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Comprehensive Solutions
for the Response of Freestanding
Beams With Tensile Residual
Stress Subject to Point-Loading
This paper provides comprehensive solutions for the load-deflection response of an elas-
tic beam with tensile residual stresses subjected to point-loading. A highly accurate
explicit approximation is derived from the exact implicit solution for moderate rotations,
which greatly facilitates property extraction and the design of devices for materials char-
acterization, actuation, and sensing. The approximation has less than 6% error across
the entire range of loads, displacements, geometry, and residual stress levels. An illustra-
tion of the application of the theory is provided for microfabricated nickel beams. The
explicit form provides straightforward estimates for the critical loads and deflection
defining the limits where classical asymptotic limits (e.g., pretensioned membrane, plate,
and nonlinear membrane) will be accurate. Regimes maps are presented that identify
critical loads, displacements, and properties correspond to these behaviors. Finally, the
explicit form also enables straightforward estimations of bending strains relative to
stretching, which is useful in the design of materials experiments that can be approxi-
mated as uniform straining of the beams. [DOI: 10.1115/1.4024785]

1 Introduction

An effective way to measure material properties for thin films
is to measure the load-deflection relationship of a freestanding
structure, such as a thin beam or wire (e.g., membranes [1–4],
microbeams [5,6] and wires [7,8]). Such methods are increasingly
popular because a wide range of loads and displacements can be
accessed using existing off-the-shelf systems, such as atomic force
microscopes (AFM) [7–13], nanoindentation systems, profilome-
ters, and instrumented microindenters [1–6,14,15]. Further, the
preparation of specimens amenable to one-dimensional modeling
(i.e., beams and wires) is increasingly straightforward with emerg-
ing micro- and nanofabrication techniques [16,17]. Arguably the
simplest and most accurate method to determine properties using
this approach is to choose a combination of loads, displacements,
and specimen geometry such that closed-form analytical expres-
sions for load-deflection curves are accurate.

There are several classical limits regarding the mechanical
response of beams with explicit analytical solutions, each corre-
sponding to different combinations of applied loads, modulus, and
residual stress in the beam [18]. The challenge is to identify the
combination of properties that corresponds to each limit, such that
an appropriate solution is used to extract properties. For example,
linear load-deflection relationships can result from either bending
dominated behavior (small values of residual stress and small dis-
placements) or from stretch dominated behavior (i.e., large values
of residual stress). Nonlinear load-deflection relationships can be
obtained for scenarios where deflections are large, but the thresh-
old of “large” displacements naturally depends on the level of pre-
stretch and so forth. Each of these limits is of interest, as each
enables straightforward extraction of various material properties;
for example, linear response is useful to extract elastic modulus
and residual stress, while large deflections (in which bending is
negligible) can facilitate the measurement of nonlinear material
response by ensuring uniform stretching in the beam.

Further, the ability to identify various regimes of response is
critical to the accurate design of actuators and sensors, such that
the appropriate input/output relationships are used. Simply put,
given a range of expected properties or desired performance, what
dimensions should be chosen in conjunction with a specific instru-
mentation system (be it for measurement, sensing, or actuation) to
ensure the accuracy of analytical solutions? For example, one
might like to know the combination of deflections and beam sizes
that can be chosen to ensure that bending strains are negligible,
such that the test can be modeled assuming pure stretching of the
beam. These considerations are increasingly important as
researchers attempt to decrease the dimensions of test structures
down to the nanometer scale [7,8].

In this work, we examine the full nonlinear load-deflection
response of elastic beams with tensile residual stress and identify
the relevant asymptotic limits corresponding to classical types of
response. Design maps are constructed to illustrate critical values
of load and displacement that identify regimes where these limits
are accurate, using dimensionless parameters involving prestretch,
modulus, and dimensions. These maps can be used to identify
appropriate geometries, loads, and deflections to target modulus
and/or residual stress. Further, we identify a simple closed-form
expression for nonlinear responses that facilitate property extrac-
tion when asymptotic expressions are not valid. A critical contri-
bution is the development of an explicit analytical relationship for
load-deflection response that avoids the complication of using
implicit solutions, which requires nonlinear root-finding to deter-
mine the mechanical stretch in the beam.

