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We present an algorithm for solving in parallel the Eikonal equation. The efficiency of our
approach is rooted in the ordering and distribution of the grid points on the available pro-
cessors; we utilize a Cuthill–McKee ordering. The advantages of our approach is that (1) the
efficiency does not plateau for a large number of threads; we compare our approach to the
current state-of-the-art parallel implementation of Zhao (2007) [14] and (2) the total num-
ber of iterations needed for convergence is the same as that of a sequential implementa-
tion, i.e. our parallel implementation does not increase the complexity of the underlying
sequential algorithm. Numerical examples are used to illustrate the efficiency of our
approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The Eikonal equation is fundamental in many applications including optimal control, computer vision [2,9], image pro-
cessing [7,11], path planning [1,6], and interface tracking [8]. In n spatial dimensions, this equation reads:
jruðxÞj ¼ f ðxÞ for x 2 X � Rn;

uðxÞ ¼ gðxÞ for x 2 C � X;
ð1Þ
where u is the unknown, f a given ‘‘inverse velocity field’’ and g the value of u at an irregular interface C. Within the level-set
technology, the Eikonal equation is used to ‘‘reinitialize’’ the level-set function, i.e. transform an arbitrary Lipschitz contin-
uous function into a signed distance function. This intermediate step must be repeated several times in the course of a typ-
ical free boundary problem solution so efficient algorithms are important. Efficient solutions are also needed in the case of
the aforementioned applications so that effective control strategies can be designed. There exist several fast algorithms to
solve the Eikonal equation sequentially but parallel implementations are less common. Given the ever increasing need of
efficiency and, in some cases, the limitation of sequential computer resources, it is desirable to develop an efficient parallel
method for the Eikonal equation. This paper introduces a simple, yet efficient approach.

The fast marching method (FMM) [12] is a popular technique that updates nodes on a front in the order of propagating
solutions. The method requires a sorting algorithm that is Oðlog NÞ, where N is the number of grid points, giving the FMM an
algorithmic complexity of OðN log NÞ. The fast iterative method (FIM) [4] solves the Eikonal equation by iterating over a list
of nodes, adding nodes as the list propagates and subtracting nodes as their solution’s value converges. FIM has complexity
OðNÞ and can be implemented in parallel [5], but may not have optimal parallel efficiency on all problems (e.g. when the
active list is small during much of the computation). The fast sweeping method (FSM) uses a nonlinear upwind difference
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scheme and alternating sweeping orderings of Gauss–Seidel iterations over the entire domain until convergence [13]. This
process is OðNÞ and the current state-of-the-art parallel implementation has been given in Zhao [14]. In this paper, we pres-
ent a novel parallel fast sweeping method for solving Eq. (1) that is simple to implement and achieves speedup near OðN=pÞ
in the ideal case, where p is the number of threads.

In Section 2 we recall the serial FSM algorithm and the parallel implementation of Zhao [14] before we describe our par-
allel implementation. We then present numerical results and compare them to the work of Zhao [14] in Section 3. We draw
our conclusions in Section 4.

2. Parallel fast sweeping algorithm

2.1. Fast sweeping method

In our exposition of the fast sweeping algorithm and its parallelization, we will restrict the problem to R2, but explain the
extension to R3 when it is not straightforward. Consider a computational domain discretized into a grid with I and J nodes in
the x- and y-directions, respectively. Let C be a one-dimensional interface describing the initial location from which the solu-
tion propagates. The FSM uses a Godunov upwind differencing scheme [9] on the interior nodes:
Fig. 1.
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that ord
unew
i;j � uxmin

� �þ� �2

þ unew
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where h is the grid spacing and the following notations are used:
uxmin ¼minðui�1;j;uiþ1;jÞ; and ðxÞþ ¼
x; x > 0;
0; x 6 0:

