
Journal of Computational Physics 231 (2012) 2528–2536
Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A local level-set method using a hash table data structure

Emmanuel Brun a, Arthur Guittet a,⇑, Frédéric Gibou a,b

a Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106-5070, United States
b Department of Computer Science, University of California, Santa Barbara, CA 93106-5070, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 28 May 2011
Received in revised form 7 November 2011
Accepted 1 December 2011
Available online 23 December 2011

Keywords:
Local level-set
Level-set
Irregular domains
Hash tables
Reinitialization
0021-9991/$ - see front matter Published by Elsevi
doi:10.1016/j.jcp.2011.12.001

⇑ Corresponding author.
E-mail address: arthur.guittet@engineering.ucsb
We present a local level-set method based on the hash table data structure, which allows
the storage of only a band of grid points adjacent to the interface while providing an O(1)
access to the data. We discuss the details of the construction of the hash table data struc-
ture as well as the advection and reinitialization schemes used for our implementation of
the level-set method. We propose two dimensional numerical examples and compare the
results to those obtained with a quadtree data structure. Our study indicates that the
method is straightforward to implement but suffers from limitations that make it less effi-
cient than the quadtree data structure.

Published by Elsevier Inc.
1. Introduction

The level-set method was originally introduced by Osher and Sethian [10] and has proven to be efficient for tracking
evolving interfaces in numerous cases [16,9]. It relies on the simple idea of embedding a problem in a higher dimensional
space and considering the interface as the zero level-set of a function, called the level-set function, in this space. This mod-
eling procedure allows sophisticated behaviors of the interface, such as cusps, sharp corners and topological changes. Appli-
cations of the level-set method can be found in various domains such as fluid mechanics, electrodynamics and solid
mechanics. The well-known drawback of this method is the so-called mass loss due to numerical approximations. In prac-
tice, the level-set function is stored by sampling its value on a mesh. The values of interest are located close to the interface,
where high accuracy is desirable in order to locate correctly the interface as well as its geometrical quantities. Therefore,
computations needed in the level-set method are only needed locally to the interface and methods providing this capability
are dubbed local level-set methods.

Various approaches exist: Adalsteinsson and Sethian [1] suggested to perform the calculations for the level-set function
evolution solely in a tube located close to the interface. The tube is updated every given number of steps so that it stays lo-
cated close to the interface. The mesh still covers the entire domain so there is no advantages in terms of memory, but only a
fraction of the nodes are processed thus improving significantly the computational time. The same idea of building a tubular
grid around the interface has been exploited by Nielsen and Museth [5]. They developed a powerful but intricate data struc-
ture to keep track of the points located in the tubular area only. Another approach is to use an octree data structure [13,14] as
for example in the work of Strain [19], Popinet [11], Losasso et al. [4] and Min and Gibou [7]. This approach consists of mesh-
ing the domain using an octree data structure, which allows to refine the mesh more accurately where the interface lies.
Octree grids are very efficient, especially in the case where the grids can be ungraded, but they still suffer from slow lookup
er Inc.

.edu (A. Guittet).

http://dx.doi.org/10.1016/j.jcp.2011.12.001
mailto:arthur.guittet@engineering.ucsb.edu
http://dx.doi.org/10.1016/j.jcp.2011.12.001
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536 2529
performance: data access scales as O(log (n)) in the case of a grid with n nodes. Octree data structures also consume some
extra memory to store relevant information needed to represent the structure.

We present an alternative method for building adaptive meshes to track interfaces based on the hash table structure,
which we will refer to as local grid. This data structure, widespread in computer science, allows a very fast access to elements,
up to an O(1) access for some implementations, instead of O(log (n)) for octrees, and provides an efficient strategy for storing
an implicit surface in term of memory usage. The literature abounds with examples of usage of hash table data structures
[21,18]. In this paper, we present an implementation of the level-set method using a hash table data structure and discuss
the benefits and the drawbacks of the method.
2. The Hash table structure

A hash table, or hash map, is a type of data structure often used in computer science. The goal of such structures is to
provide efficient access to data, and they often outperforms other classical structures like search trees or lookup tables. It
relies on three sets identified as the keys, the buckets in which the values associated to the keys are stored, and the hash
function.

