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Optimal Material Properties
for Mitigating Brain Injury
During Head Impact
We present a methodology for identifying constitutive responses of crushable, linear-
softening materials that would reduce the severity of brain injury caused by head impact
in a typical automobile or sports collision. It is based on analysis of accelerations
imparted to a spherical mass (representative of the human head) upon impact at pre-
scribed velocity onto a flat padded structure. The resulting acceleration–time histories
are used to calculate the corresponding Head Injury Criterion (HIC): a weighted product
of acceleration and impact duration that has been found to correlate with the severity of
brain injury. In the best-case scenario, the HIC is reduced by a factor of 1.84 relative to
that obtained for a system optimized with a perfectly plastic foam. The optimal combina-
tions of yield stress and crushing strain are not unique; that is, the optimum can be
achieved with a range of strengths and crushing strains. The present solutions are
expected to find utility in guiding the design of new polymer lattice materials for use in
impact protection systems. [DOI: 10.1115/1.4024992]

1 Introduction

The severity of head impact in automobile collisions is charac-
terized by the Head Injury Criterion (HIC) [1]. The HIC was first
introduced by the U.S. National Highway Traffic Safety Adminis-
tration for assessing risk of brain injury to vehicle occupants [2].
It was subsequently adopted for assessing the efficacy of protec-
tive equipment used for sporting applications [3,4] as well as the
risk potential of surface materials used on playgrounds [5] and for
cheerleading [6]. It is defined as [2,3]

HIC ¼ max
t1;t2
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where a is acceleration in units of g (the acceleration due to grav-
ity), t is time, and t2 and t1 are the two times that maximize the
quantity in {…}, subject to the constraint that the two times not
differ from one another by more than a prescribed amount, tc (typ-
ically 15 ms). The time restriction reflects the fact that low accel-
eration levels over extended periods of time pose low risk of
injury.

In a previous study [7], we presented an analytical framework
for identifying optimal properties of protective materials for miti-
gating brain injury during blunt head impact, assuming rigid, per-
fectly plastic material behavior up to densification. This was
accomplished by analyzing the motion of a spherical mass (repre-
senting, roughly, a human head) as it impacts a foam pad mounted
on a flat rigid structure (Fig. 1). Here we extend that analysis to
include notional protective materials that exhibit linear strain
softening after yield under compressive loading (Fig. 2). In princi-
ple, this behavior could be attained through the use of lattice
materials that undergo buckling (either elastically or plastically)
and, thus, exhibit a peak stress and subsequent softening in their
compressive response [8].

The motivation for selecting this response stems from the ob-
servation that, for perfectly plastic foams, impact by a spherical
mass produces an increasing acceleration with time (up to a peak)

and, in turn, an HIC value that is considerably higher than that
which could be obtained under conditions of constant accelera-
tion. Here we show that, when optimized, strain softening materi-
als exhibit a HIC that is 1.84 times lower than that obtained for an
optimized system with a perfectly plastic foam.

The potential effects of these changes in HIC on probability of
sustaining brain injuries with prescribed severity are shown in
Fig. 3. For context, the limit set by the Federal Motor Vehicle
Safety Standards for an adult head impacting the interior structure
of an automobile at 6.7 m/s (15 mph) is 700 [2]. Accordingly, a
reduction in HIC from 700 to 700/1.84 � 400 would reduce the
probability of serious nonlife-threatening head injury (3 on the
Abbreviated Injury Scale) from 25% to 8% [9]. Proportional
changes starting from higher baseline HICs would have even
greater effect. For example, a reduction from 1300 to 700 would
reduce the probability of the same head injury from 80% to 25%.

We restrict the scope of our analysis to impacts with initial
velocities in the range of about 1–10 m/s and duration times in the
range 1–30 ms. These encompass the majority of events associated
with the secondary collision of an automobile occupant with the
interior structure in typical automobile accidents. Moreover, this
range is relevant to many common sports collisions. In this veloci-
ty–time domain, impact is essentially quasi-static in the sense that
there is ample time for stress waves to travel over distances com-
parable to the dimensions of the human skull and, thus, a quasi-
equilibrium state is attained.