There are a host of previous experimental studies and theoreti-
cal frameworks that utilize some aspects of the results presented
here [1,5–10,12,13,19–21]. The current work is a more compre-
hensive treatment of the response of point-loaded beams in the
following respects. First, it includes an analysis that accounts for
all levels of residual strain, across the full range of loads and dis-
placements for moderate rotations. Second, it clearly identifies
critical loads (or displacements) that define the asymptotic limits
where classical solutions are accurate. Third, it provides an accu-
rate explicit approximation for the transition region between vari-
ous classical limits, which allows for decoupling of the
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contribution of Young’s modulus and residual stress. This avoids
the need for numerical modeling. Fourth, this work identifies criti-
cal loads (or deflections) that define scenarios where bending
strains can be ignored and the beam experiences uniform stretch-
ing. This contribution will facilitate the design of experiments
intended to measure nonlinear (e.g., elastic-plastic) properties, in
which the goal is to utilize a simple analysis of stretching with
nonlinear material response. Finally, the approximate solution is
used to decouple modulus and prestrain for experimental tests on
thin film nickel beams. The results are consistent with those found
in literature and, thus, demonstrate the effectiveness of the solu-
tions in analyzing the properties of microfabricated beams with
submicron thickness.

2 Full Solution and an Effective Approximation

Consider a beam of length L, clamped at both ends and loaded
at its center with the point force P. Assuming plane sections
remain plane and that the beam is slender enough to ignore trans-
verse shear, and allowing for moderate rotations, the total axial
strain in the beam is given by

eðxÞ ¼ u0ðxÞ þ 1

2
w0ðxÞ½ �2�w00ðxÞ � y (1)

where y is the distance from the centerline, u(x) is the axial dis-
placement in the beam, and w(x) is the transverse displacement.
Let eR be a positive prestretch in the beam; that is, eR is the me-
chanical strain in the beam at zero elongation, caused by tensile
residual stress created during fabrication. Assuming plane stress2,
the principle of virtual work yields the condition that

u0ðxÞ þ 1

2
w0ðxÞ½ �2þ eR ¼ constant ¼ k2 (2)

where k2 represents the spatially uniform mechanical strain in the
deformed state (i.e., that associated with the state created by
applying the point load) along the neutral axis. Hence, k also rep-
resents the average stress via r¼Ek2. With this in mind, govern-
ing equations that dictate the transverse displacement and
mechanical strain in the beam are given by

�w0000ð�xÞ � K�w00ð�xÞ ¼ 0; K2 � �eR � 12

ð1=2

0

�w0ð�xÞ½ �2d�x ¼ 0 (3)

where w ¼ h �w, x ¼ L�x, K ¼
ffiffiffiffiffi
12
p

kL=h, and �eR ¼ 12L2eR=h2.
(These results are for a rectangular beam cross section, although
analogous results can be easily obtained for circular beams or
wires using suitable normalizations for k and eR.) The boundary
conditions are given by

�wð0Þ ¼ �w0ð0Þ ¼ �w0
1

2

� �
¼ 0; �w000

1

2

� �
¼ 96 �P (4)

where �P ¼ P=Po, with Po ¼ 16Ebh4=L3 representing the applied
load (Po) at which the center-point deflection will equal the beam
thickness assuming conventional small deflection, zero prestretch
beam theory.

The solution to the governing equations is given by

�w �xð Þ ¼
96 �P K�x� sinh K�xþ cosh K�x� 1ð Þ tanh

K
4

� �
K3

(5)

where the mechanical strain in the beam in the deformed state is
given by the solution to

K2 � �eR ¼ 12D2 � FðKÞ (6)

where D ¼ �wð1=2Þ is the deflection of the load point, and

FðKÞ ¼
K sech

K
4

� �2

2Kþ K cosh
K
2
� 6 sinh

K
2

� �

K� 4 tanh
K
4

� �2
(7)

The above reflects in implicit load-deflection solution, with K
determined via the root of Eq. (6). That is, the load-deflection
response can be predicted parametrically in terms of the mechani-
cal strain in the beam K and prestrain �eR using Eq. (6) to calculate
DðK; �eRÞ and the load �PðK; eRÞ expressed as

�P ¼ K3

48 K� 4 tanh
K
4

� �D (8)

That is, for a given level of mechanical strain in the beam (K) and
prestrain (�eR), one can predict the associated deflection using Eq.
(6) and the corresponding load using Eq. (8) Examples of the
resulting load-deflection relationships are shown in Fig. 1 for sev-
eral values of normalized prestrain.