The keys can be any type of data, and in our case it will be a two dimensional set of indices (i, j) referencing the grid points
in a band around the interface. A bucket is associated to each key, which in practice is an index in an array. The hash function
is the crux of the method. Its role is to associate a value to each key in the best possible way, as illustrated in Fig. 1, thus
providing an access to the values corresponding to a key in O(1).

There is no general hash function that would give an optimal solution to every problem, and finding an efficient hash
function can be a challenging task. This is the bottleneck of the structure, and there is no general method for designing this
function. Ideally, the hash function should match each key to a single bucket, in which case it is called a perfect hash func-
tion. If this ideal function exists, every element can be accessed in a single lookup. In practice, such a function may be impos-
sible to design, and different keys may be associated to the same bucket, creating so-called hash collisions. There are various
strategies for dealing with hash collisions, which can be grouped into two classes: closed hashing and open hashing.

The first strategy to deal with collisions is closed hashing (also called open addressing), which consists in finding another
available bucket in the hash table. Consider the case where the key (i, j � 2) is associated with the bucket k, and we want to
associate a bucket to the key (i + 1, j � 1) but the hash function produces the already used bucket k. In this case, alternate
buckets need to be probed, for example with a linear probing sequence, until a free bucket is found. This procedure is illus-
trated in Fig. 2. Various closed hashing methods can be found in the literature, a more detailed description can be found in
[3].

With the second strategy, called open hashing or closed addressing, each index in the array is pointing to a data structure
in which the values are stored. This external structure can be any organized structure, such as a tree or an array. We will use
linked lists, in which case one talks of separate chaining or direct chaining. An illustration of the separate chaining strategy
can be found in Fig. 3. If we want to store a new value associated to the key (i � 1, j + 2) and the hashing function gives the
already used bucket l for this key, we just need to add a new element to the linked list stored in bucket l. Note that accessing
elements is, in general, no longer done with a single operation. Once the bucket associated to a key is given by the hash func-
tion, the linked list it contains needs to be browsed until the right member is found. The number of hash collisions, and hence
of the lookup time, depends on the efficiency of the hash function. In the worst case scenario (i.e. using an ill-behaved hash
Fig. 1. Illustration of the hash table data structure. On the left is the set of keys to be associated with the set of values (on the right) using the hash function.



Fig. 2. Example of a hash collision treated with a closed hashing method using a linear probing sequence.

Fig. 3. Configuration of the hash table structure with an open hashing strategy. Each bucket is pointing to a linked list in which the desired information is
stored.

2530 E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536
function), a lookup might be done in O(n), but with a reasonably good function the average lookup time remains of the order
of O(1).

3. Implementation of the local level-set method

3.1. Presentation of the level-set method

Our goal is to store the local grid on which the level-set function is defined in a hash table data structure. The main idea
behind the level-set method is to describe an interface C 2 Rn as the zero contour of a higher dimensional function / 2 Rn.
Thus, in two spatial dimensions, a curve is described as C = {(x,y) : /(x,y) = 0}. The interior region is defined as X� = {x : /
(x) < 0}, and the exterior region as X+ = {x : /(x) > 0}. The interface C is evolved in time by evolving the level-set function
according to the level-set equation:
@/
@t
þ V � r/ ¼ 0; ð1Þ
where V is the velocity field.

3.2. The reinitialization equation

The level-set method has been proven to be more robust and of higher accuracy when using the signed distance function
to the interface as the level-set function. In order to maintained / as a signed distance function, the following reinitialization
equation [20] can be solved for a few iterations:
/s þ sgnð/0Þðjr/j � 1Þ ¼ 0; ð2Þ



E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536 2531
where s represents a fictitious time and sgn(/0) denotes the signum of /0. This algorithm thus reinitializes an arbitrary level-
set function /0 into a signed distance function. The solution of this Hamilton–Jacobi equation produces shocks and rarefac-
tions that can be captured using a combination of a Godunov scheme in space and a Total Variation Diminishing second-or-
der Runge Kutta (TVD-RK2) scheme in time (see [17,10,7]). In this paper, we use the following discretization:
d/
ds
þ sgnð/0Þ HG Dþx /;D�x /;Dþy /;D�y /

