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This paper presents analytical solutions for the stresses in circular thin films bonded to a substrate with a
thin compliant interlayer. The axisymmetric results are shown to be an excellent approximation for square
tiles (islands), provided one defines an effective diameter equal to the average of the square's diagonal and
width. An analytical result is also presented for the energy release rate associated with convergent circular
delamination cracks (from the outer edges of the tile inwards). These solutions are used to generate regime
maps that indicate active failure mechanisms (tile yielding, interlayer yielding and delamination) as a func-
tion of constituent properties and tile size. These regime maps clearly indicate acceptable tile sizes and/or
the required material properties to avoid all modes of failure.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A wide variety of technologies involve the use of tile-like structures
(often referred to as “islands”) bonded to substrates, as shown schemat-
ically in Fig. 1. Examples include sensor arrays, displays, microelectronic
packaging and thermal protection systems (e.g. [1–10,12–14]). Inter-
layers are commonly present between the tiles and the substrate to pro-
mote adhesion and/or to provide thermal or electrical insulation. The
relationship between stresses arising from thermal expansion mismatch
and tile size plays a critical role in design, as it ultimately governs the sus-
ceptibility of the system to failure by yielding, cracking or interfacial
debonding (e.g. [11,13,12,14,15]).

As is well-known from shear lag theory [16], the in-plane direct
stress in a tile due to a misfit strain increases from the outer edge to-
wards the center, a consequence of the shear transfer between the tile
and the underlying structure (e.g. [16–25]). (Note that many of these
and other references address the problem of multiple cracking in
blanket films, which leads to thin strips of finite dimension; the
crack spacing dictates the tile or island size.) The peak stress at the
tile center depends on the tile size relative to a characteristic shear
transfer length, and asymptotically approaches the blanket-film result
in the limit of large tile sizes. Even for applications where finite-sized
features are not a prerequisite (e.g. a thermal protection system that
.
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has no inherent constraint on planar dimension), the stresses in large
tiles may be too high to avoid failure. In such scenarios, the use of
finite-sized tiles can be an effective way to reduce stresses and improve
reliability (e.g. [11,13,12,14,15]).

Hence, a central design variable for such systems is the tile size. A
maximum allowable size might be prescribed in order to avoid failure,
given a pre-determined set of thermomechanical properties for the
constituents. Alternatively, if the tile size is fixed by other consider-
ations (e.g. sensor area), onemight pose the question in terms of an ac-
ceptable range of properties (such as adhesion or coefficient of thermal
expansion (CTE) mismatch). In such design exercises, closed-form rela-
tionships between geometry, properties and stress are highly advanta-
geous, in that they eliminate the need for cumbersome numerical
studies of the parameter space. This is particularly true for applications
in which material selection is part of the design process (as opposed to
being fixed a priori), since there are likely many possible combinations
of materials and tile sizes that are acceptable.

Here, we present closed-form solutions for deformations and stress-
es in a thin circular tile mounted on a thick substrate via a compliant
interlayer. The solutions are shown to be accurate approximations for
square tiles, subject to a suitable definition for the effective tile diame-
ter. In turn, the stress solutions are used to estimate the steady-state
energy release rates for interlayer debonding. The steady-state energy
release rate corresponds to the maximum possible driving force,
obtained when the crack length is much greater than the tile thickness
(e.g. [26,27] and references therein). Previous calculations have demon-
strated that the energy release rate grows quickly as a function of crack
length, reaching steady state for lengths (measured from the outer edge
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Fig. 1. Schematic of the tiling system. The problem is analyzed as axisymmetric, with the tile (island) diameter denoted as a. It is shown via comparison with finite element analysis
(FEA) of square tiles that the axisymmetric model is accurate provided the effective radius is taken a ¼ 1=4ð Þ wþ

ffiffiffi
2

p
w

� �
, where w is the width of the square tile.
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of the tile) on the order of several tile thicknesses [25–27]. The resulting
solutions for stresses and energy release rates are then used to construct
regime maps that facilitate design of tiling systems. The maps depict
various failure modes (yielding, cracking or interface debonding) in
terms of system geometry (characterized by layer thicknesses and tile
size) and material properties (e.g. stiffness, yield strength, thermal ex-
pansion and toughness).