The principal objective of the article is to identify constitutive
responses of crushable materials that have potential for reducing
the HIC relative to that obtained for a system optimized with
perfectly-plastic foams. The analyses are similarly based on the
impact of a spherical mass onto a crushable material mounted on
a flat rigid support, as illustrated in Fig. 1. The constitutive
responses are restricted to rigid, linear-softening materials that,
upon densification, become rigid once again. In our previous work
[7], we provide minimum velocities above which elasticity at very
small strains can be neglected: the following assumes relevant
design velocities are above this limit.

2 Impact Model

Let the target material response be denoted as r(e, ec, eD),
where e is strain, ec is the crushing strain (i.e., that at which the
flow stress drops to zero) and eD is the densification strain (Fig. 2).
Provided eC< eD, the material supports no stress beyond the
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crushing strain, until densification, at which point the material
stiffness rises dramatically and is treated as effectively rigid (dot-
ted lines in Fig. 2). Otherwise, if eC> eD, the stress just before
densification is finite and given by rYð1� eD=ecÞ (solid lines).

Further, the perfectly plastic limit (with no softening) occurs at
eC!1 (dashed lines). In this context, the crushing strain can be
interpreted as the inverse of the slope of the softening response.

To solve the trajectory problem, it is convenient to express the
target response in terms of displacement d (rather than strain), in
which case r(d, dc), where dc¼ ecHo. Densification is to be
avoided, implying the constraint that xmax � eDHo, where xmax is
the maximum penetration depth of the leading edge of the spheri-
cal mass. After solution, one can easily re-express the results in
terms of ec and eD using these relationships. In what follows, the
densification regime is not explicitly included in the material
response; instead, it is accounted for by imposing the displace-
ment constraint on the solution space.

For a spherical mass and scenarios where the penetration depth
is much smaller than its radius, the penetration depth is given by

dðr; tÞ ¼ xðtÞ � r2

2R
(2)

where R is the sphere radius, x(t) is the penetration depth of the
leading edge, and t is time after impact. The penetration depth is
zero at the contact radius r¼ c implying that the contact radius is
given by

cðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2RxðtÞ

p
(3)

Assuming a uniaxial response under the contact, the resistive
force F acting against the sphere is given by

F½xðtÞ� ¼ 2p
ð ffiffiffiffiffiffiffiffiffi

2RxðtÞ
p

0

rðd; dcÞrdr (4)

For a rigid, perfectly plastic target (i.e., with dc!1), r(d)¼rY,
such that the net resistive force is

FðtÞ ¼ rYpcðtÞ2 ¼ 2pRrYxðtÞ (5)

Thus, we find that the response of a rigid-plastic target impacted
by a sphere is identical to that of an elastic target with stiffness
k ¼ 2pRrY .

For a linear softening material with finite dc (i.e., nonzero slope
to the stress–strain curve), the response of the target is given by

rðdÞ ¼ rY 1� d

dc

� �
for d < dc (6a)

Fig. 3 Effects of HIC on probability of sustaining head injuries of varying severity
(from 1 to 6 on the Abbreviated Injury Scale) and the current limit used by the Fed-
eral Motor Vehicle Safety Standards for adult vehicle occupants. The Abbreviated
Injury Scale has been developed by the Association for the Advancement of Auto-
motive Medicine. (Adapted from Refs. [2] and [8].)

Fig. 1 Schematic of a spherical mass impacting a flat protec-
tive pad mounted on a flat rigid support

Fig. 2 Schematic of potential compressive stress–strain
curves for protective materials
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rðdÞ ¼ 0 for d > dc (6b)

Reiterating, densification is avoided by imposing the constraint
xmax� eDHo. The piecewise nature of the material response
requires the contact force integral be broken into two segments:
one associated with crushed material and another associated with
the outer ring that is experiencing softening. Hence, the contact
force is given by

FðtÞ ¼ 2p
ðcðtÞ

r�ðtÞ
rY 1�

xðtÞ � r2

2R
dc

0
BB@

1
CCArdr (7)

where r�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RðxðtÞ � dcÞ

p
is the radius of the interior region

of the contact that has fully crushed. This yields the contact force
as a function of penetration distance x(t)

FðtÞ ¼ 2pRrY

xðtÞ 1� 1

2

xðtÞ
dc

� �
for xðtÞ < dc

1

2
dc for xðtÞ > dc

2
64

3
75 (8)

Note that a linear-softening material with zero resistance past the
critical penetration distance dc still provides resistive force at all
penetration depths. This is because the outer edges of the contact
will always be in the nonzero region of the constitutive response
and will, thus, provide finite resistive force. Moreover, once the
leading edge of the sphere has passed the critical distance dc, the
resistive force (from Eq. (8)) is constant

FðtÞ ¼ pRdcrY (9)

In this limit, the acceleration is constant, provided densification is
avoided. This is an important limit since, as we show below, it
produces the minimum HIC.