An approximate and explicit expression for the load-deflection
curve, i.e., �PðDÞ can be obtained by recognizing that F(K) is a
weak function of K across the entire range of possible values, fall-
ing from F(0)¼ 12/5 to F(1)¼ 2. This is illustrated in Fig. 2(a);
assuming that F(K) is a constant, c, leads to the approximation

that K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p
. Using this approximation in Eq. (8), one

obtains an explicit relationship for �PðD; �eRÞ

�P ¼ D 12cDþ �eRð Þ3=2

48
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p
� 4 tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p
4

 ! (9)

Adopting c¼ 2.12 as an approximation, one obtains a load predic-
tion for a given level of deflection that is within 6% of the exact
solution: A plot of the error in predicted load as a function of
applied deflection is shown in Fig. 2(b) for several values of nor-
malized prestrain �eR. This expression allows for trivial determina-
tion of the modulus and prestrain from a load-deflection

Fig. 1 Exact and approximate load-deflection relationships for
a broad range of prestretch

2The results are identical for plane strain, provided one substitutes (1þ �)eR for
eR and E/(1� �2) for E.
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measurement, by least squares fitting of the above nonlinear but
explicit expression. For completeness, the approximate load-
deflection curve is superimposed on the exact solution in Fig. 1:
As expected from the less than 6% error over the entire range, the
differences appear negligible.

It should be noted that the exact solution (and, hence, the ap-
proximate form) assumes moderate rotations, which invokes
sin w0 � w0. This approximation has less than 5% error for
w0. 0:53ð30 degÞ. The consistency check to ensure moderate
rotations is, therefore, given by

4D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p
sech

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p� �
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p
� 4 tanh

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cD2 þ �eR

p� � � L

h
(10)

This limit on validity will be reached in most cases when
12cD2 � �eR, in which case it is simply wðL=2Þ < L=4, i.e., the
deflection of the center must be smaller than one-fourth the beam
length; otherwise, rotations will not be moderate. This simply
states that if the deflection shape is an inverted “V”, the angle of
the deformed shape must be less than 30 deg.

3 Asymptotic Limits

The approximate solution clearly illustrates that linear load-
deflection response is observed when �eR � 12cD2, i.e., in the limit
of small deflections. The response in this scenario is given by

�P ¼ �e3=2
R

48
ffiffiffiffiffi
�eR

p
� 4 tanh

ffiffiffiffiffi
�eR

p

4

� � � D (11)

This is exact for small deflections since the choice of c is immate-
rial upon neglect of the D2 term. For small deflections, the addi-
tional deformation due to the applied load is negligible in
comparison to the prestrain �eR. Critically, it should be noted that
this limit captures both bending and membrane stretching: The
stiffness of the beam is a function of both the bending stiffness
and the prestrain in the beam.

The role of prestrain in altering the stiffness of the beam for
small deflections can be seen more clearly as follows. The prefac-
tor to D in Eq. (11) that depends on �eR represents the increase in
stiffness in the linear regime due to residual stress in the beam.
This prefactor is equal to 1þ �eR=40 in the limit �eR ! 0 and �eR=48
in the limit �eR !1. In the lower limit, bending stiffness still

makes a significant contribution to stiffness, while in the upper
limit, the stiffness of the beam is entirely due to prestretch.

