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a b s t r a c t

We present a numerical method for simulating diffusion dominated phenomena on irreg-
ular domains and free moving boundaries with Robin boundary conditions on quadtree/
octree adaptive meshes. In particular, we use a hybrid finite-difference and finite-volume
framework that combines the level-set finite difference discretization of Min and Gibou
(2007) [13] with the treatment of Robin boundary conditions of Papac et al. (2010) [19]
on uniform grids. We present numerical results in two and three spatial dimensions on
the diffusion equation and on a Stefan-type problem. In addition, we present an application
of this method to the case of the simulation of the Ehrlich–Schwoebel barrier in the context
of epitaxial growth.

Published by Elsevier Inc.
1. Introduction

Diffusion and Stefan-type problems with Robin boundary conditions are of practical significance in a variety of fields. For
example, these equations arise in heat transfer applications involving internal conduction and convection [11]; tissue imag-
ing with near-infrared tomography [21]; and continuum models of epitaxial growth involving the Ehrlich–Schwoebel barrier
[28] on step edges.

The mathematical formulation of a diffusion equation is as follows: consider a domain X ¼ Xþ [X� with boundary @X,
illustrated in Fig. 1, where the solution u satisfying the diffusion equation,
ut ¼ DMuþ g; ð1Þ
where D is the diffusion coefficient and g represents source terms, is to be solved in X�. At the boundary of X�, which we
denote by C, a Robin boundary condition is imposed:
ru � nþ au ¼ f ; x 2 C; ð2Þ
where n is the outward normal to X�.
The mathematical formulation of the Stefan problem is a free boundary problem where the velocity of the free boundary

is given by:
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Fig. 1. A schematic of the level-set representation of the domain.
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V ¼ ½Dru�C; ð3Þ
where ½��C denotes a jump across the interface. The phases on each side of the free boundary satisfy the diffusion equation (1)
with boundary condition at the free boundary given by Eq. (2). The solution itself and the coefficients associated to each
phase can be discontinuous across the interface.

A level-set approach to solving these equations on arbitrarily-shaped domains with uniform Cartesian grids was proposed
in [19], where the treatment of the Robin boundary condition follows a finite volume approach [22,15]. The approach was
introduced in two spatial dimensions and results in second-order accurate solutions for diffusion problems and first-order
accurate solutions for Stefan-type problems. In this work, the numerical approach is extended to adaptive Cartesian grids in
two and three spatial dimensions and we present an application to the simulation of the Ehrlich–Schwoebel barrier in the
context of the island dynamics model of Caflisch et al. [4]. Some of the beneficial attributes of this approach are that it is
straightforward to implement, computationally efficient, and geometrically robust so that complex interface topology and
motion of sharp interfaces are handled implicitly.

2. Numerical approach

2.1. Level set method

In the case of Stefan-type problems, the evolution is driven by the physical interaction at the interface between phases.
For this reason, it is desirable to have a sharp interface method, where the location of the interface can be precisely defined.
In this work, we utilize the level-set method [18] for implicitly representing the moving interface. One well-documented
limitation of the level-set method is its propensity for mass loss when the grid is too coarse, since the method is not intrin-
sically conservative. The discretization of these equations on non-graded adaptive grids allows for very fine resolution near
the interface that significantly reduces mass loss while producing a computationally efficient method. A brief description of
the level-set method follows and we refer the reader to [17,25] for more details.

Referring to the domain depicted in Fig. 1, we describe X� by the set of points, x, such that /ðxÞ < 0. Likewise, we describe
Xþ by the set of points such that /ðxÞ > 0. The interface C is implicitly defined by the zero level set, /ðxÞ ¼ 0. The evolution of
the interface is then given by the evolution of the level-set function, /, and obeys:
/t þ V � r/ ¼ 0; ð4Þ
where V is an externally generated velocity field.
The outward unit normal to the interface, n, and the interface mean curvature, j, are calculated from the level-set func-

tion according to,
n ¼ r/
jr/j and j ¼ r � n;
respectively.

2.2. Structure of the adaptive Cartesian grid

We utilize non-graded Cartesian grids, those for which the size ratio between adjacent cells is unconstrained. The com-
putational domain, X, is encompassed entirely within a root cell, a cube in three spatial dimensions or a square in two spatial
dimensions, with grid nodes located at the vertices of the cell. The root cell is then recursively divided into equally-sized
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sub-cells until the desired level of refinement is achieved, i.e. a parent cell is split into four child cells in two spatial dimen-
sions and eight child cells in three spatial dimensions. This approach provides great flexibility in defining a suitable grid. In
the simplest configuration, the domain can be divided into a standard uniform grid. The primary benefit, however, is the abil-
ity to locally refine as necessary to capture small-scale physical details, or to coarsen the grid in areas where the solution is
smooth to reduce the computational cost.