The governing equation of motion for the sphere is determined
simply by setting the resistive force of the target equal to the mass
of the sphere times its acceleration. Let vo be the initial (impact)
velocity at the instant of contact, R be the characteristic length
scale, and define the characteristic time as to � vo=R. With
�x � x=R, �dc � dc=R and s � t=to, the governing equation in non-
dimensional form becomes

x0
0ðsÞ þ �rY

�xðsÞ 1� 1

2

�xðsÞ
�dc

� �
for �xðsÞ < �dc

1

2
�dc for �xðsÞ > �dc

2
64

3
75 ¼ 0 (10a)

x0ð0Þ ¼ 1; �xð0Þ ¼ 0 (10b)

where prime denotes differentiation with respect to s (the normal-
ized time) and the normalized yield stress is defined by

�rY �
2pR3rY

mv2
o

(11)

This implies that the normalized response is only a function of the
normalized crushing distance and the normalized yield stress, as in

�xðsÞ ¼ f ð�dc; �rY ; sÞ (12)

Again, note that the densification strain enters into the problem
via the imposed constraint

�xmax �
xmax

R
¼ eDHo

R
(13)

Equation (10) can be trivially solved using conventional readily
available time-stepping algorithms to yield the position–time
function given as Eq. (12). From this, one can obtain the accelera-
tion history of the sphere as it crushes the target and compute the
HIC value.

The HIC computation in terms of normalized variables is writ-
ten as

HIC ¼ v2
o

gR

� �5=2
R

vo

� �
�max

ðs2

t1

�x00ðsÞds

ðs2 � s1Þ

0
BB@

1
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5=2

ðs2 � s1Þ

2
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(14)

where the negative sign in front of x00ðtÞ arises because the HIC
definition uses the convention that deceleration has a positive
sign. Note that the normalized acceleration–time response is only
a function of �dc and �rY . Hence, the general form of the HIC that
accounts for all scaling possibilities is

HIC ¼ v2
o

gR

� �5=2
R

vo

� �
gð�dc; �rYÞ (15)

where gð�dc; �rYÞ is a dimensionless function that is invariant to
changes in velocity, radius, and mass; thus, combinations of �dc

and �rY that minimize g will also minimize the HIC. Naturally, the
physical values of dc and rY that represent optimal solutions will
change with velocity, radius, and mass according to Eq. (12) and
the relation dc ¼ R �dc. The key point is that once optimal combina-
tions of �dc and �rY are known, optimal values of rY and dc can be
computed for any set of impact parameters.

3 Optimal Material Properties

We first consider the case where �dc !1, which implies
perfectly-plastic behavior. In this limit, a complete analytical so-
lution is feasible: The motion of the spherical mass is described
by

�xðsÞ ¼ 1ffiffiffiffiffi
�rY
p sin

ffiffiffiffiffi
�rY

p
s (16a)

smax ¼
p

2
ffiffiffiffiffi
�rY
p (16b)

�xmax ¼
1ffiffiffiffiffi
�rY
p (16c)

and the HIC is

HIC ¼ v2
o

gR

� �5=2
R

vo

� �
�max ðcos

ffiffiffiffiffi
�rY

p
s1Þ5=2 p

2
ffiffiffiffiffi
�rY
p � s1

� ��3=2
" #

(17)

One can readily show that the term in […] is maximized when
s1 ¼ 0:518=

ffiffiffiffiffi
�rY
p

and, thus, the HIC is given by

HIC ¼ v2
o

gR

� �5=2
R

vo

� �
� 0:65ð�rYÞ3=4

(18)