Approximating the prefactor in Eq. (11) with 1þ �eR=40 is
within 5% of Eq. (11) for �eR � 337, which corresponds to scenar-
ios where stiffening due to prestretch is on the same order as the
bending stiffness. The upper asymptotic limit (i.e., assuming the
prefactor is �eR=48) is within 5% of the full solution for �eR � 6400,
which simply implies the stiffness increase due to prestretch dom-
inates contributions due to bending stiffness. Assuming residual
strains on the order of 0.2%, this implies that the stiffness increase
of 1þ �eR=40 is accurate for beams up to L/h� 400. On the other
hand, for L/h¼ 400, the upper limit (where stiffness scales with
�eR=48) is only accurate for residual strains greater than 4%. Con-
sidering both asymptotes of the correction with respect to �eR, the
linear prediction for the stiffness increase (i.e., 1þ �eR=40) is less
than 20% different from Eq. (11) for all values of residual strain.

In the other extreme (i.e., large deflections), the approximate
solution clearly indicates that classical membrane theory with
�P / D3 results for scenarios where 12cD2 >> eR. In the asymp-
totic limit where the deflections are quite large, the strain in the
beam scales with D2 and the exact solution in this limit corre-
sponds to c¼ 2. The approximate solution stated above assumes
c¼ 2.12, implying a 6% error in this limit. One can naturally
recover an exact expression in the limit of membrane theory using
c¼ 2; however, the error in the approximate form for intermediate
deflections (see Fig. 2(b)) will be larger than 6%, and hence,
c¼ 2.12 is used in the following: It produces relatively small
errors for all scenarios. Again, it should be noted that for large
deflections, one must check the size of the rotations (i.e., w0(x)) to
ensure the moderate rotation approximation is valid.

4 Design of Experiments

Given the sophistication of modern instrumentation, tests often
span multiple response regimes. To guide the design of experi-
ments that corresponding to a specific regime, Fig. 3 shows com-
binations of loads, displacements, and prestretch where solutions
are governed by linear, membrane, and the transition from linear
to nonlinear membrane behavior. The transition region, denoted
by hatching in the Fig. 3, is represented by Eq. (9). Upon assum-
ing properties of the material being tested, it is possible to choose
beam geometries that will position a large portion of the test in a
particular regime. For example, if neither modulus nor prestrain
are known, it is desirable to test the beam in the mixed region
because nonlinear coupling allows for accurate extraction of both
properties. This technique will be shown in the experimental study
discussed below.

Fig. 2 (a) The full range of F(K) and (b) error in the predicted load as a function of applied
deflection for values of �eR from 0–106 when c 5 2.12
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In addition to identifying the relevant type of response in a
given scenario, the above analysis also provides insight into val-
ues of prestrain and applied deflection where stretching strains
dominate bending strains. In some instances, notably the design of
tests to explore nonlinear material response, it is desirable to
bypass small deflection behavior in favor of the regime associated
with pure stretching. While we do not consider nonlinear material
response here, the use of the present model is nonetheless inform-
ative, as we seek to eliminate the bending regime, which generally
corresponds to small strains where elasticity plays a role. The
maximum bending strain occurs at the outer skin, i.e., y¼ h/2:
One can calculate the bending strain at this location for a given
position according to

�ebending �xð Þ ¼ L2emax �xð Þ
12h2

¼ K2 þ 1

48
�w00 �xð Þ (12)

As one would expect, the bending strain is maximum at the clamp
and under the point-load (and those two are equal because of
symmetry).

Using the approximation that K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
, one obtains the

following for the maximum strain in the beam

�emax ¼
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
cot h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
4

 !
� 96

(13)

The above can be used to estimate the deflection that is required
to reach yielding at the clamps. The ratio between the contribution
due to bending, the last term, and the total strain is of central inter-
est: For large enough deflection, bending strains are negligible
and membrane approximations are valid

ebending

etotal

¼ D

Dþ 24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
cot h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cD2 þ �eR

p
4

 !
� 96

(14)

Though not immediately obvious, the strain ratio given above
asymptotes to unity when D! 0, as expected in the small-
deflection, pure bending limit. Figure 4 illustrates critical values
of residual strain and applied displacement where bending strains
contribute a given percentage of the total strain, again assuming

c¼ 2.12. The results illustrate that pure stretching is obtained for
nearly all values of applied displacements (even small ones) when
the residual strain is large, as one expects. It is interesting to note
that for all values of residual strain bending contributes less than
1% of the total strain for D> 5. This is probably an upper limit for
the required displacement because yielding at the clamps and load
point causes plastic hinges to form, such that bending is further
reduced.

