhesion to the

weak one requires delicate application of tension to avoid

unintentional separation of the surfaces. However, it is

conceivable that the dimple shapes could be manipulated

by, say, microfluidic channels in the underlying material[3] to

reduce the depth of the dimples while the system is in its

strongly adhered state. This step would make it easier to

create a fresh detachment at the dimples, thereby reducing the

tension necessary to convert the strong state of adhesion to the

weak one.

Note also that paired surfaces with dimples of varying

sizes spaced some distance apart would introduce progressive

attachment and detachment in a reversible manner. This

process would involve the shallowest dimples popping into

intimate adhesive contact first at low levels of compression,

with deeper ones adhering later as greater levels of

compression are applied, until eventually all areas of

detachment are eliminated at the highest level of compression.

The adhered surfaces could then be detached from each other

in a stable manner, with low tension causing the deepest

dimples to switch first from intimate adhesion to a partially

detached state, followed by the shallower ones doing so as the

tension is increased. As the tension is increased, the

detachments around the deeper dimples would then start

to grow unstably, and the two surfaces would come apart.

Other phenomena might become important when the

adhering surfaces have many dimples that are close together.

It has been observed in experiments on fibrillar and patterned

surfaces that adhesion is stronger than when the adhering

surfaces are without fibrils or patterns, i.e., smooth and/or

flat.[8–10,14–18] If the dominant phenomenon is the propagation

of the detachment through the forest of closely-spaced,

patterned features or fibrils, it is observed in the experiments

that the front of the detachment becomes very irregular in

shape. The greater adhesive strength for such surfaces can be

rationalized as the effect of trapping of the detachment front in

regions where the energy release rate at the detachment front

is low due to its shape, perhaps also associated with regions of

high adhesion energy caused by the complex patterning of the

surface.Wewould expect the adhesion phenomena addressed

in the current paper to be associated with widely separated

dimples, with a transition to the trapping mode of detach-

ment, along with enhancements to the dissipation of stored

elastic energy, occurring for more closely spaced ones. Some

insights on this point are available from the work of

Johnson,[7] Hui et al.,[8] and Guduru[10] on the adhesion of

periodically wavy surfaces.

Finally, we emphasize that the deductions drawn from our

analysis do not depend on the special shape of dimple selected

for our study (Fig. 1). This shape was chosen because the

elasticity and fracture mechanics associated with the analysis
394 http://www.aem-journal.com � 2010 WILEY-VCH Verlag GmbH & C
of adhesion are essentially trivial, and do not require extensive

numerical methods or partial differential equations. We

believe that our results are representative of the effect of an

arbitrary dimple, other than one having a nearly orthogonal

intersection with the free surface.

Conclusions

A dimple on the surface of a half-space having an adhesive

interaction with another half-space can introduce a stable state

of adhesion between the half-spaces in which there is a finite

region of detachment at zero applied load. This occurs when

the materials are relatively stiff, the dimple is deep and the

adhesion is relatively weak. When the materials are more

compliant, the dimple is shallower and the adhesion is

stronger, this stable state of adhesion with a detachment at the

dimple at zero applied load does not occur. When the stable

state of adhesion exists at zero applied load, with a

detachment at the dimple, the surfaces can be pulled apart

relatively easily by causing the detachment to propagate

under tension. If compression is applied to the stable state of

adhesion having a detachment present at the dimple at zero

applied load, the detachment can be made to disappear

completely, and a strong state of intimate adhesion is created.

In such a state, the half-spaces will be more difficult to

separate by application of applied load. Such bi-stable,

switchable adhesion may have some practical utility in the

development of adhesion systems.
Appendix I

Calculation of the Energy Release Rate, G: If a� b, the stress at

the interface prior to relaxation due to detachment is given by

Equation (5a) everywhere on the surfaces of the detachment. If

a> b, the interface stress within the detachment prior to

relaxation is given by Equation (5a) where r� b, and by

Equation (5b) in the segment where b< r� a. Consideration of

fracture mechanics then gives us the Mode I stress intensity

factor at the perimeter of the detachment as[13]

KI ¼
2

p
sA þ d0E�

2b

� � ffiffiffiffiffiffi
pa

p
a � b (I.1a)

KI ¼
2

p
sA þ d0E�

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r !" # ffiffiffiffiffiffi
pa

p
a > b (I.1b)

Due to the lack of shear stress at the interface, the Mode II

and Mode III stress intensity factors are zero. It then follows

that the energy release rate, G, at the edge of the detachment is

given by[7]

G ¼ K2
I

2E� (I.2)

Thus

G ¼ 2aE�

p

sA

E� þ
d0

2b

� �2

a � b (I.3a)
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G ¼ 2aE�

p

sA

E� þ
d0

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r !" #2
a > b (I.3b)

For equilibrium, the energy release ratemust be equal to the

adhesion energy, w0. Replacement of G by w0 in Equation (I.3)

and rearrangement then gives the applied stress in equili-

brium with a detachment of radius a. This result is stated in

Equation (6).