While the criterion for refining the size of cells may be tailored specifically to the application at hand, in this work we
have chosen a simple algorithm for generating the grid as proposed in [13,6], which is based on an estimate of the distance
of each cell to the interface. More precisely, a cell is divided if the following condition is satisfied:
min
v2vertices

j/ðvÞj < Lip� DiagðCÞ; ð5Þ
where /ðvÞ is the value of the level-set function at the vertices, v, of the grid cell, C. Lip is the Lipschitz constant, and DiagðCÞ
is the length of the diagonal of the cell. In our examples, we have chosen a value of Lip ¼ 1:1 since our reinitialization algo-
rithm produces level-set functions that are approximate signed distance functions. Additionally, we define two grid param-
eters, max level and min level that control the sizes of the largest and the smallest leaf cells in the domain: defining max level in
a domain ½0;1�2 corresponds to setting Dx ¼ Dy ¼ 1=2max level. Lastly, we impose a narrow band of uniform cells near the inter-
face as a requirement for the discretization procedure. We do this by applying the criterion in (5) with the / values increased
by �Dx, �2Dx, etc., where Dx is the size of the smallest cell’s width.

The node-based Cartesian grid described above is well-suited for tree-based data structures; octree in three spatial
dimensions and quadtree in two spatial dimensions. These data structures ease implementation by providing an efficient
and straightforward way to access and store the data [23,24].

2.3. Approach for diffusion problems

Consider a diffusion equation (1) with boundary condition given by (2). We will utilize a discretization based on the
Crank–Nicolson scheme in time. The spatial discretizations are given in the following sections.

2.3.1. Discretization in three spatial dimensions
We utilize a discretization in time based on the Crank–Nicolson scheme. When discretizing Eq. (1) in space and forming

the associated linear system, we treat the grid nodes adjacent to the interface differently from the other nodes.
First, consider an octree grid node that is not adjacent to the interface. The most general case contains at most one two-

dimensional T-junction and one three-dimensional T-junction, as depicted in Fig. 2. The value of the ghost node due to the
two-dimensional T-junction is found by compensating the error of linear interpolation by the derivative in the transverse
direction, as described in [13,5], and is given by,
u2 ¼
u7s8 þ u8s7

s7 þ s8
� s7s8

s3 þ s6

u6 � u0

s6
þ u3 � u0

s3

� �
:

Fig. 2. Octree grid showing one two-dimensional T-junction node, u2, and one three-dimensional T-junction node, u4.
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The value of the ghost node due to the three-dimensional T-junction is obtained similarly and is given by the following
expression,
u4 ¼
s11s12u11 þ s12s9u12 þ s10s11u9 þ s10s9u10

ðs10 þ s12Þðs11 þ s9Þ
� s10s12

s3 þ s6

u3 � u0

s3
þ u6 � u0

s6

� �
� s9s11

s2 þ s5

u2 � u0

s2
þ u5 � u0

s5

� �
:

Once all of the necessary ghost nodes are defined, the first and second-order derivatives are calculated with the following
formulas:
D0
x u0 ¼

u4 � u0

s4
� s1

s1 þ s4
þ u0 � u1

s1
� s4

s1 þ s4
and
D0
xxu0 ¼

u4 � u0

s4
� 2
s1 þ s4

� u0 � u1

s1
� 2
s1 þ s4

;

and are used for constructing the linear system associated with the Crank–Nicolson time discretization of Eq. (1).
Next, consider the octree grid nodes near the interface. There are no T-junction nodes due to the uniform band of cells

near the interface. We express the diffusion equation (1) in integral form,
Z
C\X�

ut dV ¼ b
Z
C\X�
r � rudV þ

Z
C\X�

g dV ;
where C is a fictitious finite volume cell defined around each octree node, as depicted in Fig. 3. The values of the level-set
function are stored at the vertices of C and are found by averaging the nearest eight equidistant octree node values. Applying
a Crank–Nicolson time discretization of Eq. (1), we obtain:
Z