� �
� 1

h i
¼ 0; ð3Þ
where HG is the numerical Godunov Hamiltonian defined as:
HGða; b; c; dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðjaþj2; jb�j2Þ þmaxðjcþj2; jd�j2Þ

q
if sgnð/0Þ 6 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðja�j2; jbþj2Þ þmaxðjc�j2; jdþj2Þ

q
if sgnð/0Þ > 0

8><
>:
with a+ = max (a,0) and a� = min (a,0). The one-sided derivatives D�x / and D�y / are discretized using second-order accurate
one-sided finite differences:
Dþx /i;j ¼
/iþ1;j � /i;j

Dx
� Dx

2
minmodðDxx/i;j;Dxx/iþ1;jÞ
and
D�x /i;j ¼
/i;j � /i�1;j

Dx
� Dx

2
minmodðDxx/i;j;Dxx/i�1;jÞ;
with Dxx/ the second-order derivative of / in the x-direction, computed with a central-difference discretization. The semi-
discrete Eq. (3) is discretized in time with the TVD-RK2 scheme of Shu and Osher [17]:
~/nþ1 � /n

Ds þ sgnð/0Þ HG Dþx /n;D�x /n;Dþy /n;D�y /n
� �

� 1
h i

¼ 0;

~/nþ2 � ~/nþ1

Ds
þ sgnð/0Þ HG Dþx ~/nþ1;D�x ~/nþ1;Dþy ~/nþ1;D�y ~/nþ1

� �
� 1

h i
¼ 0
and then we define /n+1 by simple averaging: /nþ1 ¼ ð/n þ ~/nþ2Þ=2.
The reinitialization is required not to change the original location of the interface. This is enforced following the idea of

Russo and Smereka [12] of including the interface location, given by /0, in the stencils of the one-sided derivatives, and its
modifications from Min and Gibou [7].

In the case of our local grid, nodes on the outer edge of the band are missing at least one immediate neighbor, which poses
problems when approximating the different derivatives needed in the evolution and the reinitialization of the level-set. For
such nodes, we choose to construct the missing neighbors using a linear extrapolation of the known values of / using a fast
marching method approach [15,22]. This could be improved upon by using a higher-order extrapolation.
3.3. Evolving the level-set function with a semi-Lagrangian scheme

If the velocity field is externally generated, i.e. it does not depend on the level-set, the level-set Eq. (1) is linear and semi-
Lagrangian schemes (SLS) can be used. These schemes are unconditionally stable and thus avoid the standard CFL condition
stating that the interface cannot move by more than one grid cell at every time step, in our case Dxsmallest, the smallest space
step in the computational domain. The idea behind SLS is to reconstruct the trajectory of each individual particle of a system
by starting from a point x and integrating numerically the equation governing its motion along its characteristic curves, thus
tracing the particle back to its departure point xd.

In this article, we use a second-order accurate semi-Lagrangian method to solve the level-set Eq. (1) with the velocity field
V externally generated. From the fact that solutions to hyperbolic problems are constant along characteristic curve, we have
that for any grid point xn+1, /n+1(xn+1) = /n(xd), with /k the level-set function at time k. We use the second-order accurate
mid-point method for locating the departure point, as explained in [23,7]:
x̂ ¼ xnþ1 � Dt
2
� Vnðxnþ1Þ;

xd ¼ xnþ1 � Dt � Vnþ1
2ðx̂Þ:
We define the velocity Vnþ1
2 at the mid-time step tnþ1

2 linearly from the previous velocities as Vnþ1
2 ¼ 3

2 Vn � 1
2 Vn�1. Since the

points xd and x̂ are not grid points in general, the associated quantities /n(xd) and Vnþ1
2ðx̂Þ are approximated using an inter-

polation procedure. In this work, we take the non-oscillatory interpolation procedure of [7].



2532 E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536
3.4. Implementation of the hash table structure

We describe here the two key steps for the implementation of a cartesian grid on a hash table data structure, namely the
construction of the local grid and its advection.

3.4.1. Building the adaptive grid
The adaptive grid stored in the hash table data structure is built in two steps: we first construct a full non-graded adaptive

cartesian mesh before restraining it to the regions of interest and storing a refinement of those regions using the hash table
data structure. We use a quadtree structure because we will compare the performance of the local grid method with a quad-
tree implementation [7], but in practice a standard uniform grid could serve the purpose of ‘initializing’ the grid.

