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ABSTRACT 
 In this paper, we derive an exact one-dimensional rule 
for predicting mass loading effect due to electrodes by 
analyzing a FBAR structure consisting of a piezoelectric layer 
and two electrodes in longitudinal resonance. We validate the 
numerical scheme using aluminum nitride as the piezoelectric 
material and gold and aluminum for the top and bottom 
electrodes respectively. Results are compared with three-
dimensional finite elements simulations obtained earlier. It is 
seen that the new rule predicts higher values of the resonant 
frequency and constitutes an improvement over an elementary 
rule particularly for electrodes thicknesses greater than 20% of 
the piezoelectric layer thickness.   
 
 

INTRODUCTION 
 Arrays of microelectromechanical (MEM) film bulk 
acoustic resonators (FBARs) are widely used in the 
communication industry as RF filters in the ultra-high-
frequency regime [1]-[9]. A one-dimensional analysis shows 
that for an ideal FBAR resonator consisting of a piezoelectric 
layer alone, i.e. a device with electrodes of negligible thickness, 
the first longitudinal resonance is inversely proportional to the 
layer’s thickness [10]-[12] according to the relation f=V/2h 
where V is the material’s acoustic velocity and h the 
piezoelectric plate thickness, allowing structures a few microns 
thick to have the potential of reaching the frequencies in the 

GHz range such are those needed for wireless communication 
devices [1]. However there is practical limit to how thin 
electrodes might be and inevitably, the effect of electrode 
thickness must be taken into account in the analysis to 
accurately predict the performance of FBAR resonators. FBAR 
device performance is mainly evaluated by means of the 
effective acoustic coupling coefficient K2 and the quality factor 
Q [11]-[12]. K

2 combines the elastic, piezoelectric and 
dielectric material coefficients and is a measure of the ability of 
the piezoelectric material to convert electrical energy into 
mechanical energy. High values of K2 are desirable and indicate 
low insertion loss. The quality factor Q measures mechanical 
losses due to damping and is an indication of the sharpness of 
the resonant response of the system [10]-[12].  Values of Q on 
the order of 103 are expected in electronic applications such as 
those discussed but imply very low damping coefficients which 
has been proven difficult to achieve in practice because of the  
complex geometry of FBAR devices and the many locations 
where energy can dissipate [1]-[9]. Multiple collaborative 
efforts to study FBAR loss mechanisms and to improve their 
performance have taken place during the last ten years [1]-[9], 
[14]-[16]. Recently, three teams (Fabrication, Materials 
Processing and Simulations) at the University of California at 
Santa Barbara (UCSB) have taken part in this research effort. 
Measurements of a beam-supported aluminum nitride FBAR 
device also fabricated in the UCSB facility were compared with 
three-dimensional results. The simulations were performed with 
the commercial software Abaqus. The simulation team has 
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focused on provide information useful to researchers at the 
design stages since fabricating in the lab various configurations 
of resonators would be extremely difficult and costly. The 
device fabricated at UCSB and the mesh used in the simulations 
are shown on Figure 1. We also compared three-dimensional 
finite element results to one-dimensional analytical ones with 
the goal of determining if a three-dimensional analysis was 
necessary to evaluate the performance of the device or if certain 
key parameters could be evaluated with a simple one-
dimensional analysis. This is the object of this paper. 
  

 
 

 
Figure 1.  a) 3x3 Array of AlN trampoline resonators 

fabricated at UCSB (reproduced with permission of N. C. 

Mac Donald et al. at UCSB) and b) the Finite Element mesh 

of the trampoline resonator used in simulations. 
 