C\X�

unþ1
c � un

c

Dt
dV ¼ b

2

Z
C\X�
r � runþ1

c dV þ b
2

Z
C\X�
r � run

c dV þ
Z
C\X�

gnþ1
c � gn

c

2
dV : ð6Þ
We apply the approximation that unþ1
c , un

c , gnþ1, and gn remain constant within the grid cell. The divergence theorem is
applied to each Laplacian term in (6),
Z

C\X�
r � ruc dV ¼

Z
@ðC\X�Þ

ruc � ndA:
Fig. 3. A fictitious finite volume cell, C (– – –), within the octree grid near the interface (—).
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The integral is split into two components,
Z
@ðC\X�Þ

ruc � ndA ¼
Z
@C\X�

ruc � ndAþ
Z

C\C
ruc � ndA:
The integral over ð@C \X�Þ is performed piecewise over each face of the fictitious cell with standard finite differences for the
gradients,
Z

@C\X�
ruc � ndA ¼ urt � uc

h
Aþx þ

ubk � uc

h
Aþy þ

utp � uc

h
Aþz þ

ult � uc

h
A�x þ

uft � uc

h
A�y þ

ubt � uc

h
A�z; ð7Þ
where h ¼ Dx ¼ Dy ¼ Dz of C, and A�x, A�y, and A�z represent the areas of the irregular domain within each face of C.
The evaluation of the integral over ðC \ CÞ implicitly imposes the Robin boundary condition (2),
Z

C\C
ruc � ndA ¼

Z
C\C

f dA� aucAC\C: ð8Þ
The integrals above are calculated with the procedure of Section 2.4.

Remark 1. It is important to note that in the case where the solution is to be solved on both sides of the interface C and
when the coefficient a is discontinuous, one needs to ensure that the correct value of a is used in the discretization. Consider
for example a case where one needs to solve in the interior domain X� where a ¼ a�, then Eq. (8) is to be used for all nodes
where / <¼ 0 and for the nodes adjacent to the interface where / > 0.
2.4. Cell-based geometric integration

In the evaluation of the line, area, and volume integrals, we utilize a geometric integration method [12,14]. The procedure
is to divide each computational cell into a union of simplices S; triangles in two spatial dimensions and tetrahedra in three
spatial dimensions. We refer the reader to [12] for further details on the triangulation, since subdivision of the simplices may
be required to correctly represent the regions S \X� and S \ C.

The interface position is linearly interpolated from the level-set values of the vertices of C. Once the triangulation of a cell,
TðCÞ, is complete, the integrals are calculated simplex-wise as:
Z

C\C
f dC ¼

X
S2TðCÞ

Z
S\C

f dC;

Z
C\X�

f dX ¼
X

S2TðCÞ

Z
S\X�

f dX:
A second-order midpoint method is used to calculate the reduced integrals,
R

S\C f dC and
R

S\X� f dX.

2.5. Approach for Stefan-type problems

We consider a Stefan-type problem described by Eqs. (1)–(3). The level-set function, /, implicitly defines and captures the
evolution of the interface according to the advection equation (4).

Given the solution un at time tn, we use the following algorithm to find a solution to the Stefan problem:

1. Extrapolate the initial temperature field, un, over the interface to cover a few grid cells in order to define ghost node val-
ues that will be used when assembling the right hand side of the linear system described by (6)–(8) at time tnþ1.

2. Calculate the velocity field with (3).
3. Solve the level-set advection equation (4) to obtain the new interface location, /nþ1.
4. Reinitialize the level-set function to an approximate signed distance function using the reinitialization scheme in [13].
5. Construct a new quadtree/octree grid from the values of /nþ1.
6. Assemble the linear system for the diffusion equation (1) with the discretization procedure of Section 2.3.1.
7. Solve the linear system to find the updated temperature field, unþ1.
8. Repeat from step 1 until the final time is reached.

2.5.1. Extrapolation in the normal direction
In the case of an advancing interface, when assembling the linear system for time tnþ1, the values of q at time tn will be

needed at grid locations which were outside of the interface at tn but are swept within the interface from tn to tnþ1. This sit-
uation is depicted in Fig. 4. In order to properly define these ghost cell values, we extrapolate the values of the solution from
the interior domain over the interface along the normal direction. We use a PDE-based approach for the extrapolation as
described in [2]. One can use this approach to extrapolate values over the interface in a constant manner, linearly, or qua-
dratically, depending on the desired accuracy.