The local mesh is then constructed using the most refined cells of the quadtree mesh. Those cells are further refined, the
new nodes values being obtained by interpolation of the quadtree nodes values, and the corresponding nodes are stored in a
hash table data structure. Since the initial number of nodes is given, we can build the hash table structure together with its
hash function in an efficient way. We chose the size of the hash table s to be the smallest prime number larger than the num-
ber of nodes to be stored, and the hash function H to be
HðnÞ ¼ in � p1 þ jn � p2 ðmod sÞ;
where n is the node index, in and jn are the grid coordinates of the node and p1 and p2 are two large prime numbers. We
choose to define the size s of the hash table in the beginning of the algorithm and we do not modify it afterwards. Since
the number of nodes can exceed s after the interface evolves, we handle collisions in the hash table with the direct chaining
method presented in Section 2. Note that closed hashing would require the table to be resized when the number of nodes
becomes larger than s.

3.4.2. Advecting the local grid
Constructing the local grid is computationally expensive because a reference mesh is needed, but the strength of the ap-

proach, in addition to the reduced number of points to handle, comes from the advection step that is a rather inexpensive
and straightforward procedure. With structures like quadtrees, one has to rebuild the structure at each time step in such a
way as to enforce that each node has known neighbors, a costly process. In the case of a local grid, there is no need to know
the relation between neighboring nodes since the access to any node is in O(1). Therefore, grid nodes can be added or re-
moved very simply and efficiently. The procedure for adapting the local grid to the changes undergone by the interface after
advecting the level-set function / is described in Algorithm 1.

Algorithm 1: Algorithm for the advection of the local grid

1: for all node n in the local grid do
2: if j/(n)j > threshold then
3: remove node n from the local grid
4: else
5: for all neighbor ngbd not in the local grid do
6: compute /(ngbd) by using the fast marching approach to solve jr/j = 1
7: if j/(ngbd)j 6 threshold then
8: add ngbd to the local grid with the value /(ngbd)
9: end if
10: end for
11: end if
12: end for
4. Validation

In order to validate our implementation of the local grid on a hash table data structure, we perform typical tests in two
spatial dimensions. The local grid is located close to the interface forming a tube of width 5Dx on each side of the interface.
The advection is done using the Semi-Lagrangian scheme in a band of 2Dx around the interface, and we use a time step
Dt = Dx. The information is then propagated to the rest of the tube with a fast marching algorithm. The tube is required
to be larger than 2Dx to allow second order accuracy.

4.1. Rotation of a disk

The first test is the rotation of a disk. We consider a domain X = [�1.5,1.5]2 and a disk of radius R = 0.3 centered initially
at (0,0.5). We rotate this disk under the following rigid-body velocity field:



Fig. 4. Snapshots illustrating a full revolution of a disk using a local grid of equivalent uniform resolution 256 � 256 stored in a hash table data structure.
The disk is initially centered at (0,0.5) and has a radius R = 0.3. The snapshots are taken, from left to right, at time t = 0, t = 2p/4, t = 2p/7 and t = 2p. The
level-set is evolved using the semi-Lagrangian approach.

Table 1
Accuracy of the local grid stored in a hash table structure for the revolution of a disk. The disk is initially centered on (0,0.5) and the computation domain is
[�1.5,1.5]2. The disk is evolved with the velocity field (u,v) = (�y,x) until the time t = 2p. In this article, a ‘resolution’ of r2 defines the grid size equivalent to a
r � r discretization on uniform grid.

Resolution Time (s) L1 error of / Rate L1 error of / Rate Mass loss (%) Rate

642 5 3.21 � 10�2 2.70 � 10�2 17.15
1282 13 8.20 � 10�3 1.97 6.65 � 10�3 2.02 4.40 1.96
2562 38 2.36 � 10�3 1.80 1.74 � 10�3 1.93 1.16 1.92
5122 139 7.91 � 10�4 1.58 4.65 � 10�4 1.90 0.31 1.90
10242 530 3.46 � 10�4 1.19 1.38 � 10�4 1.75 0.092 1.75

Table 2
Resources used by the present local grid algorithm in comparison with the quadtree data structure for the disk revolution test. The disk is initially centered on
(0,0.5) and the computation domain is [�1.5,1.5]2. The disk is evolved with the velocity field (u,v) = (�y,x) until the time t = 2p. The number of nodes used is of
the same order for both methods, and so is the memory required. Note that around 35% slots are empty for the local grid scheme, and a better hash function
would improve those results. But according to [3] a total load of around 65% is close to the optimal case of 80%.

