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a b s t r a c t

We introduce a robust and efficient method to simulate strongly coupled (monolithic)
fluid/rigid-body interactions. We take a fractional step approach, where the intermediate
state variables of the fluid and of the solid are solved independently, before their interac-
tions are enforced via a projection step. The projection step produces a symmetric positive
definite linear system that can be efficiently solved using the preconditioned conjugate
gradient method. In particular, we show how one can use the standard preconditioner used
in standard fluid simulations to precondition the linear system associated with the projec-
tion step of our fluid/solid algorithm. Overall, the computational time to solve the projec-
tion step of our fluid/solid algorithm is similar to the time needed to solve the standard
fluid-only projection step. The monolithic treatment results in a stable projection step,
i.e. the kinetic energy does not increase in the projection step. Numerical results indicate
that the method is second-order accurate in the L1-norm and demonstrate that its solu-
tions agree quantitatively with experimental results.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Understanding and predicting fluid–structure interaction is crucial in many areas of science and engineering. Examples
include the study of particle motion in liquids, with application to industrial solidification or pertaining to the understanding
of sedimentation in geology, the study of heart valves or aneurisms, or the design of engineering systems such as swimming
structures. Considerable work has been done on the design of numerical methods to provide an accurate predictive tool for
fluid/rigid-body coupling. Arbitrary Lagrangian–Eulerian (ALE) schemes have been successfully employed in the case where
the structure deformation is low [10]. Schemes based on the Lattice–Bolztmann method have also been used (see e.g. the
recent work of [12]). Immersed boundary methods have provided a framework for coupling fluids and rigid or elastic bodies.
Several applications of such methods exist in the literature, with maybe the most famous one being the application of blood
flow in the heart [25,26]. Within this framework, the coupling is expressed through the use of a delta formulation, which
smears some of the variables near the interface but provides a straightforward approach. Coquerelle and Cottet [8] intro-
duced a vortex method [9] for the simulation of the interaction of an incompressible flow with rigid bodies. In particular,
they consider a single flow and use a penalization technique to enforce continuity at the solid–fluid interface and rigid mo-
tion inside the solid. In this case, the interface is represented by a level-set function and the quantities are smeared across the
interface.
. All rights reserved.
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In this paper, we are focusing on the two-way coupling between a fluid and a rigid body and present a sharp treatment for
their coupling. In this context, existing numerical methods fall into two categories: partitioned approaches, where equations
for the fluid are first solved before equations for the solid are solved, and monolithic approaches, where equations for the
fluid and the rigid body are solved simultaneously [1,11]. An advantage of the partitioned approach is that existing fluid
and structure solvers can be used in an iterative process. A disadvantage is that it is difficult to develop methods that guar-
antee numerical stability, which in practice can translate into spurious numerical oscillations. Also, the accuracy may suffer
from the lack of strong coupling, even if this can somewhat be remedied with sub-iteration procedures. Monolithic ap-
proaches have the potential of being more stable and more accurate, but their design and analysis is not as straightforward.

In [3], Batty et al. have formulated the interactions between fluids and non-deformable solids as a kinetic energy mini-
mization problem, and discretized the interactions through the corresponding Euler–Lagrange equation. In [28], Robinson-
Mosher et al. have presented a monolithic approach based on a projection framework. A particularly important feature of
this approach is the design of a symmetric positive definite (SPD) system for the projection step, an improvement on their
previous work that produced an indefinite system [29]. Designing a SPD system guarantees that its solution can be computed
with fast solvers. Their method also preserves momentum, which impacts positively on the stability of the method. However
the method is only first-order accurate in the L1-norm and it is not clear how to best precondition the linear system.

In the present paper, we present an SPD approach that is second-order accurate in the L1-norm and for which the linear
system can be preconditioned easily. Our method is unconditionally stable and conserves the momentum transfer between
the fluid and the solid in the projection step. We take a fractional step approach, where the intermediate state variables of
the fluid and of the solid are solved independently, before their interactions are enforced via a projection step. Using the
Heaviside function of the fluid region, the projection is formulated as a simple Poisson-type equation and can be easily
implemented as a small addition to the standard projection method for fluids on a MAC grid. We show how one can use
the standard preconditioner used in fluid simulations to efficiently precondition the linear system associated with our
fluid/solid coupling projection step, providing a simulation framework as efficient as standard fluid solvers. We present
numerical results in two and three spatial dimensions that indicate that our method is second-order accurate. We also pro-
vide simulation results that are in agreement with the experimental results of Cate et al. [6].

2. Governing equations

The interactions between a fluid and a rigid body are modeled by equations of motion for the fluid and the solid, as well as
their respective boundary conditions. We consider a computational domain X = Xf [Xs with boundary oX, where a rigid
body defined by Xs with boundary C is immersed in a fluid defined in a region Xf �X; see the schematic in Fig. 2.1.

2.1. Fluid equations

In the case where the viscosity is constant the motion of incompressible flows is described by the incompressible Navier–
Stokes equations of the following forms:
Ut þ ðU � rÞU þ
rp
q
¼ l

q
DU þ g in Xf ;

r � U ¼ 0; in Xf ;
where q is the fluid’s density, l is the fluid’s viscosity, U = (u,v,w) is the velocity field and g the gravity field.
Fig. 2.1. Schematic of a typical fluid/solid computational set up.
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2.2. Solid equations

The solid motion is fully described by the evolution of its center of mass C(t), its linear momentum P(t), its angular
momentum L(t), and the orientation matrix R(t):
dC
dt
¼ P

m
;

dP
dt
¼ mg þ f ;

dL
dt
¼ s;

dR
dt
¼ x�R;
where m is the mass of the rigid body, x ¼ I�1L is the angular velocity defining the inertia matrix I, and x� is the skew-sym-
metric matrix corresponding to the cross product of any vector x with x, i.e. x�x = x � x for all x. The force and the torque
exerted by the fluid are denoted by f and s, respectively.
2.3. Boundary conditions

The fluid/solid two-way coupling is described by the boundary conditions: the fluid must satisfy the no-slip and non-pe-
netrating boundary conditions imposed by the solid, which takes into account the rigid body’s linear velocity v ¼ 1

m P and the
rigid body’s angular velocity, while the solid must be correctly accelerated by the force and torque induced by the fluid stress
tensor r = �pI + 2lD, with I the identity matrix and D the standard strain rate tensor:
Uðx; tÞ ¼ Usolidðx; tÞ :¼ PðtÞ
m
þxðtÞ � ðx� CðtÞÞ on C;

f ðtÞ ¼
Z

C
ð�pI þ 2lDÞ � ndC;

sðtÞ ¼
Z

C
ðx� CÞ � ð�pI þ 2lDÞ � ndC;
where n is the outward normal to the rigid body.
3. Temporal discretization