Fig. 4. In the case of an advancing interface, extrapolation in the normal direction is used to define ghost values for the open nodes (shown in red). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The quadratic extrapolation is done in a series of steps. First, the second directional derivative of u in the normal direction
is defined only in the interior region X�,
unn ¼ n � rðn � ruÞ:
Next, this scalar function is extrapolated in a constant manner over the interface by solving for a few time steps:
@unn

@s þ Hð/nÞn � runn ¼ 0;
where Hð/nÞ is the Heaviside function which is used to hold in place the known values of unn in the region / 6 0. Once the
second directional derivative is defined over a band around the interface, we can solve for the first directional derivative, un,
by solving the PDE,
@un

@s
þ Hð/nÞðn � run � unnÞ ¼ 0;
which defines un to have a directional derivative equal to unn. Finally, we solve a similar equation which defines the values of
u to have a directional derivative equal to un,
@u
@s
þ Hð/nÞðn � ru� unÞ ¼ 0:
The partial differential equations above are solved over a fictitious time s, and it is only necessary to iterate a few time
steps to obtain extrapolated values of u in a narrow band around the interface.

We utilize central and one-sided differencing in the discretizations for the extrapolation equations. In the case of T-junc-
tion nodes, ghost nodes are defined as per the procedures described in Section 2.3.1.

2.5.2. Velocity field calculation
In general, the temperature field must be found in the interior ðX�Þ and exterior ðXþÞ regions separately. We create two

copies of the temperature data; a copy of the interior temperature field is extrapolated outward into Xþ and a copy of the exte-
rior temperature field is extrapolated inward into X�. We then calculate the jump in u across the interface in a node-by-node
manner [9]. Lastly, we perform a constant extrapolation of the calculated velocity in the inward normal direction and in the
outward normal direction to define in a narrow band a velocity field that is constant in the normal direction. This produces
more numerically accurate results [7,1]. For some examples, the temperature field is a known value in one of the regions,
which simplifies the above process considerably.

2.5.3. Level set advection
We use a second-order semi-Lagrangian approach [29] for the level-set advection equation (4). The solution is found by

numerically integrating along characteristic curves starting from each grid node, xi, and tracing back the departure point, xd,
in the upwind direction. In particular, the updated level-set function at a grid node, xi, is found by
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/nþ1ðxiÞ ¼ /nðxdÞ;
where xd is the corresponding departure point. We use a second-order trapezoidal method to integrate numerically,
x̂ ¼ xnþ1 � Dt � Vnþ1ðxnþ1Þ;

xd ¼ xnþ1 � Dt
2
� Vnðx̂Þ � Dt

2
� Vnþ1ðxnþ1Þ:
The values of x̂ and /nðxdÞmay not be located on a grid node. Non-oscillatory interpolating formulas as described in [13] are
used to recover these values.
2.5.4. Reinitialization of the level-set function
At each time step, the level-set function is reinitialized to a signed distance function. We use the reinitialization equation

of Sussman et al. [26],
/s þ Signð/0Þðjr/j � 1Þ ¼ 0;
for a few iterations over a fictitious time s. This equation is discretized with a Godunov approach on adaptive grids as de-
scribed in [13].
2.5.5. Remeshing
After each time step, the mesh is automatically regenerated to retain the structure defined in Section 2.2, namely the uni-

form band of cells near the interface and the finest grid cells near the interface. A new grid is defined based on the updated
level-set function, /nþ1. The nodal values of the solution are interpolated from the previous grid locations with a non-oscil-
latory quadratic method as described in [13].
2.5.6. Solving the linear system
The linear system is nonsymmetric due to the discretization at T-junction nodes. In our examples, we utilize a biconjugate

gradient stabilized method (BiCGSTAB) with a symmetric Gauss–Seidel preconditioner. While a symmetric linear system is
usually preferred to a nonsymmetric one in terms of robustness, the overall computational cost is greatly reduced with non-
uniform grids since there are far fewer grid nodes.
3. Examples

We provide a set of numerical examples that suggest that the solution is second-order accurate in both the L1 and L1

norms. We also provide some comparisons with uniform grids to demonstrate the improvement in computational efficiency.
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3.1. Diffusion in two spatial dimensions