Resolution Nb of nodes Nb of slots Nb of empty slots Average occupied slots load Memory (Kio)

Local grid
642 404 409 194 1.88 18.94
1282 806 823 229 1.35 37.78
2562 1606 1609 588 1.57 75.28
5122 3226 3301 1239 1.56 151.22
10242 6432 6719 2223 1.43 301.50

Quadtree
642 309 NA NA NA 17.57
1282 609 NA NA NA 35.24
2562 1237 NA NA NA 72.19
5122 2509 NA NA NA 146.91
10242 5001 NA NA NA 293.15

E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536 2533
uðx; yÞ ¼ �y;

vðx; yÞ ¼ x
and rotate the disk until the final time t = 2p is reached, i.e. we perform one complete revolution. The procedure is illustrated
in Fig. 4. The accuracy of the procedure, given in Table 1, is monitored using the error close to the interface as well as the
mass loss, which is a good measure of accuracy for the level-set method. The comparison with the quadtree data structure
is developed in Table 2.

The error is computed close to the interface only, in a band of 1.2 Dx with Dx the resolution of the grid, since those points
define the interface location, which we are interested in. The loss of mass is given by jVinitial � Vfinalj/Vinitial, with Vt the area
inside the interface (i.e. for / < 0) at time t. In practice, Vt is calculated by extending the local grid to the whole negative /
region, i.e. to the interior of the domain, and summing the area of the negative region contained in each cell. The area of the
negative region contained in grid cells adjacent to the interface is computed as described by Min and Gibou in [6] The grid
resolution corresponds to the number of points on a uniform grid with the same Dx.

In terms of memory, the hash table data structure is expected to be more efficient than the quadtree structure. However,
for the local grid to provide accurate results, the band around the interface needs to be wide enough as to minimize the error
incurred by linearly extrapolated nodes on the edge of the band. Also a smaller band limits the time step we can take in a
semi-Lagrangian framework since the departure point could be outside the band. We found that at least 5Dx on both sides of



Fig. 5. Illustration of the deformation of a disk under a vortex velocity field using a local grid of equivalent uniform resolution 256 � 256 stored in a hash
table data structure. The disk is evolved forward until time t = 1 and then backward to its initial position. The snapshots have been taken from left to right at
respective times t ¼ 0; t ¼ 1 ¼ 1

2 tfinal and t = tfinal. The scheme used to evolved the level-set is based on the Semi-Lagrangian approach.

2534 E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536
the interface are needed, while a band of only 3Dx are needed in the case of the quadtree. Overall, this restriction can lead to
structures that have a size equivalent to or higher than a quadtree data structure. The hash function we use provides an aver-
age access to the nodes in O(1), since the average load of the hash table occupied slots is close to one. The heaviest load ob-
served is six nodes for a single slot.

4.2. Motion under a vortex velocity field

The second test, based on a proposition by [2], is more challenging as the interface thins out under the velocity field: We
consider a domain X = [0,1]2 and a disk of radius R = 0.15 centered initially at (0.5,0.75). We deform the level-set under the
divergence free velocity field:
Table 3
Accuracy of the local grid stored in a hash table structure for the evolution of a disk in a vortex velocity field (u,v) = (�sin2(px) sin(2py), sin2(py) sin(2px)). The
disk is initially centered on (0.5, 0.75) and the computation domain is [0,1]2. The disk is evolved until the time t = 1 and is then evolved back to its initial state
with the inverse velocity field. In this article, ’’resolution’’ means the number of grid points for an uniform grid of the same accuracy. The L1 and L1 errors of /
are computed on the nodes adjacent to the interface. As one can observe, the method is of order close to two.