We use a projection method, where the evolution of the different state variables is performed in two stages: intermediate
states are first computed (see Sections 3.1 and 3.2) before being projected so that the divergence free condition for the veloc-
ity field Un+1 at tn+1 is satisfied as well as to enforce the boundary conditions for Un+1 (see Sections 3.3 and 3.4). In particular,
we use a projection method with pressure guess, i.e. we use the pressure pn at time tn when computing the intermediate
states.
3.1. Intermediate states for the fluid equations

In the case of incompressible flows, shocks are not present so that a standard semi-Lagrangian method is appropriate for
discretizing the convection term of the Navier–Stokes equations. A benefit of this approach is that it produces second-order
accurate discretizations that are unconditionally stable [36,20]. The diffusion term l DU is traditionally discretized with the
Crank–Nicolson scheme. However, within the standard projection method, the combination of the Crank–Nicolson scheme
to discretize the diffusion term and the semi-Lagrangian method to discretize the momentum term produces solutions that
are only first-order accurate [36]. We therefore prefer to discretize the diffusion term with the second-order backward dif-
ference formula (BDF), which leads to second-order accurate solutions in conjunction with the semi-Lagrangian method
[36,20]: denoting U⁄ the intermediate velocity field sampled at a grid node xn+1, its evolution in time is given by:
q
3
2 U� � 2Un

d þ 1
2 Un�1

d

Dt
þrpn

d ¼ lDU� þ qg in Xf;nþ1;

U� ¼ Usolid;nþ1 on Cnþ1;

ð3:1Þ
where Dt is the time step. The Lagrangian coordinates x(t) are convected back in time along the characteristic curves accord-
ing to the ordinary differential equation x0(t) = U(x, t) with initial data x(tn+1) = xn+1. This defines a departure point xd = x(tn)
for every grid node xn+1, at which the velocity fields Un

d at time tn, the velocity field Un�1
d at time tn�1 and the pressure field pn

d

at time tn are computed by the stabilized quadratic interpolation in [21].
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3.2. Intermediate states for the solid equations

The solid equations are evolved in such a way as to mimic the time evolution of the fluid’s states, i.e. we use the same BDF
scheme. In particular, we compute intermediate states by explicitly isolating the contribution of the pressure term in order
to have a unifying framework for the projection step of Section 3.4:
3
2 Cnþ1 � 2Cn þ 1

2 Cn�1

Dt
¼ 2

Pn

m
� Pn�1

m
;

3
2 P� � 2Pn þ 1

2 Pn�1

Dt
¼ 2~f n � ~f n�1 þ

Z
Cnþ1

pnndCnþ1 þmg;

3
2 L� � 2Ln þ 1

2 Ln�1

Dt
¼ 2~sn � ~sn�1 þ

Z
Cnþ1
ðx� Cnþ1Þ � pnndCnþ1;

3
2 Rnþ1 � 2Rn þ 1

2 Rn�1

Dt
¼ 2ðx�RÞn � ðx�RÞn�1

;

ð3:2Þ
where ~f ¼
R
ð2lDÞndC and ~s ¼

R
ðx� CÞ � ð2lDÞndC, i.e. the force and torque without their pressure component. We have

also approximated Pnþ1; ~f nþ1; ~snþ1 and (x�R)n+1 by linear extrapolation in time, e.g. Pn+1 � 2Pn � Pn�1.

3.3. Boundary conditions and Heaviside formulation

The boundary conditions are given on the interface C and since it is more convenient to express them on the entire do-
main X, we consider their influence through the use of a Heaviside formulation. Specifically, let H(x, t) be the Heaviside func-
tion equal to 1 in the fluid region and 0 in the solid region. Sincer H = dCn, where d is the Dirac delta function with support
on C and n is the outward normal vector at C, we can rewrite the boundary conditions as:
f ¼
Z

C
ð�pI þ 2lDÞndC() f ¼

Z
X
ð�pI þ 2lDÞrH dX;

s ¼
Z

C
ðx� CÞ � ð�pI þ 2lDÞndC() s ¼

Z
X
ðx� CÞ � ð�pI þ 2lDÞrH dX:
Likewise, the scalar variable q, described in Section 3.4 and satisfying the boundary condition rq � n = 0 on C can be ex-
pressed as:
rq � rH ¼ 0 on X:
3.4. Projection step

The intermediate variables U⁄, P⁄ and L⁄must be projected to satisfy the incompressibility conditionr � Un+1 = 0 as well as
the non-penetration condition Un+1 � n = Usolid,n+1 � n on C. The Hodge theorem allows to decompose the intermediate veloc-
ity field U⁄ as U� ¼ Unþ1 þ Dt rqnþ1

qnþ1 , with Un+1 a divergence free velocity field and qn+1 a scalar function. This is the basis of the
original projection method of Chorin [7], which has been extended to higher order accuracy and analyzed by other research-
ers (see e.g. [18,5,4] and the references therein). Similarly, we choose to decompose the intermediate linear momentum P⁄

and angular momentum L⁄ in their corresponding form so that the projection step can be uniformly written as:
Unþ1 ¼ U� � Dt
rqnþ1

qnþ1 ; ð3:3aÞ

Pnþ1 ¼ P� � Dt
Z

qnþ1 � rHnþ1; ð3:3bÞ

Lnþ1 ¼ L� � Dt
Z
ðx� Cnþ1Þ � qnþ1 � rHnþ1: ð3:3cÞ
Here Hn+1 denotes the Heaviside function of the fluid’s domainXf,n+1. The incompressibility and non-penetration conditions pro-
vide an equation for qn+1: we have from the incompressibility condition Hn+1r � Un+1 = 0 in the entire domain and since the solid
is incompressible, we have r � Usolid,n+1 = 0. From the non-penetration boundary condition Un+1 � n = Usolid,n+1 � n on Cn+1, we
have (Un+1� Usolid,n+1) � rHn+1 = 0. Therefore:
r � ðHnþ1ðUnþ1 � U solid;nþ1ÞÞ ¼ Hnþ1 r � Unþ1 þr � Usolid;nþ1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

0
@

1
AþrHnþ1 � Unþ1 � Usolid;nþ1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

¼ Hnþ1r � Unþ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

¼ 0:
Now combining this expression with equations in (3.3), we have:
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0 ¼ r � Hnþ1 U� � Dt � rqnþ1

qnþ1

� �� �
�rHnþ1 � ðvnþ1 þxnþ1 � ðx� Cnþ1ÞÞ

¼ r � Hnþ1 U� � Dt � rqnþ1

qnþ1

� �� �
�rHnþ1 � 1

m
ðP� � Dt �

Z
qnþ1 � rHnþ1Þ � rHnþ1

� ðI�1Þnþ1 L� � Dt �
Z
ðx� Cnþ1Þ � qnþ1 � rHnþ1

� �� �
� ðx� Cnþ1Þ

� �
:

Finally, collecting all the qn+1 terms on the left-hand-side, we obtain the following linear system for qn+1:
�r � Hnþ1

q
rqnþ1

 !
þrHnþ1 � 1

m

Z
qnþ1rHnþ1

� �
þ Jnþ1 � ðI�1Þnþ1

Z
qnþ1Jnþ1

� �� �

¼ � 1
Dt
r � ðHU�Þ þ 1

Dt
rH � Usolid;�; ð3:4Þ
where Jn+1 = (x � Cn+1) �rHn+1 and Usolid;� ¼ P�
m þ I�1

� �nþ1
L�

� �
� ðx� Cnþ1Þ. The following theorem demonstrates that the

linear system associated with the above temporal discretization is symmetric and positive definite. The spatial approxima-
tions described in Section 4 will be designed to keep this property.

Theorem 1. The linear system associated with the semi-discrete equation (3.4) is symmetric and positive definite.
Proof. Let Lð�Þ be the operator in the left-hand-side of (3.4) acting on qn+1. To prove the symmetry of the operator L, we
show that

R
Rd Lðqð1ÞÞqð2Þ ¼

R
Rd Lðqð2ÞÞqð1Þ for any L2-integrable functions q(1) and q(2):
Z

Rd
Lðqð1ÞÞqð2Þ ¼ �

Z
Rd
r � H

q
rqð1Þ

� �� �
qð2Þ þ

Z
Rd
rH �

Z
Rd

qð1Þ
1
m
rH

� �
qð2Þ þ

Z
Rd

I�1J �
Z

Rd
qð1ÞJ

� �
qð2Þ

¼
Z

Rd

H
q
rqð1Þ � rqð2Þ þ 1

m

Z
Rd

qð2ÞrH
� �

�
Z

Rd
qð1ÞrH

� �
þ I�1

Z
Rd

qð2ÞJ
� �� �

�
Z

Rd
qð1ÞJ

� �
:

This is clearly a symmetric form for q(1) and q(2), since the inertia matrix and its inverse are symmetric. The positive definite-
ness of the operator L is a straightforward consequence of the fact that the inertia matrix is positive definite: For any L2-inte-
grable function q, we have:
Z

Rd
LðqÞq ¼

Z
Rd

H
q
krqk2 þ 1

m

Z
Rd

qrH
����

����2

þ I�1
Z

Rd
qJ

� �� �
�
Z

Rd
qJ

� �
> 0 8q – 0 and ¼ 0 iff q ¼ 0: �
Remark 1. From the Hodge decomposition (3.3a) and the divergence free condition r � Un+1 = 0, we have:
U� ¼ Unþ1 þ Dt
rqnþ1

q
in Xf ;nþ1;
or
Dt
q

Dqnþ1 ¼ r � U� in Xf ;nþ1;
which, when substituted into Eq. (3.1) for the intermediate velocity U⁄, gives the following equation for the pressure update:
pnþ1 ¼ pn
d þ

3
2

qnþ1 � lr � U�: ð3:5Þ
Note that this pressure update corresponds to the projection method PM II in [5] and the rotational pressure-correction
method in [16]. There exists a simpler pressure update, e.g. pnþ1 ¼ pn

d þ 3
2 qnþ1, which corresponds to PM I in [5]. Both updates

produce second-order accurate velocity field, but the pressure is second-order accurate only in the case of PM II; PM I pro-
duces only a first-order accurate pressure update [5]. In contrast with fluid simulations for which the difference in pressure
accuracy between PM I and PM II is insignificant for the overall accuracy of the method, the accuracy of the fluid/rigid-body
simulation depends closely on the accuracy of the pressure update. Indeed, the pressure plays an important role in the com-
putation of the force and torque induced by the fluid stress tensor r = �pI + 2lD. Therefore, we are using the pressure update
given by Eq. (3.5).
4. Spatial discretization

The projection in the semi-discrete form was proven to be symmetric and positive definite using the integration by parts
formula. To keep the symmetric positive definiteness in the fully discrete case, we take the standard staggered grid (MAC)
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arrangement [17], where the integration by parts can be enforced exactly at the discrete level. For each cell, the pressure p is
sampled at its center and the velocity components are sampled on its faces, i.e. in two spatial dimensions the pressure is
sampled as pij and the velocity field U = (u,v) is sampled as ui�1

2;j
and v i;j�1

2
. The rigid body geometry is represented by an im-

plicit function /, i.e. C = {x : /(x) = 0}, that is sampled at the cells’ centers.
In what follows, we give the spatial discretization used in our work. Most of the spatial derivatives are discretized in a

dimension by dimension fashion, in which case we describe the discretizations in two spatial dimensions only. In the case
where the discretizations in three spatial dimensions are not a straightforward extension of the two dimensional case, we
explicitly describe them in two as well as in three spatial dimensions.

4.1. Discretization of the gradient and divergence operators

We denote by Dx the central finite differences in the x-direction:
ðDxpÞiþ1
2;j
¼

piþ1;j � pi;j

Dx
and ðDxuÞij ¼

uiþ1
2;j
� ui�1

2;j

Dx
:

Similarly, Dy denotes the central finite difference in the y-direction. The gradient and divergence operators are also approx-
imated by central finite differences, and are denoted by rh and rh�, respectively:
rh½pij	 ¼ ðDxpÞiþ1
2;j

h i
; ðDypÞiþ1

2;j

h i� �
;

rh � uiþ1
2;j

h i
; v iþ1

2;j

h i� �
¼ ðDxuþ DyvÞij
h i

:

Note that the two discrete operators satisfy the integration by parts relation. Indeed consider a MAC grid with resolution
[1,M] � [1,N], then we have:
XM�1

i¼1

XN

j¼1

ðDxp � uÞiþ1
2;j
þ
XM

i¼1

XN�1

j¼1

ðDyp � vÞi;jþ1
2
¼ �

XM

i¼1

XN

j¼1

pijðrh � UÞij;
or simply
P
ðrhpÞ � U ¼ �

P
pðrh � UÞ if the non-penetration boundary condition, U � n = 0, or the zero pressure boundary

condition, p = 0, are satisfied on the computational domain’s boundary.