Example 1. The first validation example is a diffusion problem in two spatial dimensions over the irregular domain given by

the zero isocontour of / ¼ 0:4 cosð8hÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� p, where h 2 ½0;2p�, as illustrated in Fig. 5. The quadtree grid is

constructed over the domain, X ¼ ½�1:5p;1:5p� � ½�1:5p;1:5p�. The analytical solution is given by u ¼ �e�2t cos x cos y, and
the boundary condition (2) is formulated with a ¼ 1. The diffusion equation is solved from time t ¼ 0 to t ¼ 1, and the
convergence rates are presented in Figs. 6 and 7. The quadtree grid is defined with a resolution of min level ¼ 3 and
max level ¼ 5. It is subsequently refined with resolutions of ðmin level;max levelÞ ¼ ð4;6Þ; ð5;7Þ; ð6;8Þ, and ð7;9Þ. The

solution is second-order accurate in the L1 and L1 norms.
Example 2. A second example for the diffusion equation in two spatial dimensions is presented over a star-shaped domain

given by the zero isocontour of / ¼ r � 0:5� ðy5 þ 5x4y� 10x2y3Þ=ð6r5Þ, where r ¼
ffiffiffi
x
p 2 þ y2, which is illustrated in Fig. 8. The

quadtree grid is constructed over the domain, X ¼ ½�1;1� � ½�1;1�. The analytical solution is given by u ¼ �e�2t cos x cos y,
and the boundary condition is formulated with a ¼ 1. The diffusion equation is solved from time t ¼ 0 to t ¼ 1, and the con-
vergence rates are presented in Figs. 9 and 10. The quadtree grid is defined with resolutions of
ðmin level;max levelÞ ¼ ð3;7Þ; ð4;8Þ, and ð5;9Þ. The solution is second-order accurate in the L1 and L1 norms.
3.2. Stefan-type problem in two spatial dimensions

Example 3. The Frank sphere problem [8] describes the transition of a supercooled liquid into a solid phase. This problem
provides an analytical solution to a Stefan problem. The solid grows radially outward from the origin as a cylinder in two
spatial dimensions under a temperature field governed by Eq. (1) with b ¼ 1 and g ¼ 0.

The classical problem prescribes a Dirichlet boundary condition at the interface. We have reformulated the boundary con-
dition to a Robin type given by Eq. (2), with a ¼ 1 and
f ðs; tÞ ¼ 2u1

E1
S2

o
4

� � t�
1
2s�1e�

s2
4 þ u1 1�

E1
s2

4

� �

E1
S2

o
4

� �
0
@

1
A;
where s ¼ r � t�1=2 is a similarity variable, and So represents the initial radius of the solid crystal. The temperature field, u, is
zero within the solid region, represented by Xþ, and is given by the following exact solution within the liquid region, rep-
resented by X�,
uðsÞ ¼ u1 1�
E1

s2

4

� �

E1
S2

o
4

� �
0
@

1
A:
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Fig. 6. Accuracy results in the L1 norm for the diffusion problem in two spatial dimensions of Example 1.
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Fig. 7. Accuracy results in the L1 norm for the diffusion problem in two spatial dimensions of Example 1.

Fig. 8. An illustration of the quadtree mesh over the irregular domain of Example 2. This mesh has a min level = 3 and max level = 7.
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The simulation is taken over the computational domain, X ¼ ½�3;3� � ½�3;3�. The initial radius is taken as Ro ¼ 0:75
and the far field temperature value is taken as u1 ¼ �:246. The simulation was performed from the initial time t ¼ 1 to
the final time t ¼ 2. The accuracy results of the temperature field are presented in Figs. 11 and 12. The accuracy of the
radius location is presented in Figs. 13 and 14. These simulations were done with adaptive grids at the resolutions
(min level, max level) = (3,5), (4,6), (5,7), (6,8), and ð7;9Þ. The numerical solutions are first-order accurate in the
L1 and L1 norms, which is to be expected since the evolution is dependent upon the gradient of the temperature
field. A plot illustrating the evolution of the phase boundary is presented in Fig. 15 for times of t ¼ 1, t ¼ 1:25,
t ¼ 1:5, and t ¼ 1:75.
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Fig. 9. Accuracy results in the L1 norm for the diffusion problem in two spatial dimensions of Example 2.
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Fig. 10. Accuracy results in the L1 norm for the diffusion problem in two spatial dimensions of Example 2.
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3.3. Diffusion problem in three spatial dimensions

Example 4. A diffusion problem in three spatial dimensions is given by Eq. (1) with b ¼ 1 and g ¼ 0 over a stationary sphere
of radius r ¼ 0:55 centered at the origin. The computational domain is taken as X ¼ ½�1;1� � ½�1;1� � ½�1;1�. The boundary
condition is given by (2) with a ¼ 1 and
f ¼ e�tðx=r � cos x� y=r � sin y� z=r � sin zþ sin xþ cos yþ cos zÞ:
The simulation was performed over the time interval t ¼ 0 to t ¼ 1. The exact solution to this problem is given by
u ¼ e�tðsin xþ cos yþ cos zÞ.