As expected, the HIC increases monotonically as the yield stress
increases. Conversely, the maximum displacement increases
monotonically as the yield stress decreases (Eq. (17)). Thus, the
optimal solution is obtained at the constraint imposed by the max-
imum allowable displacement. Using the above normalizations,
this implies
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�ropt
Y ¼

1

�x2
c

; ropt
Y ¼

mv2
o

2pRðeDHoÞ2
(19)

HICopt ¼ v2
o

gR

� �5=2
R

vo

� �
0:65

1

�x
3=2
c

 !
¼ 0:65

v4
o

g5=2ðeDHoÞ3=2
(20)

These results are identical to those reported in our previous study
[7].

For linear-softening materials, the HIC as a function of �dc and
�rY can be computed from the solution of Eqs. (10) and (14), yield-
ing a form given by Eq. (15). In this regard, gð�dc; �rYÞ represents a
normalized HIC parameter that accounts for velocity and radius:
mass factors in through the chosen value of �rY . Similarly, we can
compute �xmaxð�dc; �rYÞ. The optimal response is then given by mini-
mizing g subject to the constraint on �xmax.

Contours of gð�dc; �rYÞ and �xmaxð�dc; �rYÞ are shown in Fig. 4. Dif-
ferences between linear-softening materials and perfectly plastic
materials are best illustrated by a specific example. Consider a tar-
get with thickness Ho¼ 40 mm and eD¼ 0.675, and a sphere with
R¼ 100 mm. The displacement constraint is �xmax ¼ 0:27 —the
middle red contour shown in the figure. The minimum HIC
achievable with a perfectly plastic material is gpp¼ 4.63, obtained
with �rY ¼ 13:3. (Note that this corresponds to the asymptote of
the contour gð1; �rYÞ ¼ 4:63 and is calculated directly from Eqs.
(18) and (19).) A softening material with �dc ¼ 0:0527 and
�rY ¼ 75 can achieve gs¼ 2.71; this corresponds to a crushing dis-
tance of 5.27 mm, or a crushing strain of eC¼ 0.13. The required
initial yield stress for the softening material is about six times that
of the optimal perfectly plastic material.

Note also that one obtains nearly equivalent results for gs (0.04,
100)¼ 2.71, which corresponds to a slightly smaller crushing
strain and slightly larger initial yield stress than the values cited
above, but the same HIC value. Indeed, for small crushing distan-
ces, there are multiple combinations of initial yield stress and
crushing strains that yield equivalent, near-optimal HIC values.

4 Discussion

In the limit that crushing strains are much smaller than the den-
sification strain (i.e., eC << eD), an approximate analytical solu-
tion can be developed that clarifies the optimization problem. This
scenario corresponds to cases where �dc << �xmax, i.e., the crushing
distances are small in comparison to the stopping constraint. After
crushing of the target directly under the sphere, the relevant
dynamic solution is given by

x00ðDsÞ ¼ �
�dc �rY

2
(21a)

x0ðDsÞ ¼ �
�dc �rY

2
Dsþ �v1 (21b)

�xðDsÞ ¼ �
�dc �rY

4
Ds2 þ �v1Dsþ �dc (21c)

where Ds is the time measured from the instant that �x ¼ �dc, i.e.,
Ds ¼ s� sc where sc is the time associated with the crushing
phase; and �v1 is the normalized velocity at the end of the crushing
phase (at the instant that �x ¼ �dc).

Equating the loss in kinetic energy of the spherical mass to the
work done in crushing the target to �x ¼ �dc yields the velocity �v1

1

2
mðv2

o � v2
1Þ ¼

ðdc

0

FðxÞdx ¼ 2Rd2
crY

3
! �v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

3
�d2

c �rY

r
(22)

This yields the solutions

Dsmax ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �d2

c �rY

3

r
�dcrY

(23a)

�xmax ¼
�dc

3
þ 1

�dc �rY
(23b)

The displacement result is exact for scenarios where �d2
c �rY < 3=2

since this implies that the velocity after crushing is nonzero. Since
the displacement at the end of the crushing phase is known (i.e., it
is �dc), the time associated with the crushing phase is not required.