4.2. Discretization of the convection term

As already stated in Section 3.1, the convection term is discretized by a standard second-order accurate semi-Lagrangian
method [36,24]. Let xn+1 be a grid node at time tn+1, its departure point xn

d is found by tracing back the characteristic curve
using a second-order Runge–Kutta method:
xnþ1
2 ¼ xnþ1 � Dt

2
� Unðxnþ1Þ;

xn
d ¼ xnþ1 � Dtn � Unþ1

2 xnþ1
2

� �
;

The intermediate velocity Un+1/2 is extrapolated in time using Unþ1
2 xnþ1

2

� �
¼ 3

2 Un xnþ1
2

� �
� 1

2 Un�1 xnþ1
2

� �
. Finally, since the

Lagrangian coordinates do not necessarily fall on grid nodes, the corresponding values for the velocity field are evaluated
using the quadratic interpolation introduced in [24].

4.3. Discretization of the Heaviside function

Let H be the Heaviside function in Xf. In the projection step described in Section 3.4, the Heaviside function serves two
purposes: first, it is used to enforce the incompressible condition r � U = 0 in Xf as well as the non-penetration boundary
condition U � n = Usolid � n on C. These two conditions are combined through the divergence equation r � (H(U � Usolid)) = 0.
Second, the Heaviside function is used to evaluate integrals over the interface as an integral over the entire computational
domain X :

R
C fndC ¼

R
X frH dX. The proper discretization of the Heaviside function is one of the most important point of

this work.
There exists several efficient second-order accurate discretizations of the Heaviside function, such as those introduced in

Towers [33], in Smereka [32] or in Min and Gibou [22]. These methods have been designed and validated for accurately
evaluating integrals over irregular domains Xf as

R
Xf f dX ¼

R
X f H dX, which is one property of the Heaviside function that

we wish to use. However, the use of the Heaviside function of Min and Gibou to enforce the divergence equation
r � (H(U � Usolid)) = 0 produces results that do not converge in L1-norm, as we pointed out in Ng et al. [24]. We have tested
the Heaviside function introduced in Towers [33] and observed the same undesirable behavior. We have not tested the
Heaviside function of [32] because it would lead to a nonsymmetric linear system for the projection step, which we want
to avoid. However, we believe that such discretization would also produce results in the projection step that would not con-
verge in the L1-norm. In contrast, a finite volume treatment of the standard projection step for single-phase fluid in irregular
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domains, has been shown to produce second-order accurate solutions in the L1-norm [24,27]. This implies that a correct
choice for the treatment of the divergence equation r � (H(U � Usolid)) = 0 is to define the Heaviside function on each cell
as the length fraction (in two spatial dimensions; the area fraction in three spatial dimensions) of the face in Xf. This is there-
fore our choice in the present work and we will show in Section 4.4 the typical order of accuracy that one obtains when also
using this discretization of the Heaviside function in the integration procedure.

In two spatial dimensions, consider a cell face xiþ1
2;j
� yj�1

2
; yjþ1

2

h i
with the level function taking values /iþ1

2;j�
1
2

at its two end

points. Assuming a linear interpolation of /, the Heaviside function (length fraction) is simply computed as:
Hiþ1
2;j
¼

/þiþ1
2;jþ

1
2
� /þiþ1

2;j�
1
2

/iþ1
2;jþ

1
2
� /iþ1

2;j�
1
2

;

where /+ = max(/,0). In the case where both /’s are positive, we set H = 1; if both /’s are negative, we set H = 0. Thus, if the
numerator equals zero, which means that the two /’s have the same sign, the fraction is correctly treated as 1 or 0.

In three spatial dimensions, consider a cell face xiþ1
2;j;k
� yj�1

2
; yjþ1

2

h i
� zk�1

2
; zkþ1

2

h i
with the level function taking values

/iþ1
2;j�

1
2;k�

1
2

at its four corners. We first decompose the rectangular face into two triangles and apply a linear interpolation
procedure on each triangle to find their areas: Consider a triangle DP0P1P2 with level function values /0, /1, /2 at its three
vertices. The area fraction covered by Xf is calculated as:
Hð/0;/1;/2Þ ¼
/þ0 �/þ1
/0�/1

� /
þ
0 �/þ2

/0�/2
if /0 > 0; /1 < 0; and /2 < 0

1� /þ0 �/þ1
/0�/1

� /
þ
0 �/þ2

/0�/2
if /0 < 0; /1 > 0; and /2 > 0:

8<
:

By symmetry, the other cases are treated similarly. The area fraction of the face occupied by Xf is then defined as:
Hiþ1
2;j;k
¼ 1

2

H /iþ1
2;j�

1
2;k�

1
2
;/iþ1

2;jþ
1
2;k�

1
2
;/iþ1

2;jþ
1
2;kþ

1
2

� �
þH /iþ1

2;j�
1
2;k�

1
2
;/iþ1

2;j�
1
2;kþ

1
2
;/iþ1

2;jþ
1
2;kþ

1
2

� �
0
B@

1
CA:
4.4. Integral computation using the Heaviside function

As pointed out in Section 4.3, our choice for the Heaviside discretization enforces the divergence condition
r � (H(U � Usolid)) = 0 with second-order accuracy (see [24]). In this section, we provide typical accuracy results for the com-
putation of integrals over an irregular interface as:
Z

C
f dC ¼

Z
X

fkrHkdX ’
X

ij

fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxHÞ2ij þ ðDyHÞ2ij

q
DxDy:
We consider the evaluation of the integral
R

x2þy2¼1 3x2 � y2 ¼ 2p on a computational domain [�2,2]2 in two spatial dimen-

sions and the computation of the integral
R

x2þy2þz2¼1ð4� 3x2 þ 2y2 � z2Þ ¼ 40
3 p on [�2,2]3. These examples are taken from

[32]. Table 1 indicates that the Heaviside defined as the length fraction in two spatial dimensions approximates the integral
with a convergence rate slightly superior to 1.5. Table 2 indicates that the area fraction in three spatial dimensions approx-
imates the integral with a convergence rate of 2. The Heaviside approximations given by Towers [33] or Min and Gibou [22]
Table 1
Accuracy of the integral computation of Section 4.4 using a discretized Heaviside function in two spatial dimensions (length L).

grid kL � Lexactk1 order

402 3.74 � 10�2

802 1.23 � 10�2 1.60
1602 4.37 � 10�3 1.49
3202 1.50 � 10�3 1.54
6402 5.36 � 10�4 1.48

Table 2
Accuracy of the integral computation of Section 4.4 using the discretized Heaviside function in three spatial dimensions (area A).

grid kA � Aexactk1 order

203 1.01 � 100

403 2.27 � 10�1 2.15
803 5.43 � 10�2 2.06
1603 1.32 � 10�2 2.04
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produce second-order accurate results in both two and three spatial dimensions. Of course, it would be conceivable to use
those approximations for the discretization of the integral part only, but this would lead to a non-symmetric linear system in
the projection step, which we want to avoid. We will show in Section 7 that our choice of approximations of the Heaviside
function produces second-order accurate solutions in the L1-norm for the fluid/solid interactions.