The immediate effect of taking into account the effect of 
electrodes in FBAR studies is the decrease of the value of the 
resonant frequency of the resonating system according to a one-
dimensional spring-mass system model [10]-[13] and known as 
mass loading effect. This in turn, affects the K

2 and Q 
parameters as they are directly related to the pair of resonant 
frequencies which occur in  piezoelectric materials:  the 
frequency that will cause the electric impedance to be zero is 
the resonant frequency fR and the one which will result in an 
infinite electric impedance is called the anti-resonant frequency 
fa [10], so strictly speaking, the frequency which is inversely 
proportional to the piezoelectric layer’s thickness discussed 
above is the anti-resonant frequency. 
 To evaluate the (anti)-resonant frequency of a structure 
consisting of more than one piezoelectric film, a simple rule 
used in practice [11] is to approximate its value as f=1/2 
(h1/2V1+ h2/2V2+h3/2V3)

-1
 where the h’s refer to the thickness 

of each material layer and the V’s are the associated acoustic 
velocities. Note that for electrodes of negligible thickness, we 
recover f=V1/2h1 as described above. In this paper, we derive a 
one-dimensional rule for mass loading effect due to electrodes 

by analyzing a composite FBAR structure consisting of a 
piezoelectric layer sandwiched between two electrodes. The 
device is placed in an electrical field directed along the device 
thickness. The electrode’s faces are orthogonal to the axis of 
polarization so that through-thickness vibrations result. We 
validate the analytical scheme using aluminum nitride (AlN) as 
the piezoelectric material and gold and aluminum as the top and 
bottom electrodes respectively. Results are compared against 
three-dimensional finite element simulations values we obtained 
earlier. Details of the device fabricated at UCSB and the 
material processing techniques used can be found in [16]-[18] 
while the methodology used in the finite element simulations of 
the resonator can be found in [19]-[20].  
 
 

DEVICE DESCRIPTION 
 The geometry of the device simulated is depicted on 
Figure 2 a. It consists of a trampoline shape resonator, i.e.  a 
circular resonator 300 µm in diameter suspended over an air 
cavity supported by four beams 300 µm long and 24 µm wide. 
Both the circular resonator and the beams are made of AlN. The 
piezoelectric layer is sandwiched between a gold and an 
aluminum electrode. The gold electrode covers the circular 
portion of the resonator only.  Aluminum nitride was chosen for 
its desirable properties: a high acoustic velocity (~11000m/s), a 
good effective coupling coefficient (K2~6.2%) and piezoelectric 
coefficient (1.55 C/m2) and a coefficient of thermal expansion 
comparable to that of silicon [14]. AlN is also process 
compatible with silicon technology [14].  With such acoustic 
velocity, an ideal FBAR device made of an aluminum nitride 
layer 1.7 µm thick and electrodes of negligible thickness, would 
resonate at 3.2 GHz. The device is forced by an electric filed 
oriented perpendicular to the electrodes faces. The mechanical 
and boundary conditions enforced in the simulations are shown 
on Figure 2 b. The aluminum nitride top surface is maintained 
at a constant potential while the bottom surface is fixed at zero 
potential. Thin layers of nickel and aluminum respectively 0.04 
µm and 0.02 µm each were initially added at the fabrication 
stages but were later abandoned in view of the difficulties 
associated. A set of simulations take them into account (5-layer 
simulations) while another set does not (3-layer simulations). In 
both models, the support-beams are prevented any displacement 
which limits the dissipation of energy between the resonator and 
its immediate surrounding. Material damping as a form known 
as Raleigh damping is accounted for in the simulations.  