The accuracy results are presented in Figs. 17 and 18 for uniform grids and in Figs. 19 and 20 for nonuniform octree grids.
Resolutions of 163, 323, 643, and 1283 were used with uniform grids and resolutions of ð3;5Þ, ð4;6Þ, and ð5;7Þ were used in
the nonuniform simulations. The numerical solutions are second-order accurate in the L1 and L1 norms. Fig. 16 illustrates a
typical octree mesh.

There is a considerable savings of computational resources when utilizing octree grids. For example, we achieved a sim-
ilar level of accuracy for the solution with a 1283 uniform grid and a ðmin res: ¼ 16;max res: ¼ 128Þ nonuniform grid. The
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Fig. 11. Accuracy results in the L1 norm for the temperature field of the Frank sphere problem in two spatial dimensions of Example 3.

10
1

10
2

10
3

10
4

10
3

10
2

 

 

numerical data
least squares fit
1st order visual guide

finest grid resolution

m
ax

 e
rr

or
 o

f t
he

 s
ol

ut
io

n

Fig. 12. Accuracy results in the L1 norm for the temperature field of the Frank sphere problem in two spatial dimensions of Example 3.
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number of grid nodes in each simulation differs by almost an order of magnitude: 2,146,689 and 265,913, respectively, while
the numerical errors in the L1 norm are similar (2:61e�4 versus 2:58e�4).
3.4. Moving-boundary problems in three spatial dimensions

Example 5. The Frank sphere problem in three spatial dimensions describes the phase growth of a solid sphere in a
supercooled liquid and provides an analytical solution to a Stefan-type problem. The temperature field is governed by the
diffusion equation (1) with b ¼ 1 and g ¼ 0. The velocity field is calculated with Eq. (3) with D ¼ 1.

The analytical solution for the temperature field in the liquid phase is given by
uðsÞ ¼ Aðs�1e�s2=4 � p1=2=2ð1� erfðs=2ÞÞÞ þ T1;
where s is a similarity variable defined by s ¼ rt�1=2, and A ¼ 0:5S3
oe�S2

o=4. The temperature in the solid phase is zero.
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Fig. 13. Accuracy results in the L1 norm for the phase boundary location of the Frank sphere problem in two spatial dimensions of Example 3.
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Fig. 14. Accuracy results in the L1 norm for the phase boundary location of the Frank sphere problem in two spatial dimensions of Example 3.
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Fig. 15. The evolution of the phase boundary in the Frank sphere problem in two spatial dimensions. The boundary is displayed at times of t ¼ 1, t ¼ 1:25,
t ¼ 1:5, and t ¼ 1:75.
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Fig. 16. An example of a typical octree grid for the diffusion problem over a sphere of Example 4.
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Fig. 17. Accuracy results in the L1 norm for the diffusion problem in three spatial dimensions of Example 4 on uniform grids.

J. Papac et al. / Journal of Computational Physics 233 (2013) 241–261 253
We have run the simulation over the domain ½�3;3� � ½�3;3� � ½�3;3�. The initial radius of the sphere is taken as ro ¼ 1.
The simulation is run from a time of t ¼ 1 to t ¼ 2. The computational domain and octree grid is displayed in Fig. 21 for the
initial and final times of the simulation. The accuracy results of the interface evolution are presented in Figs. 23 and 24 over
adaptive grids with resolutions of ð2;4Þ, ð3;5Þ, and ð4;6Þ. The numerical results are first-order accurate. Fig. 22 illustrates the
temperature profile of the z ¼ 0 cross section of the domain at the final time of t ¼ 2. The plot is generated from interpolated
values of a ðmin res: ¼ 8;max res: ¼ 64Þ grid.
3.5. Simulation of epitaxial growth with an Ehrlich–Schwoebel barrier