4.5. Discretization of the diffusion term

The combination of the semi-Lagrangian and BDF schemes for approximating the intermediate velocity field in the Na-
vier–Stokes equations reads:
q
3
2 U� � 2Un

d þ 1
2 Un�1

d

Dt
þrpn

d ¼ lDU� þ g in Xf ;nþ1;

U� ¼ Usolid;nþ1 on Cnþ1:
We considered two methodologies for treating implicitly the diffusion tensor with Dirichlet boundary condition: The sym-
metric discretization of Gibou et al. [14] and the non-symmetric discretization of Shortley and Weller [31,13]. Both methods
produce second-order accurate solutions. However, only the non-symmetric discretization produces second-order accurate
gradients; the symmetric approach produces first-order accurate gradients only [23,19]. In the case of fluid/solid coupling,
the traction force (�pI + l(rU + (rU)T)) � n requires an accurate evaluation of rU, the gradient of the solution. For this rea-
son, we discretize the diffusion term lDU⁄ by the non-symmetric discretization, and solve the linear system by the BiCG-
STAB iteration with incomplete LU preconditioning [30].

4.6. Discretization of the projection step

In Section 3.4, we derived the following equation for the scalar qn+1 used in the projection step:
�r � H
q
rq

� �
þrH � 1

m

Z
qrH

� �
þ J � I�1

Z
qJ

� �
¼ � 1

Dt
r � ðHU�Þ þ rH � Usolid;�
� �

;

where we omitted the superscript n + 1 for convenience. All the spatial derivatives in equation are approximated by central
finite differences as discussed in Section 4.1, the Heaviside function is approximated by the finite volume discretization de-
scribed in Section 4.3 and the integrals are approximated as detailed in Section 4.4. For each grid index i and j, we then have:
� rh � H
q
rhq

� �� �
i;j

þ ðrhHÞi;j �
1
m

X
k;l

ðqrhHÞk;ldV

 !
þ J i;j � I�1

X
k;l

ðqJÞk;ldV

 !
¼ � 1

Dt
ðrh � ðHU� � HUsolid;�ÞÞi;j; ð4:1Þ
where dV denotes the volume element Dx � Dy.

Theorem 2. The linear system associated with the fully discrete equation (4.1) is symmetric and positive definite.
Proof. Let Lhð�Þ be the discrete operator on the left-hand-side of (4.1) acting on qnþ1
i;j . For arbitrary qð1Þij

h i
and qð2Þij

h i
, we have:
qð1Þij

h i
� ½ðLhðqð2ÞÞÞij	 ¼ �

X
i;j

qð1Þi;j r
h � H

q
rhqð2Þ

� �� �
i;j

þ
X

i;j

qð1Þij ðr
hHÞi;j �

1
m

X
k;l

ðqð2ÞrhHÞk;ldV

 !
þ
X

i;j

ðqð1ÞJÞi;j

� I�1
X

k;l

ðqð2ÞJÞk;ldV

 !

¼ �
X

i;j

Hi;j

q
ðrhqð1ÞÞi;jðrhqð2ÞÞi;j þ

dV
m

X
i;j

ðqð1ÞrhHÞi;j

 !
�
X

k;l

ðqð2ÞrhHÞk;l

 !

þ dV � I�1
X

i;j

ðqð1ÞJÞi;j

 ! !
�
X

k;l

ðqð2ÞJÞk;l

 !
:

Note that we can apply the integration by parts formula of Section 4.1, since rhq � n = 0 is assumed at the boundary of the
computational domain. This is clearly a symmetric form for q(1) and q(2), since the inertia matrix and its inverse are symmet-
ric. The positive definiteness of the operator Lh is a straightforward consequence of the fact that the inertia matrix is positive
definite. For any L2-integrable function q, we have:
½qij	 � ½ðLhðqÞÞij	 ¼ �
X

i;j

Hi;j

q
krhqk2

i;j þ
dV
m

X
i;j

ðqrhHÞi;j

 !2

þ dV � I�1
X

i;j

ðqJÞi;j

 ! !
�
X

k;l

ðqJÞk;l

 !

> 0 8 q – 0 and ¼ 0 iff q ¼ 0: �
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Remark 2. It is clear that if the Heaviside functions of [22,33,32] were used as discussed in Section 4.3, the linear system
would not be symmetric.

Finally, once q is solved the states variables (U⁄,P⁄,L⁄) are projected as:
Unþ1 ¼ U� � Dt
rhq
q

;

Pnþ1 ¼ P� � Dt
X

i;j

ðqrhHÞi;jdV ;

Lnþ1 ¼ L� � Dt
X

i;j

ðqJÞi;jdV :
The following theorem demonstrates that the projection is stable in the sense that it does not increase the kinetic energy:

Theorem 3. The projection step does not increase the kinetic energy of the fluid and the solid.
Proof. The kinetic energy of the fluid and the solid is defined as K ¼
R

X
q
2 U2 þ 1

2m P � P þ 1
2 I�1L � L, and discretized as:
KðU;P; LÞ ¼ 1
2
½qHU	 � ½U	 þ 1

2m
P � P þ 1

2
I�1L � L;
where ½Uð1Þ	 � ½Uð2Þ	 ¼
P

iju
ð1Þ
iþ1

2;j
uð2Þ

iþ1
2;j

dV þ
P

ijv
ð1Þ
i;jþ1

2
v ð2Þ

i;jþ1
2
dV denotes the inner product for the vector fields U(1) = (u(1),v(1)) and

U(2) = (u(2), v(2)). Similarly, ½qð1Þ	 � ½qð2Þ	 ¼
P

ijq
ð1Þ
ij qð2Þij dV denotes the inner product between scalar quantities q(1) and q(2). Com-

bining K(U⁄,P⁄,L⁄) with Eqs. (3.3a), (3.3b), and (3.3c) we have:
KðU�;P�; L�Þ ¼ KðUnþ1;Pnþ1; Lnþ1Þ þ Dt � ½qHUnþ1	 � r
hq
q

" #
þ Dt � Pnþ1 � 1

m
ð
X

ij

ðqrhHÞijdVÞ þ Lnþ1 � I�1ð
X

ij

ðqJÞijdVÞ
 !