THEORY 
 

 We recall that the three-dimensional constitutive 
equations of lossless piezoelectric materials, assuming constant 
temperature, are given in a body of volume V by  

E T

S

{T}=[c ]{S}-[e] {E}

{D}=[e]{S}+[ε ]{E},
   (1) 

where in Cartesian coordinates, {T}
T= {T11 T22 T33 T23 T13 T12} 

is the array of stress components, the superscript T indicating 
the transpose, {S}

T= {S11 S22 S33 S23 S13 S12}  is the array of 
strain components, {E}

T= {E1 E2 E3}
T is the array of electric 

field components, and {D}
T= {D1 D2 D3}

T
  is the array of 

a) 

b) 
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components of electric displacements [10]. In the context of 
small deformation theory, the components of strain are given in 
terms of the displacement components ui, as Sij=(ui,j + uj,i)/2, 
where ui,j indicates the partial differentiation of ui with respect 
to position xj. The components of electric field are given by 
Ei=- ϕ i where ϕ is the electric potential. The elasticity matrix at 
constant electric field is [cE

], the dielectric permittivity matrix 
at constant strain is [εεεεS

] and [e] is the matrix of piezoelectric 
coefficients.  
 

 

 

 
 

Figure 2. a) Schematic of the AlN trampoline resonator with 

gold-aluminum electrodes used in the 3D FEM simulations. 

b)  Mechanical and electrical boundary enforced in the 

simulations.  

 
 As it is well known, (1) cannot be solved in closed 
form for the mechanical displacements and the electrical 
potential for any but the simplest geometries and boundary 
conditions [10] unlike the one-dimensional case which can be 
solved exactly. We now specify the one dimensional equations 
relevant to a structure which includes electrodes. We point out 
that comparing a damped three-dimensional simulation model 
to an undamped one-dimensional analytical model creates no 
problem. This is because it can be shown that for a lightly 

damped system as the one at hand, the damped and undamped 
resonant frequencies only differ slightly [23]. 
 
 

ONE-DIMENSIONAL SOLUTION OF COMPOSITE 
STRUCTURE 

      
 Figure 3 is a schematic of the FBAR structure we 
analyze. It consists of a piezoelectric layer of thickness h2 with 
a top electrode and a bottom electrode respectively h1 and (h4-
h2) µm thick and placed in an electrical field directed along the 
x3 (-z) axis. We utilize the subscript 'p' for the quantities 
pertaining to the piezoelectric layer and the subscript 'i' or 'e' for 
the top or bottom electrode respectively. The electrode’s faces 
are oriented orthogonally to the axis of polarization. The one-
dimensional model is valid for our structure because the 
thickness of the piezoelectric layer where acoustic waves are 
produced is much less that all other characteristic lengths and 
the electrodes’ lengths are much greater than their thickness 
[10].  Additionally, the electrical field is only directed along the 
polarization axis which is a necessary assumption for the one-
dimensional model to hold. 
  

EEqquuaattiioonnss  ggoovveerrnniinngg  tthhee  ppiieezzooeelleeccttrriicc  llaayyeerr  
 

AAssssuummiinngg  tthhaatt  iinn  tthhee  ppiieezzooeelleeccttrriicc  llaayyeerr,,  tthhee  ddiissppllaacceemmeenntt  uupp  
aanndd  tthhee  eelleeccttrriicc  ffiieelldd  EEpp  have  aa  hhaarrmmoonniicc  ddiissttrriibbuuttiioonn  ooff  
ffrreeqquueennccyy  ωω,,  the relevant one-dimensional equations for the 
stress Tp and the electrical displacement Dp are 

3 33 3,3 33 3

3 3 33 3,3 3

3 3 3 3 3 3

33

33

jωtT (x ,t)=T =(C u e E )e
p

jωtD (x ,t)=D =(e u + E )e
p

φ
p

u (x ,t)=u (x ,t),     E (x ,t)=E (x ,t)= 
p p x

3

ε

E

S

−

∂
−
∂

           (2)  

where 
3 3 3 3 3 3

φ
p

u (x ,t)=u (x ,t),     E (x ,t)=E (x ,t)= 
p p x

3

∂
−
∂

  

and t represents time.  
For simplicity, the superscripts E and S are omitted onward. 