Resolution Time (s) L1 error of / Rate L1 error of / Rate Mass loss (%) Rate

642 8 3.74 � 10�2 1.43 � 10�2 16.34
1282 22 1.81 � 10�2 1.05 4.74 � 10�3 1.59 5.58 1.55
2562 76 8.53 � 10�3 1.09 1.49 � 10�3 1.67 1.84 1.60
5122 591 3.98 � 10�3 1.10 4.72 � 10�4 1.66 0.61 1.59
10242 2509 1.80 � 10�3 1.14 1.61 � 10�4 1.55 0.20 1.61

Table 4
Resources used by the algorithm in comparison with the quadtree data structure for the evolution of a disk in a vortex velocity field. The disk is initially
centered on (0.5,0.75) and the computation domain is [0,1]2. The disk is evolved until the time t = 1 and is then evolved back to its initial state. The minimum
and maximum average loads of the occupied slots over the whole procedure are monitored, together with the number of nodes and the memory usage. The
number of nodes used by the local grid is approximately twice the number of nodes used by the quadtree, leading to a structure that requires twice more
memory.

642 1282 2562 5122 10242

Local grid Number of slots 1103 2713 6427 13,577 28,111
Min average occupied slots load 1.00 1.00 1.00 1.05 1.02
Max average occupied slots load 1.00 1.03 1.05 1.20 1.19
Min number of empty slots 354 798 2086 4654 1305
Max number of empty slots 657 1722 4341 9333 6575
Min number of nodes 504 1141 2367 4793 9630
Max number of nodes 948 2690 6376 13,478 27,563
Min memory usage 18.36 53.48 110.95 224.67 451.25
Max memory usage 44.44 126.09 298.88 631.78 1292.02

Quadtree grid Min number of nodes 283 588 1206 2426 4844
Max number of nodes 484 1143 2744 6177 13,147
Min memory usage 16.34 33.84 70.20 141.52 282.78
Max memory usage 28.19 68.26 164.14 366.36 776.65



Fig. 6. Deformation of a disk under the vortex velocity field using a local grid of equivalent uniform resolution 8192 � 8192. The disk (on the left) is
deformed until the time t = 6 (second picture), then the velocity field is inverted and the disk is evolved to its initial shape (right picture). The mass loss is
0.20%, and the maximum memory usage is 51 Mio.

Fig. 7. Deformation of a square under a normal velocity to the interface. The original square, on the left, is contracted in the middle, and the same original
square is expanded on the right. This illustrates the ability of our framework to capture shock and rarefaction solutions.

E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536 2535
uðx; yÞ ¼ � sin2ðpxÞ sinð2pyÞ;
vðx; yÞ ¼ sin2ðpyÞ sinð2pxÞ:
This deformation is illustrated in Fig. 5, and the numerical results are collected in Tables 3 and 4. As can be observed, and as
expected from the results obtained in [7], the order of convergence is not at good as for the case of the rotation for coarse
grids. The method is of order close to two for the mass loss and the L1 error, and of order slightly more than 1 for the L1 error.
As explained by Min and Gibou, and reported in [8], this is due to the fact that part of the geometry is under resolved as it
deforms. In particular, part of the tail of the interface will always be under-resolved, no matter how high the resolution.

The disk can be deformed further under the velocity field, and the largest the deformation is the hardest it is to recover
the initial disk shape. This is precisely a situation where high resolution implementations can provide accurate results. Fig. 6
illustrates the deformation of the disk until the time t = 6, before being rewinded back to its initial state. As can be observed,
the final result is close to the initial disk. We find a mass loss of 0.2%, which is quite small for such an extreme case of defor-
mation. Therefore, the local grid we implemented succeeds in capturing the general features of this important deformation.
4.3. Case of shock and rarefaction solutions

In the case where the velocity V in Eq. (1) depends on the level-set function /, Eq. (1) admits nonlinear solutions related to
shock and rarefaction waves in conservation laws. In order to illustrate the ability of our framework to capture such solu-
tions, we consider the case of a unit square moving under a normal velocity Vn = ±n, where n is the outward normal to
the interface. The level-set Eq. (1) is solved using a Godunov scheme similar to the one presented for the reinitialization pro-
cedure in Section 3.2. Fig. 7 depicts the correct shock and rarefaction solutions.
5. Concluding remarks

We have presented a successful implementation of the level-set method on a hash table data structure. It is important to
mention that the development of the code for the hash table based level-set method, with its linear organization, was easier