Appendix II

Detachment Stability: Consider the stability of a detachment,

i.e., its response to perturbations of its radius when the

applied stress is held fixed. Stable equilibrium configurations

are associated with a global or local minimum of the potential

energy, U(a, sA), of the system, with U consisting of

contributions from the elastic, surface and interface energies,

plus the potential energy of the applied load.[1] A standard

result from fracture mechanics[19] provides us with

@U

@a
¼ 2pa w0 � G½ � (II.1)

Equilibrium is thus associated with the condition @U=@a ¼ 0,

giving rise to the requirement G¼w0 utilized above.[19] A

consequence of Equation (II.1) is that a stable equilibrium state

exists if @G=@a < 0. FromEquation (I.3a) it is thus clear that the

equilibrium configuration is unstable when a< b, a fact that is

well-known from fracture mechanics.[20] Differentiation of

Equation (I.3b) gives for a> b

@G

@a
¼ 2E�

p

sA

E� þ
d0

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r !" #

� sA

E� þ
d0

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r !
� d0

b

b2

a2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r
2
664

3
775 (II.2)

Use of Equation (I.3b) again then provides

sA

E� þ
d0

2b
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r !" #
¼

ffiffiffiffiffiffiffiffiffiffi
pG

2aE�

r
(II.3)

and substitution of this into Equation (II.2) leads to

@G

@a
¼

ffiffiffiffiffiffiffiffi
8Ga

pE�

r ffiffiffiffiffiffiffiffiffiffiffiffi
pGE�

8a3

r
� d0E�

2b

b2

a3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r
0
BB@

1
CCA (II.4)

The observation from Equation (6b) that in the equilibrium

condition

@sA

@a
¼ d0E�

2b

b2

a3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pw0E�

8a3

r
(II.5)
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and that G¼w0 allows Equation (II.4) to be converted to

@G

@a
¼ �

ffiffiffiffiffiffiffiffiffiffi
8w0a

pE�

r
@sA

@a
(II.6)

Since the square root term is positive, this equation

demonstrates that in the equilibrium configuration the

gradient of the energy release rate with respect to the radius

of the detachment has a sign opposite to that of the gradient of

the applied stress. Thus, stability of the equilibrium config-

uration is assured if @sA=@a > 0, where sA is the applied stress

in equilibrium with a detachment of radius a as given by

Equation (6).

Appendix III

Stability of Detachment Growth in a Cohesive Zone (Dugdale)

Model: The question of stability of detachment growth will be

addressed only at the stagewhere the traction free detachment

appears whilst fully adhered surfaces are being pulled apart

by a tensile applied load. At lower levels of the applied load,

the interaction of the surfaces is encompassed by the cohesive

interaction where there is a separation of the surfaces. When

the critical separation, Dad, is reached, a traction free

separation will appear and grow in length. We are interested

in whether the growth of this zone occurs under a rising

applied load or if it involves the reduction of the load and,

therefore, instability of the process. Ideally, we should do this

by addressing the axisymmetric problem presented by our

dimple. However, the relevant results are not available in a

simple form, making numerical computations necessary.

Instead, we analyze the plane strain situation and infer our

assessment from that.

The plane strain problem can be undertaken with reference

to Figures 1–3. However, now the shape of the upper surface

in Figure 1 is given by[21]

d xð Þ � d bð Þ ¼ d0x

b ln 4
ln

b � x

b þ x
� d0

ln 4
ln

b2 � x2

4b2
x

b
� 1 (III.1a)

d xð Þ � d bð Þ ¼ d0x

b ln 4
ln

x � b

x þ b
� d0

ln 4
ln

x2 � b2

4b2
x

b
� 1 (III.1b)

where x has been used instead of the parameter r of the figure to

emphasize the plane nature of the problem being addressed.

Note that this shape suffers from the usual difficulty of

divergence at infinity associated with half space problems in

planar analysis; this feature will not cloud the insights we obtain.

When the two surfaces are fully adhered to each other as in

Figure 2, but without applied load, the tensile traction on the

interface between them is given by

T ¼ pE�d0
b ln 4

x

b
� 1 (III.2)

and zero elsewhere. Therefore, when a stress, sA, is applied, as

in Figure 2, the traction across the interface, when the surfaces
ag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 395
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are fully adhered with no gap between them, is

szz ¼ sA þ pE�d0
b ln 4

x

b
� 1 (III.3a)

szz ¼ sA

x

b
� 1 (III.3b)

Therefore, Equation (III.3a) replaces the notation on Figure 2

regarding the stress or traction at the interface between �b and

b.