        
In the absence of body forces, Newton’s law is  

33,3 p 3,ttT = uρ     (3) 

where ρp is the piezoelectric material’s density and in the 
absence of free charge in the material Gausses' law is 

  
3, 3

D =0 .
3, 3

D 0=

.          (4 ) 

Substitution of (2) in (3) and (4) yields the following system of 
equations 

 

2
33 3,33 33 p,33 p 3

33 3,33 33 p,33

C u +e φ = ρ ω u       

e u ε φ =0.

−

−
 (5) 

Solutions for the displacement and the electric potential in the 
piezoelectric material may be written 

a) 

b) 
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3 3p p

3

3 3

j(k x +ωt) j(k x ωt)
p p p

p
p p

p

u (x ,t)=a e +b e        

e
φ (x ,t)= u +ax +b,

ε

−−

 (6) 

where ap, bp, a and b are constants, j=√-1, kp=ω/Vp is the wave 
number in the piezoelectric material, Vp=√(Cp

D/ρp is the wave 
velocity and Cp

D=Cp
E+ep

2/εp is the material equivalent stiffness. 
Without any loss of generality, the constant b may be taken as 
zero.  

Using (6), (2) can be rewritten as 

( )
( )

p 3 p 3jk x -jk x jωt
p 3 p p p p

S jωt
p 3 p

T (x ,t)= jωZ a e -b e +e a e

D (x ,t)= ε a e ,

 
 

−
(7) 

where the mechanical impedance Zp=ρpVp of the piezoelectric 
material has been introduced. 

It can be shown [10] that for a moderate piezoelectric 
material (i.e. a piezoelectric material with an electromechanical 
coupling coefficient K<0.3, K2< 10% as is the case for AlN), 
(7) are more useful if written as  

( )p 3 p 3jk x jk x jωt0
p 3 p p p p

2

S jωt0
p 3 p

2

φ
T (x ,t)= jωZ a e b e +e e

h

φ
D (x ,t)= ε e .

h

− 
− 

 

 
−  
 

 (8) 

where ϕo is taken as the total electrical potential across the 
electrodes.  
 
Equations governing the electrodes 
 Because a metal is a dielectric material, the equations 
governing the behavior of the electrodes can be obtained by 
letting the piezoelectric constant e33 in (2) to be zero. The stress 
Ts and the electrical displacement Ds in the electrodes are 

 
( )
( )

jωt
S 3 S S,3

jωt
S 3 S S

T =(x ,t) C u e  

D (x ,t)= ε E e  .        
  (9) 

 
 

 
   

 

Figure 3.  Schematic of the FBAR structure used in the one-

dimensional analysis. The mechanical and electrical 

boundary conditions are shown. 
 
The equations equivalent to (5) are  

 
2

S S,33 S 3

S 3

C u = ρ ω u (x ,t)

D (x ,t)=0      
S−

   (10) 

 
and those equivalent to (6) are 

 

( )
s 3 s 3

s 3 s 3

j(k x t) (k x t )
S 3 S s

jk x jk x j t
S 3 S s s

s s

u (x , t) a e b e       

T (x , t) j Z a e b e e .

(a ,b  cons tan ts).

+ω − −ω

− ω

= +

= ω −       (11) 

   
In  (9)-(11), all the quantities hold analogous meanings as those 
previously described with the subscript s standing for either ‘i’ 
(the top electrode ) or ‘e’ (the bottom electrode). 
 
 
Solution for the three-layer composite structure 
 Complete solution of the problem at hand may be 
specified after the six unknown quantities ap, bp, ai, bi, ae, be are 
known. They can be determined from six boundary conditions  

  

e 4

p 2 e 2

p 2 e 2

p i

p i

i 1

T ( h ) = 0

u ( h )= u ( h )

T ( h )=T ( h )

u (0)= u (0)

T (0)=T (0)

T (h )=0.

−
 − −
 − −






  (12) 

The first and last conditions in (12) express that the external 
surfaces are stress free, while the second and third conditions 
represent the continuity of displacement and stress between the 
bottom electrode and the piezoelectric layer respectively 
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similarly to the fourth and fifth conditions which are  the 
conditions pertaining to  the piezoelectric material and the top 
electrode.  