þ Dt2

2
qH
rhq
q

" #
� r

hq
q

" # !
þ Dt2

2
1
m
ð
X

ij

ðqrhHÞijdVÞ2 þ I�1ð
X

ij

ðqJÞijdVÞ2
 !

P KðUnþ1;Pnþ1; Lnþ1Þ þ Dt � ½HUnþ1	 � ½rhq	 þ Dt � Pnþ1 � 1
m

X
ij

ðqrhHÞijdV

 !
þ Lnþ1 � I�1ð

X
ij

ðqJÞijdVÞ
 !

:

Using the discrete integration by parts formula on MAC grids (see Section 4.1), we have:
½HUnþ1	 � ½rhq	 ¼ �½rh � ðHUnþ1Þ	 � ½q	 ¼ �½rhH � Usolid;nþ1	 � ½q	 ¼ �
X

ij

qrhH � 1
m

Pnþ1 þ I�1Lnþ1 � ðx� Cnþ1Þ
� �� �

ij
dV

¼ �Pnþ1 � 1
m

X
ij

ðqrhHÞijdV

 !
� Lnþ1 � I�1

X
ij

ðqJÞijdV

 !
:

Thus we obtain that K(U⁄,P⁄,L⁄) P K(Un+1,Pn+1,Ln+1). h
5. Preconditioning the SPD linear system of the projection step

If we denote by A the matrix associated with the standard discretization of the Poisson operator �rh � Hnþ1

q r
h

� �
, then the

matrix of the linear system for the projection step of the fluid/solid coupling problem at hand is defined as:
AFSC :¼ Aþ ðrhHÞ � dV
m
ðrhHÞT þ J � dV � I�1JT :
Let M be the modified incomplete LU preconditioner for A. Since M ’ A, we take the preconditioner for the matrix AFSC as:
MFSC :¼M þ ðrhHÞ � dV
m
ðrhHÞT þ J � dV � I�1JT :
Note that since rhH and J have support only near the interface, they are stored as sparse matrices for the sake of preserving
computational resources.

Now we derive a formula for the inversion of the system MFSCqh = RHS, where qh is the vector whose components are the
qi,j’s and RHS the vector associated with the sampling of the right-hand-side of Eq. (4.1). It is convenient to write equation in
the following block linear system, which is then solved by a standard block LU factorization:



Fig. 5.1
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The block matrices D1, D2, and U1 are of size 3 � 3 in three spatial dimensions, and of size 2 � 2, 1 � 1 and 2 � 1, respectively

in two spatial dimensions. The matrices are defined as D1 ¼ � m
dV I � ðrhHÞT M�1ðrhHÞ; U1 ¼ �JT M�1ðrhHÞ, and

D2 ¼ � 1
dV � I�1 � JT M�1J � U1D1

�1U1. These matrices are evaluated and stored, whereas M�1 is not stored but only applied

when needed as for fluid-only solvers [15].
The MILU preconditioner M is known to be a very efficient preconditioner for the matrix A associated with standard fluid-

only simulations. In order to quantify the performance of our preconditioner MFSC for the matrix AFSC, we consider the fol-
lowing example in two spatial dimensions: Consider a fluid with uniform intermediate velocity field U⁄ = (0,�1) on a com-
putational domain [�0.02,0.02]2. A cylindrical solid object with center (0,0) and radius r = 0.005 is immersed in the
surrounding fluid. The densities of the fluid and the solid are set to be qf = 1000 and qs = 2000, respectively. The solid has
linear momentum P⁄ = qspr2(0,�1) and angular momentum L⁄ = 0. Non-slip boundary conditions are imposed on the bound-
ary of the computational domain. The fluid and solid velocity fields are projected by solving the linear system AFSCqh = RHS.

Fig. 5.1 illustrates the reduction in the number of iterations between the CG and the PCG algorithms in the case of the
standard fluid-only and the present fluid/solid projection methods on a grid with resolution 5002. These results indicate that
the computational complexity of the projection step of our fluid/solid coupling is on a par with that of a standard fluid-only
solver. In particular, in the case of the conjugate gradient, the norm of the residual jrnj in log scale decreases linearly with the
number of iterations n with slope � 2ffiffiffi

j
p , where j is the condition number of the matrix [34]. Fig. 5.1(a) compares the CG and

PCG iterations for the standard projection method; the slope for the CG iterations is about �0.015 and that of PCG is about
�0.066, which means that the M preconditioner reduces the condition number of A by a factor �0:066

�0:015

	 
2 ’ 19. Likewise,
Fig. 5.1(b) compares the CG and PCG iterations for the present projection method; the slope for the CG iteration is about
�0.016 and that of PCG is about �0.074, which means that the MFSC preconditioner reduces the condition number of AFSC

by a factor �0:074
�0:016

	 
2 ’ 21. Fig. 5.2 illustrates that the number of iterations and the computational time of the present projec-
tion step grow at a similar rate as those of the standard projection under grid refinement. This further indicates that the com-
putational complexity of the projection step of our fluid/solid coupling is on a par with that of a standard fluid-only solver.

6. Summary: outline of the method

For each time step tn, the following steps are sequentially carried out:

Step 1. Solve for Cn+1, P⁄, L⁄, and Rn+1 using the evolution equation (3.2).

Step 2. Calculate /n+1(x) = /0(Rn+1(R0)�1(x � C0) + Cn+1) and Hn+1, as described in Section 4.3.
Step 3. Calculate Un

d;U
n�1
d , and pn

d via the semi-Lagrangian method described in Section 4.2.
. Convergence history of the residual jrnj for the CG and PCG algorithms in the case of the projection step. Standard fluid projection (left) and the
fluid/solid interaction algorithm (right).



Fig. 5.2. Computational resources necessary in the projection step versus the number of nodes (the right column is in log–log scale). The PCG routine for
each case was iterated until the residual jrnj < 10�12.
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Step 4. Solve for U⁄ in Eq. (3.1).
Step 5. Solve for qn+1 in Eq. (4.1).
Step 6. Perform the projection of U⁄, P⁄ and L⁄:
Unþ1 ¼ U� � Dt
rhq
q

;

Pnþ1 ¼ P� � Dt
X

i;j

ðqrhHÞi;jdV ;

Lnþ1 ¼ L� � Dt
X

i;j

ðqJÞi;jdV :
Step 7. Extrapolate Un+1 and qn+1 from Xf,n+1 to the entire computational region using Aslam’s quadratic extrapolation pro-
cedure [2,21].

Step 8. Update pnþ1 ¼ pn
d þ 3

2 qnþ1 � lrh � U�.
Step 9. Go back to Step 1.