�

The problem is initialized by assigning exact (or interpolated) values at the grid points nearest the interface C [3], and
large positive values at all other grid nodes. The algorithm proceeds by sweeping through all the nodes and assigning a
new value to u by solving Eq. (2) (see [13] for the explicit solution’s formula) and updating the solution as
ui;j ¼ minðui;j;unew

i;j Þ. Fig. 1 illustrates the fact that sweeping ordering directly leads to the propagation of the boundary data
(on C) in the direction of the associated characteristics. Alternating sweeping ordering is used to ensure that the information
is being propagated along all four (or eight in three dimensions) classes of characteristics. Zhao showed that this method
converges in 2n sweeps in Rn [13] and that convergence is independent of grid size. The natural choice for sweep directions
is:
i ¼ 1 : I; j ¼ 1 : J; then i ¼ I : 1; j ¼ 1 : J; then i ¼ I : 1; j ¼ J : 1; then i ¼ 1 : I; j ¼ J : 1: ð3Þ
In the case where obstacles are present, such as in the case of Fig. 2, the process of four sweeps must be iterated until
convergence. The algorithm is described in Algorithm 1 (left).

2.2. The parallel implementation of [14]

In [14], Zhao presented a parallel implementation of the FSM method described in Section 2.1: The strategy is to sweep
through all four orderings simultaneously, assigning each ordering to a separate thread (see Fig. 5). This generates a separate
temporary solution ui;new; i ¼ 1;2;3;4 for each thread. After each sweeping is finished, the data is synchronized according to
Hypothetical distance function calculation from a source point (center). This figure is a snapshot of the calculation midway through sweeping
g 1. Nodes with red dots indicate an updated solution. This illustrates that each ordering corresponds to a class of characteristic curve. It can be seen
ering scheme 1 propagates information along the % or first quadrant characteristics into the entire shaded (upper right) region.



Fig. 2. Illustration of how data propagates from a source point (center, red) through the sequence of sweeps given by (3) in the case of the serial FSM. The
blue arcs represent obstacles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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unew
i;j ¼minðu1;new

i;j ;u2;new
i;j ;u3;new

i;j ;u4;new
i;j Þ for all i; j. Algorithm 1 (center) gives a pseudocode. This method can generate up to four

threads in two spatial dimensions and eight threads in three spatial dimensions. In order to utilize an arbitrary number of
threads in parallel, Zhao [14] uses a domain decomposition strategy where the domain is split into rectangular subdomains
so that computations in each subdomain can be carried out simultaneously. In the next section we present a highly parallel
FSM method that does not require domain decomposition. Of course, we could in addition use a domain decomposition ap-
proach as in [14]. However, domain decomposition may in some cases limit the distance data can propagate in a single iter-
ation and may lead to poor performance as the number of processors becomes large (i.e. the decomposed domain size
becomes small). This notion motivates our choice of a benchmark method for comparison with the approach of Zhao [14]
without domain decomposition.
2.3. Present method

Our parallel fast sweeping method follows the same procedure as that presented in Section 2.1 except for one significant
change: the present work still uses four (resp. eight) sweeping orderings in two spatial dimensions (resp. three spatial
dimensions) to represent all classes of characteristics, but chooses the direction of sweepings in a manner which allows
for sets of nodes to be updated simultaneously. In turn, this leads to performances that do not plateau as the number of
threads increases. An illustration is given in Fig. 5.

Specifically, we use a Cuthill–McKee type ordering [10], an example of which is depicted in Fig. 3. Here we define the level
of a node ði; jÞ as level¼ iþ j. In Rn, this ordering allows for a ð2nþ 1Þ-point stencil to be updated independently of any
other points within a single level. Fig. 3 illustrates the ordering in two spatial dimensions and the inset depicts that the dis-
cretization is independent of any other nodes within a level (along a solid blue line in Fig. 3). This property allows for the
update of Eq. (2) to be executed in parallel for all the nodes in one level with no threat of a data race or corrupted data.