5 Illustration: Testing of Nickel Beams

Beams were fabricated on 51 mm (2 in.) p-type 100-oriented sil-
icon, which acts as the substrate as well as the sacrificial layer.
Prior to depositing the beam film, a bilayer photoresist film (lift-
off resist LOR10B and positive photoresist AZ4210) is spun on
and patterned, which produces a controlled degree of undercut on
the bottom layer, preventing irregularities at the bridge edges after
the lift-off process. A titanium adhesion layer was first deposited
followed by the nickel beam layer. The nickel (99.995% pure)

Fig. 4 Contours showing combinations of prestrain and
deflections where the contribution of bending strain to the total
strain in the beam is 1, 5, and 10%. For applied displacements
greater than approximately five times the film thickness bend-
ing strains are negligible regardless the level of prestrain.

Fig. 3 Illustration of combinations of (a) normalized critical loads, (b) normalized critical dis-
placements and normalized prestretch for which asymptotic solutions are accurate: the shaded
region represents the transition from linear regimes to the membrane regime where the analyti-
cal solution can be used to extract material properties. Labeled vertical lines correspond to the
range over which experimental data are fit in Sec. 5.
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beams were deposited via electron beam evaporation with a base
pressure of 9	 10�7. Deposition rates were 0.1 nm/s and 0.2 nm/s
for titanium and nickel, respectively. In order to minimize thermal
effects on the beams after deposition, lift-off was performed in
room temperature n-methyl-2-pyrrolidone(NMP) with the help of
a low power ultrasonic bath. Film thickness and width were deter-
mined with a Veeco Dektak 8 mechanical profiler following cali-
bration on a 48 nm standard and a Wyko NT1100 optical profiler.
The standard deviation in thickness and width are 61 nm and
6100 nm.

To define the etch area a second bilayer photoresist film, identi-
cal to the first described above, was patterned as shown in Figs.
5(a) and 5(b). After development the top layer, AZ4210, was
removed with acetone leaving the LOR10B. During the evolution
of this fabrication procedure we determined that AZ4210 hardens
during the etch phase and became too difficult to remove without
a high temperature NMP bath, which destroyed the beams. The
silicon and titanium layer beneath the beam were removed using
an XetchVR

e1 etcher by cycling 2 mTorr of XeF2 gas into the etch-
ing chamber. The beams were inspected via optical microscopy
after three etch phases and then every phase thereafter to deter-
mine when the etch was complete. Beams were stopped before
overetching occurred so the length of the beam could be deter-
mined. The LOR10B layer was removed after etching in a KOH-
based developer, AZ400K. The beam length was determined via
scanning electron microscopy and optical profilometry resulting
in a standard deviation of 60.5 lm. Energy dispersive X-ray spec-
troscopy (EDX) on the underside of beams confirmed the titanium
is removed during the etch. Figure 6(a) and Figs. 5(c) and 5(d)
show a beam postrelease. The trench under the beams is on the

order of 
60 lm, which allows for large deflections without etch-
ing from the backside of the wafer.

The released beams were probed in the center of e span using a
NanoIndenterVR

DCM (Agilent Technologies, Chandler, AZ)
equipped with a 50 lm radius sapphire sphere. It is very unlikely
that off-axis loading is a concern in the present tests or those con-
ducted with similar hardware. The precision of the positioning of
the indenter head (i.e., several microns), the indenter tip radius
and the beam widths are such that complete contact across the
width of the beam is ensured. Further, small amounts of twist are
unlikely to have much of an effect in the membrane limit because
the vast majority of the beam is stretched uniformly: Bending
effects are confined to a narrow region near the clamp and the
load point should off-axis effects be present. Tests were per-
formed using a method that determines the instant of contact by
observing changes in a small harmonic oscillatory load superim-
posed over the approach ramp load [22,23]. By identifying the
instant where the harmonic displacement drops (or increases
depending on operating frequency) by an amount greater than the
environmental noise, which is usually less than 1 nm [4,22], the
position of the probe at the instant of contact can be determined to
within several nanometers. Using this method allows for testing of
low stiffness structures on the order of 1 N m�1. In addition to
load displacement data, many indentation systems provide direct
measurement of stiffness. Although not explicitly addressed here,
the small displacement asymptotic limits presented above can be