Epitaxial growth is an example of modern computational science where a Robin boundary condition plays an important
role. Epitaxy is the preferred method to grow semiconductors, layer by layer: atoms are deposited on the flat substrate and
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Fig. 18. Accuracy results in the L1 norm for the diffusion problem in three spatial dimensions of Example 4 on uniform grids.
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Fig. 19. Accuracy results in the L1 norm for the diffusion problem in three spatial dimensions of Example 4 on nonuniform octree grids.
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subsequently diffuse until they nucleate to form dimers. Further attachment of adatoms contributes to the growth of existing
islands and can result in desired nanostructures. A continuum model, the island dynamics model, was introduced by Caflisch
et al. [4] to describe the diffusion of adatoms that are deposited on a substrate, their nucleations and the subsequent growth
of islands. The model employs coarse-graining in the lateral directions, but retains atomistic discreteness in the growth
directions. This is achieved through a level-set approach in which islands of height kþ 1 are described by the kth isocontour
of the level-set function, /, which is evolved according to
/t þ vnjr/j ¼ 0; ð9Þ
where vn is the normal velocity of the islands’ boundaries. This velocity is obtained from solving the diffusion equation for
the adatom concentration qðx; tÞ:
@q
@t
¼ F þ Dr2q� 2

dN
dt
; qðt ¼ 0Þ ¼ 0: ð10Þ
In Eq. (10), D is the surface diffusion coefficient, F is the depositon flux, and dN=dt is the nucleation rate. Once the adatom
concentration has been found, the velocity is computed by balancing the flux of adatoms at the boundaries of the islands,
vn ¼ a2Dðn � rq� � n � rqþÞ; ð11Þ
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Fig. 20. Accuracy results in the L1 norm for the diffusion problem in three spatial dimensions of Example 4 on nonuniform octree grids.
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where the subscripts refer to the fluxes of adatoms from the terraces above (+) and below (�) the island edge.
The presence of an Ehrlich–Schwoebel barrier at the step edges results in a Robin boundary condition for the diffusion

equation as detailed in [20]. Consider for example a step edge barrier in one dimension as illustrated in Fig. 25. The diffusion
rates D, D0, and D00 represent the rates of diffusion along the terrace (D), toward the step edge from the upper terrace (D0), and
toward the step edge from the lower terrace (D00). First, consider the adatoms migrating to the step edge from the upper ter-
race. The adatom density on the upper terrace at one atomic distance from the step edge is given by qðxn � aÞ. Due to the step
edge barrier, the quantity of atoms that stick to the step per unit time and length is given by D0qðxn � aÞ=a, where D0 is the
rate of diffusion over a step edge (toward the lower terrace). The number of atoms detaching from the step and going to the
upper terrace is given by D0qeq=a, where qeq is the equilibrium adatom density at the step edge. The macroscopic flux of ada-
toms leaving the upper terrace is given by �Dðrq � nÞ, where D is rate of diffusion for atoms diffusing on the terrace away
from the step edge. The boundary condition for balancing the current of adatoms at the upper side of the step is given by,
D
@q
@n
ðxnÞ ¼ D0ðqeq � qðxn � aÞÞ=a � D0ðqeq � qðxnÞÞ=aþ D0

@q
@n
ðxnÞ:
Rearranging terms, this boundary condition simplifies to
rq � n ¼ D0

D� D0
ðqeq � qÞ:
Similarly, when we consider the interaction between the adatoms on the lower terrace and the step edge, the balance of flux
yields the following boundary condition,
rq � n ¼ D00

D� D00
ðqeq � qÞ:
This example is provided to show the effect of the step edge barrier on the adatom concentration. The simulation begins
with a concentric stack of islands of radii 1/3 and 1/9 of the domain length, resembling a wedding cake as shown in Fig. 26.
The initial adatom concentration is zero everywhere in the domain. At time t ¼ 0, a flux of adatoms is deposited onto the
structure. Several simulations are run in which the strength of the step edge barrier on the upper terraces, determined by
the parameter D0=D, is varied. The strength of the step edge barrier on the lower terraces is held at a constant ratio of
D00=D ¼ 0:99, which corresponds to negligible barrier strength. In order to study the evolution of the adatom density, nucle-
ation of new islands has been prevented in these simulations.

The effect of a strong barrier (D0=D ¼ 10�6) versus a negligable barrier (D0=D ¼ 0:99) is given in Figs. 27 and 28. In the case
of a large barrier, the Robin boundary condition reduces to @q

@n ¼ 0, hence a flat profile, which is illustrated in Fig. 27. We can
also observe that the concentration of adatoms on the upper terrace is equal to the total amount of flux deposited, 5e�3. This
behavior is physically correct since such a large barrier would prevent adatoms from migrating down to the lower terrace. In
contrast, in the case where the barrier is negligible (D0=D ¼ 0:99), the Robin boundary condition reduces to qC ! qf , where
qf is the equilibrium adatom density, taken as qf ¼ 1e�3. Fig. 28 clearly demonstrates that our approach is able to simulate
this case as well.