7. Numerical examples

In this section, we provide numerical evidence that our method is second-order accurate in the L1-norm and can repro-
duce known experimental results.
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7.1. Sliding rectangular structure

We consider the analytical example proposed in [28], where a solid rectangular structure immersed in fluid is flowing
along the center of an infinite channel under the action of gravity. A simple analytical formula is derived in [28] for the set-
tling velocity of the solid:
Table 3
Accurac
velocity

grid

202

402

802

1602
vs ¼ �ðM þ qwhÞ gw
2hl

; ð7:1Þ
where h = 1 m is the height of the channel, w = 1/3 m is the width of the rigid body, M = 150 kg its mass, g = 9.8 m s�1 is the
gravity constant and q = 100 kg m�2 and l = 100 kg s�1 are the fluid’s density and viscosity, respectively. The analytic veloc-
ity profile for the left fluid region [0,w] � [0,h] is u = 0 and v ¼ qg

2l xðx�wÞ þ vs
w x, therefore a quadratic form in x. Fig. 7.1 de-

picts the convergence of our numerical solution to the analytical formula (7.1) with Dt = Dx. Table 3 demonstrates the
second-order convergence for solid velocity at t = 0.5. The error at steady-state (t = 40) is near machine precision, which
is characteristic of a second-order accurate approximation to a quadratic polynomial.

7.2. Falling cylinder

Consider the classical problem of an infinite solid cylinder with density qs falling in a fluid with density qf and viscosity l,
enclosed in a channel. In the case where the infinite section of the cylinder is perpendicular to the direction of motion, this
problem can be treated in a two-dimensional setting. We take the dimensions of the channel to be 2L � 8L and the radius of
the cylinder to be r. Balancing the frictional force on the cylinder by the force due to the difference of the weight of the cyl-
inder and its buoyancy, an analytical form for the terminal velocity can be derived using the Stokes assumption of low Rey-
nolds number [35]:
v terminal ¼
ðqs � qf Þgr2

4l
� ln

r
L

� �
� :9157þ 1:7244

r
L

� �2
� 1:7302

r
L

� �4
� �

ð7:2Þ
We take L = 2 � 10�2 m, r = 5 � 10�3 m, qs = 2 � 103 kg m�2, qf = 1 � 103 kg m�2 and g = 9.8 m s�1. We apply no-slip bound-
ary conditions at the walls of the channel and apply an outflow boundary condition at the top of the channel. The time step is
Dt = 2Dx. Fig. 7.2 depicts our numerical results for the vertical velocity of the cylinder for different values of the fluid’s vis-
cosity l = 0.05 kg s�1, l = 0.1 kg s�1, l = 0.2 kg s�1 and l = 0.5 kg s�1. These values for the viscosity correspond to Reynolds
numbers of Re � 140.18, Re � 35, Re � 8.74 and Re � 1.4. Here, we take Re ¼ qVd

l with the characteristic velocity V to be the
analytical terminal velocity and the characteristic length d = 2r. It is well known that the Stokes assumption is valid for
Fig. 7.1. Convergence of the solid velocity in the case of the analytical example of [28].

y of the vertical component of the velocity field of solid in the example of Section 7.1. For calculating the error, the analytic formula for the settling
v s ¼ �ðM þ qwhÞ gw

2hl was used at steady-state (t = 40) and the numerical solution on a very fine 12802 grid was used in the transient region (t = 0.5).

resolution t = 0.5 t = 40

kv � v1280k1 rate kv � vsk1 rate

1.22 � 10�3 8.05 � 10�9

3.32 � 10�4 1.88 6.49 � 10�9 -
8.68 � 10�5 1.93 5.94 � 10�9 -
2.16 � 10�5 2.00 9.34 � 10�9 -



Fig. 7.2. Velocity of a falling cylinder in a channel over time (dashed lines) compared with the theoretical terminal velocity obtained under the Stokes
assumption (solid lines).
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Reynolds number Re / 0.1 and in that case the terminal velocity formula given by (7.2) is accurate to within about 1%. How-
ever, the increasing effects of inertia invalidate (7.2) for increasing value of Re. This explains the deviation from the analytical
prediction. Our results are consistent with the results of [28] who also pointed out the source of the deviation.

In terms of accuracy analysis, we first follow the work of Apte et al. [1], who performed a standard convergence analysis
by comparing their numerical results to a reference solution obtained by their numerical method on a more refined grid.
Fig. 7.3 illustrates such a convergence analysis for our method, in which the numerical solutions obtained on a
320 � 1280 grid is taken as the reference solution and where numerical solutions on grid resolutions of 40 � 160,
60 � 240, 80 � 320, 120 � 480, 160 � 640 and 180 � 720 are used for the analysis. This analysis, however, can be misleading
in the case where the reference solution is not computed on a significantly more refined grid than the other solutions. In this
case, the order of accuracy is overestimated since the results from successive computations get closer and closer to the ref-
erence solution. For example in our case, such an analysis indicates a convergence rate of 2.89, as illustrated in Fig. 7.3 (top-
right), which is clearly excessive for an algorithm with second-order accurate approximations all around. In fact, Table 4
shows a second-order accuracy when the numerical solutions on rather coarse 40 � 160, 60 � 240 and 80 � 320 grids are
compared to a reference solution on a relatively fine grid of 320 � 1280, whereas the accuracy is overestimated to third-or-
der accuracy as the numerical solutions are computed on finer grids of 120 � 480, 160 � 640 and 180 � 720.

A more accurate procedure to measure the rate of convergence is as follows: Let p be the order of convergence of our
numerical method, then the numerical solution v satisfies v = vexact + C(Dx)p for some constant C. Writing this equation in
the case where we take 320 grid nodes in the x-direction, we have v320 = vexact + C(Dx320)p. The measured error with the ref-
erence solution then satisfies e = C((Dx)p � (D x320)p). The constants C and p can then be extracted from the available data. In
our case, we find C = 2.02 � 104 and p = 2.02 using the nonlinear least-square fit command nlinfit in MATLAB, as illus-
trated in Fig. 7.3 (bottom). This analysis confirms that our numerical method is second-order accurate in the maximum
norm.



Fig. 7.3. Convergence study for the falling cylinder example of Section 7.2 with l = 0.05 kg s�1. The top-left figure depicts the convergence under grid
refinement. The top-right figure depicts the error versus Dx in a log–log scale when the numerical solution on a 320 � 1280 grid is used as the reference
solution. In this case the order of accuracy is found to be 2.89, which is misleading. The bottom figure depicts the curve fitting of the error e = C((Dx)p � (D
x320)p) with C = 2.02 � 104 and p = 2.05. Here the order of accuracy is found to be 2.05. In each case, the error is measured over the time interval t 2 [0,0.56]
in the L1-norm.