Defining the phase angle of each layer by 
 

i i 1 p p 2 l e 4 r e 2k h      k h       k h     k hφ = φ = φ = φ = , (13) 
and bringing out the electrodes respective elastic impedances 
Zs=ρeVe  and Zi=ρiVi , yields the following system of equations,  

 

p 0

e p

p 2

p 0

i p

p 2

j jl l
e e

j j j jp p r r
p p e e

j j j jp p r r
p p e e

p p i i

p p i i

j ji i
i i

e

e

( )
e

(Z Z )
j Z h

e
(Z Z )

j Z h

a e b 0

a e b e a e b 0

a e b e a e b e

a b a b 0

a b (a b )

a e b e 0.

− φ φ

− φ φ − φ φ

− φ φ − φ φ

φ − φ

− =

+ − − =

− − − =

=

ϕ

ω

ϕ

ω









+ − − =

 − − −


 − =

 

(14) 
 

Equation (14) is 6x6 system of algebraic equations which is 
assured a non trivial-solution provided its principal determinant 
vanish, namely if the following condition is enforced 

 
i e p e

i p

(Z Z ) tan (Z Z ) tan
i p

tan( ) ,
l r 1 (Z Z ) tan tan

i p

φ + φ
φ −φ = −

− φ φ
(15) 

where l r e 4 2k (h h ).φ −φ = −   

 
We note that the limit case where (h4-h2) tends to zero in (15) 
yields the relation 

p ii pZ Z )tan  = ( tan ,φ φ−−−−      (16)  

a result that has be derived directly from the one-dimensional 
analysis of a two layer-structure [10] and corresponding to the 
case of a piezoelectric layer with one electrode. 
 
Validation 
 To assess the validity of this rule (15) and to provide a 
mean of comparison between the predicted and the simulated 
data, we use aluminum nitride as the piezoelectric layer, gold 
for the top electrode and aluminum for the bottom electrode. 
The aluminum nitride layer (h2) is 1.7 µm thick, the gold 
electrode thickness (h1) varies from 0.0675 µm to 0.54 µm and 
the desired output is the aluminum electrode thickness (h4-h2). 
The results are shown in Figure 4. In the ratio H/h2, H is the 
total thickness of the two electrodes (h1+(h4-h2). 
 We see that if the total thickness of the two electrodes 
is less than about 10% of that of the piezoelectric layer, there is 
no distinct advantage in using the new rule. Both the elementary 
and the new rule yield the same frequency decrease due to 
electrodes added mass. They also agree very well with the 
simulated data. When electrodes have thicknesses between 10 

and 20% that of the piezoelectric layer, there is a slight 
improvement of prediction of mass loading effect using the new 
one-dimensional model: the new rule yields a higher value of f. 
To illustrate, if the piezoelectric layer is 1.7 µm and the two 
electrodes combined thickness is 0.3 µm (~18%), the 
elementary rule predicts a resonant frequency of 2. 26 GHz 
(0.71*3.185 GHz), while the new rule predicts that the device 
will resonate at 2.29 GHz (0.72*3.185 GHz). The trend 
continues even for electrodes thicknesses greater than 20% of 
the piezoelectric layer thickness and the deviation remains 
about constant after 25%. The results also agree perfectly with 
those obtained from the simulations. We note that electrodes 
which account for more than 25 % of the piezoelectric thickness 
are unpractical and that the results are only plotted to illustrate 
the trend. Too thick electrodes would result in a wave being 
generated and bouncing back between the electrodes boundaries 
producing a mechanism for high energy loss and defeating 
device performance enhancement.  
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Figure 4. Comparison of one-dimensional analytical results 

with three-dimensional FEM simulations of AlN FBAR 

resonators in longitudinal resonance.  
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