In Rn, a pseudocode for our parallel implementation is given in Algorithm 1 (right), where updateðui;jÞ solves Eq. (2) at
the grid node ði; jÞ. First, the problem is initialized exactly as in the original FSM; note that this step is embarrassingly
Fig. 3. Example of Cuthill–McKee sweeping ordering for a 2D problem (computation of the distance from a center source point). The inset illustrates that
nodes along a level are uncoupled from all other nodes along that level. The data from the source point will propagate into the entire shaded region.
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parallel. To iterate through the different sweeping directions, we first rotate the axes to correspond to the correct ordering,
then sweep though the domain in parallel with the Cuthill–McKee ordering. The process is aborted when it has converged to
within a desired tolerance. The notation parallel for, is borrowed from OpenMP and simply divides all the iterations of
the loop among the available threads. For values of level, � p (where p is the number of threads) the division of work
among processors is very near equal and speedup is expected to be linear. When level, < p, the work cannot be shared
by all processors and speedup suffers. For large problem, however, these cases become rare and we expect speedup to be
near linear, giving the method a complexity OðN=pÞ, with N the total number of grid points.

Algorithm 1. FSM algorithms considered in this work
1

2

Serial FSM
The two dimensional case is straightforward.
We note that this was first pointed out in [14].
Parallel implementation of [14]
 Present work
initialize (u)
 initialize (u)
 initialize (u)

for (iter = 1:max_iter) do
 for (iter = 1:max_iter) do
 for (iter = 1:max_iter) do
for ordering=1 : 22
 parallel for ordering=1 : 22
 for ordering=1 : 22
rotate_axes (ordering)
 uordering ¼ u
 rotate_axes (ordering)

for i = 1:I do
 rotate_axes (ordering)
 for level = 2:I + J do

for j = 1:J do� �
 for i = 1:I do
 I1=max (1,level-J)
update uij
 for j = 1:J do
 I2=min (I, level-1)
update uordering
ij

� �

parallel for i= I1 : I2 do
for i = 1:I do
 j = level-i

for j = 1:J do
 update ðuijÞ
uij ¼min u1
ij;u

2
ij;u

3
ij;u

4
ij

� �
2.4. Load balancing

We use the following strategy to assign groups of nodes to different threads in a balanced fashion in three spatial dimen-
sions1: Referring to Fig. 4(a), let’s assume that we want to distribute the load on 3 threads. Along the constant i-direction, the
number of nodes involved are 2 nodes for i ¼ 1 plus 2 nodes for i ¼ 2 plus 3 nodes for i ¼ 3 plus 2 nodes for i ¼ 4 plus 1 node for
i ¼ 5. Those are represented in Fig. 4(b) (Step 1) by the black symbols. The second step seeks to iteratively split the nodes in
groups of comparable sizes using a bisection approach. In the case of Fig. 4(b), the first iteration (Step 2a) groups the nodes
for i ¼ 1 and i ¼ 2 together for a total of 4 nodes on one hand (red symbols), and the nodes for i ¼ 3; i ¼ 4 and i ¼ 5 together
for a total of 6 nodes on the other hand (blue symbols). Note that grouping the nodes for i ¼ 3 with the first group would give a
grouping of 7 nodes on one hand and a grouping of 3 nodes on the other hand, hence a bias towards one group. The process
repeats iteratively, subdividing the first group into two subgroups of 2 nodes each; and subdividing the second group into a
subgroup of 3 nodes and another of 2 + 1 nodes, as illustrated in Fig. 4(b) (Step 2b). This iteration process ends when the number
of subgroup is greater or equal to the number of threads.

In the case where the number of subgroup is greater than the number of threads, one needs to collapse some of the sub-
groups together in such a way as to make the number of subgroups equal to the number of threads. We first locate the small-
est subgroup, e.g. in the case of Fig. 4(b) (Step 3), we choose between one of the subgroups with 2 nodes by looking at which
subgroup has two neighboring subgroups. In general, if more than one exists, we simply choose one randomly (i.e the first
one encountered). Then we collapse with the smallest subgroup chosen, its neighboring subgroup with the less number of
nodes (Step 4). In this fashion the number of nodes assigned to each thread is 4, 3 and 3, which gives a balanced load. We
note that other approaches could be used and refer the interested reader to [10] and the references therein.