It is also interesting to note the influence of the value of D0=D away from those two extremes. Figs. 29–31 give the density
profiles for intermediate barrier strengths. We can note that the profiles are similar in nature, but the peak value of q is larger



Fig. 21. The computational domain for the Frank sphere problem in three spatial dimensions on an adaptive octree grid. The initial crystal (upper) grows
spherically outward to the final state at t ¼ 2 (lower).
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for lower values of D0=D. In turn, this will translate into higher nucleation rates and the well-known mounding observed in
epitaxial growth [27,16]. For all of these simulations, we have used a diffusion rate of D=F ¼ 106 and a system size of L ¼ 90
atoms. We have chosen a very short simulation time of 0.005 in order to clearly demonstrate the changes in the adatom den-
sity profile. Because of this the islands grow very little. We note, however that the approach works correctly for much longer
simulations.
3.5.1. Grid anisotropy
There exists a morphological instability that can arise in epitaxial growth with a step-edge barrier [3]. The physics of the

instablility are qualitatively similar to the physics of dendritic growth. This is an important phenomenon that may be applied
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Fig. 22. The temperature profile of the z ¼ 0 cross section after growth from t ¼ 1 to t ¼ 2 of the Frank sphere problem in three spatial dimensions.
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Fig. 23. Accuracy results in the L1 norm for the phase boundary location of the Frank sphere problem in three spatial dimensions of Example 5.
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Fig. 24. Accuracy results in the L1 norm for the phase boundary location of the Frank sphere problem in three spatial dimensions of Example 5.
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D

Fig. 25. Schematic of a step-edge barrier in one dimension [20]. The rates D, D0 , and D00 represent the rate of diffusion along the terrace, toward the step edge
from the upper terrace, and towards the step edge from the lower terrace.
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Fig. 26. Geometry and computational mesh for the island dynamics test problem (left). A grid node plot of the adatom density is shown on the right.
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Fig. 27. Mesh plot (left) and centerline profile plot (right) of the adatom density with an upper barrier strength of D0=D ¼ 1e�6.
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to nanoscale shape control [10]. The following example exhibits this Bales–Zangwill instability for the growth of a single is-
land. It is provided as a test of the amount of grid anisotropy produced by this numerical approach.

The initial shape of the island is a circle which has been perturbed by a sinusoid along the interface. The level set function
is given by / ¼ 0:004d cosð8hÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:125d, where d is the domain length. The simulation parameters are D=F ¼ 108,

D0=D ¼ 0:01, D00=D ¼ 0:99, qf ¼ 10�3, and L ¼ 90. In order to provide a symmetric diffusion field, a Dirichlet boundary con-
dition, q ¼ qf , is applied to a large circle at the boundary of the Cartesian domain. Fig. 32 is a plot of the interface as it grows
up to a time of t ¼ 0:32 on an adaptive grid with a resolution of min level = 5 and max level = 8. We observe a small amount
of grid anisotropy. We attribute this to the use of finite differences on the Cartesian grid; specifically the gradients of the
adatom density used in the velocity calculation are decomposed into x and y components.
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Fig. 28. Mesh plot (left) and centerline profile plot (right) of the adatom density with an upper barrier strength of D0=D ¼ 0:99.
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Fig. 29. Mesh plot (left) and centerline profile plot (right) of the adatom density with an upper barrier strength of D0=D ¼ 0:01.
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Fig. 30. Mesh plot (left) and centerline profile plot (right) of the adatom density with an upper barrier strength of D0=D ¼ 0:1.
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Fig. 31. Mesh plot (left) and centerline profile plot (right) of the adatom density with an upper barrier strength of D0=D ¼ 0:5.

Fig. 32. The unstable growth of a single island indicates a small amount of grid anisotropy.
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4. Conclusions

We have presented a numerical approach for the diffusion equation on irregular domains and Stefan-type problems with
Robin boundary conditions on adaptive Cartesian grids. The discretization is straightforward to implement, and even though
the resulting linear system is nonsymmetric, it results in a diagonally dominant M-matrix and thus can be solved efficiently.
In this work, we have used BiCGSTAB but it is clear that multigrid methods would further improve the efficiency. We have
demonstrated second-order accurate solutions to the diffusion equation and first-order accurate solutions for Stefan-type
problems in two and three spatial dimensions in the L1 norm. The approach is robust and is shown to be significantly more
efficient than similar methods on uniform grids. We applied the numerical approach to a simulation of epitaxial growth with
an Ehrlich–Schwoebel step edge barrier and have found qualitative agreement with the expected physical behavior.
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