2536 E. Brun et al. / Journal of Computational Physics 231 (2012) 2528–2536
and more straightforward than the implementation of the quadtree data structure, which is recursive and intricate. We note
that the hash function we provide produces satisfactory results and enables a meaningful comparison of the method’s per-
formances with the quadtree data structure. We also note that the extrapolation procedure to define missing neighbors is
only first-order accurate, which impacts the overall accuracy. The analysis of the numerical tests shows that even if only
the nodes close to the interface are stored, the method is less efficient than the quadtree data structure for three main rea-
sons: (1) to obtain accurate results, a rather large band is required close to the interface, which counterbalances the absence
of grid nodes far from the interface; (2) the performances are deteriorated by extrapolation procedures on the outer edges of
the local grid and (3) the width of the band restricts the time step and slows down the method. These issues may be resolved
by careful development of different algorithms. In addition, the hash table data structure is more suitable for parallelization
than the quadtree data structure, but as it is, we find that a quadtree data structure seems more adapted than the hash table
data structure for level-set algorithms.

Acknowledgement

This research was supported in part by ONR under grant agreement N00014-11-1-0027, by the National Science Founda-
tion under grant agreement CHE 1027817, by the Department of Energy under grant agreement DE-FG02-08ER15991, by the
Institute for Collaborative Biotechnologies through contract No. W911NF-09-D-0001 from the US Army Research Office and
by the W.M. Keck Foundation.

References

[1] D. Adalsteinsson, J. Sethian, A fast level set method for propagating interfaces, J. Comput. Phys. 118 (1995) 269–277.
[2] J.B. Bell, P. Colella, H.M. Glaz, A second order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys 85 (1989) 257–283.
[3] T.H. Cormen, Introduction to Algorithms, The MIT press, 2001.
[4] F. Losasso, F. Gibou, R. Fedkiw, Simulating water and smoke with an octree data structure, ACM Trans. Graph. (SIGGRAPH Proc.) (2004) 457–462.
[5] Ken Museth Michael B. Nielsen, Dynamic tubular grid: an efficient data structure and algorithms for high resolution level sets, J. Sci. Comput. 26 (3)

(2006), doi:10.1007/s10915-005-9062-8.
[6] C. Min, F. Gibou, Geometric integration over irregular domains with application to level set methods, J. Comput. Phys. 226 (2007) 1432–1443.
[7] C. Min, F. Gibou, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys. 225 (2007) 300–321.
[8] E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225–246.
[9] S. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, NY, 2002.

[10] S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys. 79
(1988) 12–49.

[11] S. Popinet, Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries, J. Comput. Phys. 190 (2003) 572–600.
[12] G. Russo, P. Smereka, A remark on computing distance functions, J. Comput. Phys. 163 (2000) 51–67.
[13] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, New York, 1989.
[14] H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS, Addison-Wesley, New York, 1990.
[15] J. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. 93 (1996) 1591–1595.
[16] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999.
[17] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[18] K. Steele, D. Cline, P.K. Egbert, J. Dinerstein, Modeling and rendering viscous liquids, Comput. Anim. Virtual Worlds 15 (3–4) (2004) 183–192.
[19] J. Strain, Tree methods for moving interfaces, J. Comput. Phys. 151 (1999) 616–648.
[20] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput. Fluids 27 (1998) 663–680.
[21] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A. Fuhrmann, M.P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, et al,

Collision Detection for Deformable Objects, Computer Graphics Forum, vol. 24, Wiley Online Library, 2005, pp. 61–81.
[22] J. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Autom. Control 40 (1995) 1528–1538.
[23] D. Xiu, G. Karniadakis, A semi-Lagrangian high-order method for Navier–Stokes equations, J. Comput. Phys. 172 (2001) 658–684.

http://dx.doi.org/10.1007/s10915-005-9062-8

	A local level-set method using a hash table data structure
	1 Introduction
	2 The Hash table structure
	3 Implementation of the local level-set method
	3.1 Presentation of the level-set method
	3.2 The reinitialization equation
	3.3 Evolving the level-set function with a semi-Lagrangian scheme
	3.4 Implementation of the hash table structure
	3.4.1 Building the adaptive grid
	3.4.2 Advecting the local grid


	4 Validation
	4.1 Rotation of a disk
	4.2 Motion under a vortex velocity field
	4.3 Case of shock and rarefaction solutions

	5 Concluding remarks
	Acknowledgement
	References