2.5. Pros and cons

An advantage of the parallel implementation of [14] is its simplicity. In the case where the number of dedicated threads is
4 (in 2D) or 8 (in 3D), straightforward modifications of the serial implementation will result in a speedup of the algorithm.
Our method is less straightforward but offers significant advantages: (1) The updates are the same as those in the serial case,
i.e. they use the newly computed values of previous updates. In turn the number of iterations needed in our parallel imple-
mentation is equal to that of the serial algorithm. This is in contrast with the update mechanism of [14], which translates
into more iterations needed for the algorithm to converge.2 This point is illustrated in Fig. 5. (2) The memory use of the present
work is the same as for the serial implementation, whereas the implementation of [14] requires 4 (in 2D) and 8 (in 3D) times the



Fig. 4. Left: Cuthill–McKee ordering in three spatial dimensions. The solid symbols represent the grid points in X� at which the solution is to be computed
and the open symbols represent region of obstacles. Right: schematic of the strategy to balance the load on 3 threads.
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resource of memory. (3) This overhead in memory also translates in CPU overhead. Our computational experiments seem to
indicate that the parallel overhead in [14] adds computational time comparable to that induced by the creation and synchro-
nization of threads in our algorithm. (4) More importantly, any number of threads will be effective in our case and will not suffer
from a plateau effect in performance. These points are illustrated in the next section.
3. Numerical experiments

In this section we demonstrate the effectiveness of the method and compare it to the benchmark parallel method of [14].
All tests were run on DL580 nodes with 4 Intel X7550 eight core processors each.

3.1. Example problems

3.1.1. Example 1
Eq. (1) is solved in two dimensions with variable and discontinuous propagation speed. The problem is specified by:
f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
13x2 þ 13y2 þ 24xy

p
; x 2 fxjx1 > 0; x2 > 0g;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; otherwise;

(
x 2 X ¼ �1;1½ �2;

gðxÞ ¼ 0; x 2 C ¼ 0;
3.1.2. Example 2
We consider the computation the distance function from a center source point in a three dimensional cubic domain with

four concentric spherical obstacles. The mathematical description is given by:
f ðxÞ ¼
1; x 2 A;

1; otherwise;

�
x 2 X ¼ �1;1½ �3;

gðxÞ ¼ 0; x 2 C ¼ 0;
where A ¼ A1 [ A2 [ A3 [ A4 with
A1 ¼ fxjð:3 < jxj < :3þ width; Þg n ððx2
1 þ x2

2 < :1Þ \ x3 < 0Þ;

A2 ¼ fxjð:5 < jxj < :5þ width; Þg n ððx2
1 þ x2

2 < :1Þ \ x3 < 0Þ;

A3 ¼ fxjð:7 < jxj < :7þ width; Þg n ððx2
1 þ x2

2 < :1Þ \ x3 < 0Þ;

A4 ¼ fxjð:9 < jxj < :9þ width; Þg n ððx2
1 þ x2

2 < :1Þ \ x3 < 0Þ
and width = 1/12.
Note that we have used the n operator to indicate a set theoretic difference.



Fig. 5. Schematics of how data propagates from a source point (center, red) using our parallel implementation and that of [14]. The blue arcs represent
obstacles. At the end of one iteration (the four sweeps), our parallel implementation has updated the solution of (1) in a larger region than does the
implementation of [14]. This also exemplifies that the implementation of Zhao [14] will in some cases require a little more iterations to converge than the
serial version. In contrast, our parallel implementation gives after one iteration the same result as that of the serial implementation, while utilizing all
available threads. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Solution to Example 1.
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3.1.3. Example 3
We consider the computation of the distance to 40 randomly generated points in a cubic domain and is specified by:
f ðxÞ ¼ 1; x 2 X ¼ �1;1½ �3;
gðxÞ ¼ 0; x 2 C ¼ f~x1; ~x2; . . . ; ~x40g; where the ~xi’s are randomly generated points in X:
3.2. Results

We chose Example 1 to illustrate the solution of Eq. (1) with variable f ðxÞ and to show the convergence rate to the true
solution. The computed solution is given in Fig. 6. The analytical solution of 1 is given by Eq. (4). In Fig. 7 we show the con-
vergence of the parallel FSM to the true solution. As expected, the algorithm exhibits first order accuracy.
uðxÞ ¼ x2 þ y2 þ 3xy; x 2 fxjx1 > 0; x2 > 0g
x2 þ y2; otherwise:

(
ð4Þ
Examples 2 and 3 were solved in serial and in parallel on up to 32 threads (their computed solutions are given in Figs. 8
and 9 respectively). For the purposes of these tests, parallel speedup is defined as the wall clock time3 for the serial FSM
method divided by the wall clock time for each parallel method on p processors (T1=Tp). We denote by N the total number
of grid points.