When szz at the interface reaches the adhesive strength, sad,

a gap, D(x), will appear between the surfaces, extending out to

the location jxj ¼ c� b. As long as D xð Þ � Dad everywhere, the

parameter c is obtained in the usual way by considering there

to be a crack extending to length 2c and setting its stress

intensity factor[13]

KI ¼ sA � sadð Þ þ 2E�d0
b ln 4

sin �1 b

c

� �� � ffiffiffiffiffi
pc

p
(III.4)

to zero, giving

c ¼ b csc
sad � sAð Þb ln 4

2E�d0

� �
(III.5)

In this circumstance, the gap at x¼ 0 is[13]

D 0ð Þ ¼ 4d0
ln 4

coth �1 sec
sad � sAð Þb ln 4

2E�d0

� �� �
(III.6)

and elsewhere the gap is smaller.

The results in the previous paragraph are valid until

D 0ð Þ ¼ Dad, at which stage a traction free section of detachment

will begin to appear at x¼ 0, since the two surfaces will there

be moving away from each other beyond the interaction limit,

Dad. The applied stress at which the traction free detachment

will appear is thus given by

sA ¼ sad �
2E�d0
b ln 4

cos �1 1

coth
Dad ln 4

4d0

� �
2
664

3
775 (III.7)

and the results in the previous paragraph are valid for values

below this level. Note that as Dad approaches zero, and

therefore as Dad becomes very large, the value of the applied

stress at which the traction free detachment appears is, to first

order,

sA ¼ sad �
pE�d0
b ln 4

þ E�Dad

2b
(III.8)

so that sAþT lies above sad by a very small fraction of E�. The

corresponding value of c is given to first order by

c ¼ b 1þ 1

2

Dad ln 4

4d0

� �2
" #

(III.9)

For values of applied stress higher than that given in

Equation (III.7), a traction free detachment of length 2a is

present and is symmetric about the origin. The relationship

among the applied stress, c and a is obtained by calculating the
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stress intensity factor for a crack of length 2c,[13]

KI ¼ sA � sadð Þ þ 2E�d0
b ln 4

sin �1 b

c

� �
þ 2sad

p
sin �1 a

c

� �� � ffiffiffiffiffi
pc

p

(III.10)

and setting it to zero, thereby requiring the term in the brackets

in Equation (III.10) to disappear. The gap at x¼ a for the case

a< b is then given by[13]

D að Þ ¼ 4d0
ln 4

coth �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=cð Þ2

1� b=cð Þ2

s" #
� a

b
coth �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=að Þ2�1

c=bð Þ2�1

s" #( )

þ 4sada

pE� ln
c

a
(III.11)

and the cohesive zone law requires this to be equal to Dad,

furnishing a condition that must be satisfied by a and c. It follows

that, together, Equation (III.10), with KI¼ 0 and Equation

(III.11), with D að Þ ¼ Dad, provide the equations from which the

dependence of sA on a can be obtained.We are interested in the

value of dsA/da when a¼ 0 to determine whether it is positive

(stability with a rising applied stress) or negative (instability

with a falling applied stress). Therefore, we should differentiate

Equation (III.10) and (III.11) with respect to sA, c, and a,

subject to KI¼ 0 and D að Þ ¼ Dad, and then solve the resulting

simultaneous equations for dsA/da, with a¼ 0. Such a procedure

produces

dsA ¼ � 2E�d0
b ln 4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=cð Þ2

q d
b

c

� �
� 2sad

p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=cð Þ2

q d
a

c

� �
(III.12)

and

sadb ln 4

pE�d0
d

a

c
ln

c

a

� �h i
� a

b
ln

c

a

� �
d

b

c

� �� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=cð Þ2

1� b=cð Þ2

s
d

b

c

� �
� coth �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=að Þ2�1

c=bð Þ2�1

s" #

� d
a

c

� �
� a

b
d

b

c

� �� �
¼ 0 (III.13)

In the limit as a goes to zero, the dominant terms fromEquation

(III.13) balance according to

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=cð Þ2

q d
b

c

� �
¼ sadb ln 4

pE�d0
d

a

c
ln

c

a

� �h i
(III.14)

and then Equation (III.12) gives us

lim
x!0

dsA

da
¼ � lim

x!0

2sad

pc
ln

c

a

� �
¼ �1 (III.15)

demonstrating that the applied stress immediately falls rapidly

as the detached zone with zero traction appears and grows to

finite length. As noted above in connection with Equation

(III.8), whenDad is very small, this event will take place when sA
lies above sad�T by a small amount. From these results, we

infer that a similar behavior will occur for an axisymmetric
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2010, 12, No. 5
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dimple, and represent this with a dashed line marked

sad 1; Dadh i0 2 in Figure (4a).
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