Table 4
Convergence study for the falling cylinder example of Section 7.2. The convergence rate for the nth row is computed as

log Dxn�1
Dxn

�� �� vn�1�vref
vn�vref

��� ���, where vref is the computed solution on a fine 320 � 1280 grid.

grid kv � v320�1280k1 rate

40 � 160 1.38 � 10�2

60 � 240 6.14 � 10�3 1.99
80 � 320 3.38 � 10�3 2.07
120 � 480 8.80 � 10�4 3.31
160 � 640 2.88 � 10�4 3.88
180 � 720 1.95 � 10�4 3.31
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7.3. Falling sphere

Consider a container with dimension 10 � 10 � 16 cm3 filed with a fluid with density qf and viscosity lf. A solid particle
with diameter dp = 15 mm and density qs = 1120 kg m�3 is released from a height of H = 12 cm from the bottom of the tank
and falls under the action of gravity. The fluid characteristics are varied to obtain different Reynolds number Re ¼ qf u1dp

lf

based on the terminal velocity u1 of the particle, as detailed in Table 5. No slip boundary conditions are applied on all
the walls of the container. Neumann boundary conditions for the velocity components are imposed on the top of the tank.
We apply the algorithm described in this paper with grid spacings D x = Dy = Dz and a time step of Dt = 5Dx.

Fig. 7.4 depicts the results of our numerical predictions for the vertical velocity of the particle and for the normalized

height H�dp

2dp

� �
with the parameters given in Table 5. Those results show good agreement with the experimental results of



Table 5
Parameters used in the sedimentation problem of Section 7.3.

Case name qf (kg/m3) lf (10�3 Ns/m2) u1 (m/s) Rep

C1 970 373 .038 1.5
C2 965 212 .06 4.1
C3 962 113 .091 11.6
C4 960 58 .128 31.9

Fig. 7.4. Comparisons with the experimental data of Cate et al. [6] of the computed vertical velocity (left) and normalized height (right) in the case of the
falling sphere example of Section 7.3. The symbols represent the experimental data while the solid lines depict the simulation results on a 1202 � 192 grid.

Fig. 7.5. Contours of the normalized velocity magnitude kUk
U1

� �
when the particle’s center is at location.1, .08, .04, and.02, from left to right. The top figures

correspond to the case where Re = 1.5, while the bottom figures correspond to the case where Re = 31.9. The contour values range between 0 and 1 with
equal spacing of.1.
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Table 6
Convergence study for the falling sphere example of Section 7.3. The convergence rate for the nth row is computed as

log Dxn�1
Dxn

�� �� vn�1�vref
vn�vref

��� ���, where vref is the computed solution on a 1402 � 224 grid.

grid kv � v1402�224k1 rate

802 � 120 8.44 � 10�3

902 � 144 5.98 � 10�3 2.92
1002 � 160 3.73 � 10�3 4.47
1102 � 176 2.49 � 10�3 4.24
1202 � 192 1.75 � 10�3 4.05

Fig. 7.6. Convergence study on particle setting velocity for the Re = 31.9 case. The left figure depicts the convergence under grid refinement. The right figure
depicts the curve fitting of the error e = C((Dx)p � (D x140)p) with C = 0.7577 and p = 1.97. Here the order of accuracy is found to be 1.97. In each case, the
error is measured over the time interval t 2 [0,1] in the L1-norm.

Fig. 7.7. Streamlines of a falling star-shaped object: the grid resolution is 80 � 320, and the time from left to right is t = 0, 0.1, 0.3, 0.5, and 0.7. The stream
function w is calculated from solving � Dw =r� U with a homogeneous Dirichlet boundary condition on the boundary of the domain. For each time step,
we have drawn 31 contour lines whose contour values are evenly sampled between the minimum and maximum values of the stream function.
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Fig. 7.8. Vorticity contours of a falling star-shaped object: the grid resolution is 80 � 320, and the time from left to right is t = 0, 0.1, 0.3, 0.5, and 0.7. For
each time step, we have drawn 31 contour lines whose contour values are evenly sampled between the minimum and maximum values of the vorticity.
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Ten Cate et al. [6]. Fig. 7.5 depicts the contour of the normalized velocity magnitude kuku1
. Those results are in agreement with

those obtained with the simulations in Apte et al. [1].
For accuracy analysis, numerical solutions are calculated on grid resolutions of 802 � 120, 902 � 144, 1002 � 160,

1102 � 176, 1202 � 196, and 1402 � 224. The finest one among them is taken as the reference solution. Table 6 shows about
fourth order convergence of the numerical solutions. The order is obviously overestimated since the reference solution is not
computed with suitably fine resolution. Thus, we follow the analysis of Section 7.2 and use the data to fit the following error
e = C((Dx)p � (Dx140)p), where Dx140 represent the grid spacing when 140 grid points are used in the x-direction. We find
C = 0.7567 and p = 1.9667 using the nonlinear least-square fit command nlinfit in MATLAB, as illustrated in the right part
of Fig. 7.6. This analysis confirms that our numerical method is second-order accurate in the maximum norm.

7.4. Falling star-shaped object in 2D

In this example, we provide the results of a simulation of an arbitrary shaped rigid body falling in a liquid. The rigid body
is described by the following level-set function:
/ðx; yÞ ¼ r
0:005

� 1� y5 þ 5x4y� 10x2y3

3r5
on a computational domain [�0.2, 0.2] � [�0.6, 0.2], and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The fluid density is taken as qf = 1000 kg m�2, while

the density of the rigid body is qs = 2000 kg m�2. The gravity constant is g = 9.8 and the viscosity of the fluid is
l = 0.05 kg s�1. Non-slip boundary conditions are imposed on the left, right, and bottom walls; the outflow boundary con-
dition is imposed on the top wall. Figs. 7.7 and 7.8 depict the streamlines and the vorticity contours obtained on a
80 � 320 uniform grid. In this simulation, we use a time step of Dt = 2Dx.
8. Conclusion

We have introduced a novel numerical method to simulate the two-way fluid/solid coupling. Our approach is monolithic
since it takes into account the full coupling between the fluid and the rigid body in a single step. It produces a linear system
for the projection step that is symmetric positive definite and we have described how we can use the preconditioner of stan-
dard fluid simulations to efficiently solve the linear system in the case of fluid/solid coupling using a conjugate gradient
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method. The monolithic treatment results in a stable projection step, i.e. the kinetic energy does not increase in the projec-
tion step. Numerical results indicate that the method is second-order accurate in the L1-norm and agrees quantitatively with
experimental results.
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