The approximate HIC solution requires the assumption that the
time associated with the crushing phase is small in comparison to
the time needed to stop the object after this phase, i.e., Ds >> sc,
then Dsmax � smax: assuming s1 � 0 and s2 � Dsmax. The HIC in
the limit of small crushing strains (relative to densification strain)
is then

Fig. 4 Contours of normalized HIC, gð �dc ; �rY Þ, as a function of
�dc and �rY , with contours of fixed stopping distance

superimposed

Fig. 5 HIC contours comparing the full solution (solid lines)
with contours based on the approximate solution (dashed
lines). The shaded space corresponds to combinations of tar-
get response for which the spherical mass arrests prior to
crushing under its center. Note the approximation for gð �dc ; �rY Þ
is inaccurate near this region. However, the predicted stopping
distance is exact (i.e., not an approximation), and therefore,
contours of equal stopping distance are identical to those
shown in Fig. 4.
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HIC ¼ v2
o

gR

� �5=2
R

vo

� �
ð�dc �rYÞ3=2

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �d2

crY

3

s2
4

3
5

0
@

1
A (24)

In the limit of small crushing distances relative to the sphere ra-
dius (i.e., �dc 	 1) these results further simplify to

�xmax ¼
1

�dc �rY

HIC ¼ v2
o

gR

� �5=2
R

vo

� �
ð�dc �rYÞ3=2

2
ffiffiffi
2
p ¼ v2

o

gR

� �5=2
R

vo

� �
1

2
ffiffiffi
2
p

�x
3=2
max

(25)

The latter result is 1.84 times smaller than that for the perfect-
plasticity material when impacted by a spherical mass. Addition-
ally, it is identical to the result for impact of a flat-ended cylindri-
cal mass onto an optimized perfectly plastic foam (with constant
contact area), wherein the acceleration is also constant for the du-
ration of impact [7]. The implication is that responses of crushable
materials that lead to constant acceleration are ones that minimize
the HIC.

Typical results for the HIC values of optimized systems with
perfectly plastic and linear-softening materials are presented in
Fig. 6. Here we have considered systems optimized for impact
velocities of either 5 m/s or 7 m/s for a foam thickness of 40 mm.
The dashed lines represent the minimum possible HIC for each of
the two constitutive responses and the solid lines represent the
performance of the same systems optimized for the specified
velocities.

It should be noted that, once optimized for a given impact ve-
locity, the system becomes suboptimal for lower velocities. (At
higher velocities, protection is lost because of the rapid hardening
associated with densification.) For some applications, the per-
formance of an optimized system over a range of velocities
(including those below the velocity used for optimization) may
become an important consideration in the design. Figure 6 shows
that, whereas the performance of the system optimized with the
linear-softening material is superior slightly below the velocity
used for optimization, its performance becomes inferior to that of

the system optimized for a perfectly plastic material at the same
velocity once the velocity drops below a critical value.

5 Conclusions

We have presented a methodology for identifying constitutive
responses of crushable linear-softening materials that have poten-
tial for reducing the HIC for impact of a spherical mass, relative
to that obtained for a comparable system optimized with perfectly
plastic foams. In the best-case scenario, the acceleration is essen-
tially constant over the duration of impact and the HIC is reduced
by a factor of 1.84. The same result has been previously obtained
for a system optimized for 1D impact onto a perfectly plastic ma-
terial. The property combinations that yield near-optimal behavior
are not unique; they include a range of combinations of yield
stress and crushing distance. Once optimized for one velocity, the
HIC for lower velocities is higher than the minimum attainable
value at the lower velocity. Furthermore, at sufficiently low
impact velocities, a system optimized with a linear-softening ma-
terial eventually becomes inferior (at low velocities) to that opti-
mized with a perfectly plastic material. The implication is that
compromise will likely play a role in the design of systems
expected to provide protection over a range of impact velocities.

Finally, we note that, while the HIC provides a simple basis to
evaluate the role of the target material (as done here), it provides
little (if any) insight into the forces and deflections transmitted
through the skull to the brain itself. Clearly, more work is needed
to identify impact metrics that make explicit connections between:
(1) the temporal and spatial details of contact pressure between
the skull and target, (2) the temporal and spatial details of pres-
sures transmitted from the skull to the brain, and (3) physically
based predictors of various damage mechanisms in the brain.
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