Fig. 5 Illustration of fabrication method for freestanding nickel
beams. (a) Side and (b) top view of beam and photoresist mask
prior to silicon etch. (c) Side and (d) top view postetch and lift
off resist removal.

Fig. 6 (a) SEM of representative MEMS beam used in point-
load test. (b) Side view of coordinates and deformation varia-
bles used in the analysis.

Table 1 Experimental results

Dimensions (lm)
(length, width, thickness) E (GPa) �eR eR R2

193, 20.97, 0.081 172.3 87,007 0.00128 0.999
193, 20.97, 0.081 180.9 104,672 0.00153 0.999
192, 20.97, 0.081 172.1 108,974 0.00162 0.999

175.1 6 5 100,218 6 11641 0.001474 6 0.000176

188, 20.68, 0.232 174.7 13,467 0.00171 0.999
187, 20.68, 0.232 172.7 13,270 0.0017 0.999
189, 20.68, 0.232 182.1 10,294 0.001293 0.999

176.5 6 5 12,344 6 1778 0.001568 6 0.000239

200, 20.63, 0.377 174.1 6830 0.002022 0.999
200, 20.63, 0.377 180.3 5534 0.001639 0.999
200, 20.63, 0.377 184.9 6148 0.00182 0.999

179.8 6 5.4 6171 6 648 0.001827 6 0.000192
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used with stiffness measurements in small displacement regimes
where load is proportional to displacement.

Three different beams with nominal length 200 lm and width
20 lm were tested for films with thickness 81, 232, and 377 nm.
The measured dimensions for these beams are in the first column
of Table 1. Figure 7 shows experimental data and theoretical fits
to Eq. (9), with c¼ 2.12, for the average of tests on three beams
within each thickness. For very small deflections/loads, the data
fall below the predictions (an effect dramatized by the use of a log
scale to illustrate small numbers), due to the fact that contact
across the width of the beam is not established until larger
deflections.

In order to examine the effects of thermal drift on load-
displacement behavior, a series of six tests on a single 81 nm thick
beam was performed over 120 s as shown in the inset of Fig. 7(a).
All tests were performed after the system settled to a drift of
<0.05 nm/s�1. The load and unload curves show nearly identical
behavior. The small load offset of 490 nN at the completion of the
tests in the inset of Fig. 7 is directly attributed to drift in the sys-
tem. Although this offset can be accounted for in data processing
it is not necessary as it accounts for less than 0.5% of the maxi-
mum load seen during the test.

Results in Table 1 show the individual tests and results from a
least-squares fit to Eq. (9), with c¼ 2.12. Note that the least-
squares fit deemphasizes the role of the data at small deflections,
i.e., that shown in Fig. 7, that falls beneath the theoretical predic-
tions. The results of these tests and the use of Eq. (9) are
extremely consistent from beam to beam (despite variations in
dimension), and entirely consistent with work performed on prior
nickel thin films. Modulus has been shown to vary from
100–205 GPa with most tests falling in the 160–200 GPa range
[24–27].

6 Concluding Remarks

The exact and approximate solutions presented in this paper rep-
resent a complete framework that describes the effects of film ge-
ometry, prestrain, elastic properties, loads, and displacements on
the mechanical response of freestanding point loaded beams. A pair
of design maps displays loads, displacements, and prestrains desig-
nating when linear, nonlinear membrane, or approximate solutions
can be used to extract material properties. These design maps can
be used a priori to identify geometric properties that will allow
experiments to span particular or multiple testing regimes. Experi-
mental results are presented on nickel beams using the approximate
solution showing good agreement with properties found in literature
for nickel thin films.
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