Though this analysis is inspired by and resembles a variety of
previous shear-lag analyses of stress and debonding in finite-sized
features [16–25,28–31], a critical distinguishing feature of the pres-
ent work is the treatment of the in-plane tile stresses acting parallel
to the free edges. Here, these stresses are non-zero and dictated by
the tile size. Previous treatments that assume plane-strain deforma-
tion (i.e. a semi-infinite strip) or purely biaxial deformation lead to
inappropriate predictions of direct stress in the direction parallel to
the free edge. That is, if one assumes purely biaxial stress and im-
poses the condition that the in-plane stresses are zero at the free
edge, then the stress parallel to the free edge is assumed to be zero,
which is not the case. Similarly, if one assumes plane-strain deforma-
tion of a semi-infinite strip, then the stress parallel to the free edge is
not a function of tile size, which is not the case. The present model
properly imposes the condition that the stress along the edges is
zero in the direction normal to the surface, and dictated by the tile
size in the direction parallel to the edge. Further, the model enables
failure maps that indicate transitions in failure mechanism as a func-
tion of tile size and key dimensionless parameters identified here. As
with all shear-lag analyses, the model assumes that displacements
occur only in the plane of the tile, such that through-thickness effects
are negligible. In order for this to be valid, the aspect ratio of the tiles
(planar dimension divided by the total thickness) must be large. It is
further assumed that the tiling system is attached to a substrate that
is much thicker than the top layers, such that bending in the multi-
layer is negligible.

2. Model and results

The constituents are assumed to be linearly elastic with the proper-
ties: E-Young's modulus, v-Poisson's ratio and h-thickness. The substrate
is assumed to be semi-infinite, such that bending deformation is negligi-
ble. This implies that the stress in the tile scales with the misfit strain
given by θs–θf, where θs,f are the eigenstrains in the substrate and film
(top tile). (For example, for thermal misfit, θ=αΔT, where α−CTE, and
ΔT=T−To is the temperature change relative to the stress-free reference
temperature To). Subscripts refer to a specific layer: f-film (or tile),
s-substrate, and i-interlayer. The analysis assumes that the majority of
deformation in the tile is axisymmetric, with only radial displacements
being non-zero. It is demonstrated that this is an accurate approximation
for square tiles, with minor deviations near the tile corners that are not
likely to impact design choices.
2.1. Shear lag analysis and displacement solution

The model assumes only radial displacements, u(r), such that
the kinematic and constitutive relationships for the film are given
by:

�r ¼
∂u rð Þ
∂r ;

1−v2f
� �

σ f
r

Ef
¼ �r þ vf �θ− 1þ vf

� �
θf ð1Þ

�θ ¼
u rð Þ
r

;
1−v2f
� �

σ f
θ

Ef
¼ �θ þ vf �r− 1þ vf

� �
θf : ð2Þ

Equilibrium in the film dictates the following:

∂σF
r

∂r þ σ f
r−σ f

θ
r

þ ∂σ f
rz

∂z ¼ 0: ð3Þ

In the present approximation, the shear stress in the thin
interlayer, σrz

i , is assumed to be uniform through its thickness, and
governed by the difference of the displacements at the top and bot-
tom of the interlayer:

σ i
rz ¼

Ei
2 1þ við Þ

u rð Þ−θsr
hi

� �
; ð4Þ

where u(r) is the displacement of the top of the interlayer, which is
equal to the film displacement. The quantity θsr reflects the uniform
outward expansion of the bottom of the interlayer due to the
substrate's expansion. In this regard, the effect of mechanical
stretching of the substrate can be easily accounted for by including
the imposed strain in the definition of θs, as in θs=αsΔTs+ �a,
where �a is the strain applied to the substrate. The shear stress in
the film at the interface acts opposite to that in the interlayer (as de-
fined above); further, the shear stress is zero at the top of the film.
Assuming that the film is thin, the gradient of shear stress in the
film is well-approximated by:

∂σ f
rz

∂z ≈−σ i
rz

hf
¼ Ei

2 1þ við Þ
u rð Þ−θsr

hihf

 !
: ð5Þ

The governing equation for radial displacements is obtained by
combining Eqs. (1)–(5). Using the normalizations u=a⋅ū and
r ¼ a⋅�r , where a is the tile radius, one obtains the following governing
equation:

�u″þ�u′

�r ′
−

�u
�r2
−λ2 �u−θs⋅�rð Þ ¼ 0 ð6Þ
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where

λ ¼ a
ao

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2f
� �

Eia
2

2 1þ við ÞEf hihf

vuut
; ao ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ við ÞEf hihf

1−v2f
� �

Ei

vuut : ð7Þ

The parameter λ is thus a ratio of the size of the tile to a character-
istic length-scale describing the shear transfer length between the tile
and the interlayer, i.e. λ=a/ao.