The results of a convergence analysis of the sequential FSM, as well as the present work and the benchmark parallel
implementations of [14] are shown in Table 1. This table gives the number of Gauss–Seidel iterations to converge to an
approximate solution. In the table, we define one iteration as all the sweep orderings, i.e. one iteration performs 8� N oper-
ations in three spatial dimensions. Each method is iterated until it converges to an approximate solution within the same
precision. As discussed in Section 2.5, the present work converges in as many iterations as the serial FSM, while the bench-
mark parallel method of [14] requires more iterations.

In three dimensional problems, the implementation of [14] (without domain decomposition) has 23 ¼ 8 operations that
can be performed simultaneously. Fig. 10 depicts the resulting plateaus in parallel speedup at two, four, and eight threads.
For the specific cases of p ¼ 2;4 and 8, our implementation performs equal to or better than the benchmark [14], and out-
performs it for all other choices of p.

Fig. 11 illustrates that as N become large, the parallel speedup for the present work trends closer to the linear limit. Note
that for two and three dimensional problems, the solution of Eq. (2) requires very little computation, therefore, the problem
size becomes prohibitive for the machine we are using before parallel overhead is negligible. For that reason, linear speedup
is not explicitly shown experimentally.

3.3. A remark on parallel architectures

The present method is not specific to a type of parallel architecture, however, we implemented it with OpenMP on shared
memory. This choice was motivated by the nature of the test problems. For distance functions, f ¼ 1 in Eq. (1). This leads to a
very simple computation at each node. We note that this type of problem may be well suited for GPU architectures and plan
to investigate that in the future. The overhead associated with moving data in a message passing environment is much high-
er than in a shared memory environment. For problems in which more computation is required (e.g. f is not prescribed and
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Fig. 7. Error analysis for Example 1.

Fig. 8. Cross-section of the solution to Example 2 at z = .5. White regions indicate obstacles.

Fig. 9. A cross-section of the solution to Example 3 at z = .5.
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Table 1
Comparison of the number of iterations necessary to reach convergence for the serial FSM, the parallel implementation of [14] and the present work. The
number of iterations of the present work is equal to that of the serial implementation while the parallel implementation of [14] may require more iterations.

Example 2 Example 3

Serial FSM Present work Benchmark [14] Serial FSM Present work Benchmark [14]

N ¼ 403 7 7 12 2 2 4

N ¼ 803 7 7 12 3 3 5

N ¼ 1603 8 8 12 3 3 5
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Fig. 10. Computational times for the parallel implementation of the present work and the benchmark parallel implementation of [14]. In this test the total
number of grid points is N ¼ 3203.
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Fig. 11. Illustration that, as N becomes large, the parallel speed up of the present work increases. In addition no plateaus are present.
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requires a significant amount of computation) one would see parallel efficiency near 1 for relatively low values of N, and it
would justify an implementation in a message passing parallel environment.
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4. Conclusion

We have introduced a novel parallel method for solving the Eikonal equation and we have compared its performance to
the work of [14]. The performance of the method have been shown to scale well with the number of threads. In addition, our
implementation requires only as many Gauss–Seidel iterations as the original serial FSM method. Our computational exper-
iments seem to indicate that the parallel overhead is on a par with that of [14]. In the case where the number of dedicated
threads divides the number of orderings (4 in 2D and 8 in 3D), both methods have about the same efficiency and the method
of Zhao [14] is simpler to implement. However, any number of threads will be effective in our case and will not suffer from a
plateau effect in performance. Future work will investigate the generalization of this approach and the study of its efficiency
on problems in higher dimensions and on other parallel architectures.
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