The boundary conditions are ū(0)=0 and σr
f(1)=0, i.e. zero dis-

placement at the center of the tile and zero normal stresses acting
at the outer edge of the tile. With these conditions, the radial dis-
placement along the interface is given by:

�u �rð Þ ¼ θs⋅�r þ 1þ vf
� �

θf−θs
� � I1 λ⋅�r½ �

λI0 λ½ �− 1−vf
� �

I1 λ½ �
; ð8Þ

where In are modified Bessel functions of the first kind. This solution
can be used to derive the stress distributions, which are presented
in the next section. Note that ū(1) is an important result in its own
right, since the displacement of the edge of the tile determines
whether an initial gap between the tiles closes.

2.2. Tile stresses

The stresses are found via Eq. (8) with Eqs. (1) and (2). The key
scaling factor that emerges is simply the biaxial stress in an infinitely
large island:

σo ¼
Ef

1−vf
θs−θf
� �

: ð9Þ

Using this definition, the dimensionless radial and circumferential
stress distributions in the tile are given by:

�σ f
r ¼

σ f
r

σo
¼

λ⋅�r⋅Io λ½ �−λ⋅�r⋅Io λ⋅�r½ �− 1−vf
� �

�r⋅I1 λ½ �−I1 λ⋅�r½ �ð Þ
λ⋅�r⋅Io λ½ �− 1−vf

� �
⋅�r⋅I1 λ½ �

ð10Þ

�σ f
θ ¼

σ f
θ

σo
¼

λ⋅�r⋅Io λ⋅�r½ �−vf ⋅λ⋅�r⋅Io λ½ � þ 1−vf
� �

�r⋅I1 λ½ �−I1 λ⋅�r½ �ð Þ
λ⋅�r⋅Io λ½ �− 1−vf

� �
⋅�r⋅I1 λ½ �

: ð11Þ
A

Fig. 2. (A) Stresses distributions in the tile for vf=1/3 and the tile size λ=a/ao=2. The dots
additional scaling factor such that the curve represents aσrz/(hfσo). (B) The peak stress in
results of the finite element analysis, with the peak interlayer shear stress chosen as the va
be taken as a ¼ 1=4ð Þ wþ

ffiffiffi
2

p
w

� �
, where w is the square tile size. The dashed green curve r
Representative illustrations of the stress distributions are given in
Fig. 2A. Note that the radial stress is zero at the outer edge, while the
circumferential stress (parallel to the outer edge) is not zero. The di-
rection stresses are equal and maximum at the center of the tile:

�σmax
r ¼ �σmax

θ ¼ �σmax
VM ¼ 1−

1þ vf
� �

λ

2λIo λ½ �−2 1−vf
� �

I1 λ½ �
ð12Þ

where VM refers to the VonMises stress. This provides the basis to pre-
dict tile yielding. The peak stress is shown in Fig. 2B as a function of nor-
malized tile size. For large tile sizes, the stresses asymptote to the biaxial
result, as expected. When the tile size is comparable to the shear trans-
fer length, the stresses are reduced because the tile is not large enough
to build significant stresses through shear of the interlayer.

An important feature of the solution is the fact that the direct
stress in the tile decreases with tile size much faster than the shear
stress in the interlayer. For example, as shown in Fig. 2B for the tile
size a=ao (i.e. λ=1), the direct stresses in the tile have been reduced
by 75%, while the shear stress in the interlayer has been reduced by
only 40%. This implies that as the tile size is decreased relative to ao,
interlayer yielding becomes more of a concern than debonding or
tile yielding. (Look ahead to Fig. 4.)

A somewhat simpler but nearly identical result can be derived by
assuming that the two in-plane stresses are identical throughout the
tile; repeating the shear lag analysis under these assumptions yields:

�σmax
VM ≈1− 1

cosh λe½ � ; λe ¼
2

1þ
ffiffiffi
2

p
� �

λ ð13Þ

where λe is an effective tile size obtained by dividing the average of
the edge and corner distances. That is, analyzing a square tile under
the assumption of purely biaxial stress yields nearly equivalent re-
sults to the present analysis provided the tile size is defined as the ef-
fective tile size given above. The effective tile size is simply a slight
modification to the actual tile size to obtain agreement between purely
biaxial analysis and the axisymmetric analysis. Note that this approxi-
mation only yields accurate results for the maximum stress, since
the bi-axial approximation enforces the condition that both stresses
are zero at the tile edges, which is not the case. For this reason, a
purely biaxial analysis will yield energy release rates that are not
accurate.
B

represent the results of finite element analysis (FEA). The interlayer shear stress has an
the tile (center) and interlayer (edge) as a function of tile size: the dots represent the
lue hi from the edge. To get accurate results for square tiles, the effective radius should
epresents the purely biaxial approximation discussed in the text.
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To evaluate the accuracy of the model, three-dimensional finite el-
ement calculations were conducted on tile systems with different
values of ao. The finite element results are shown in Fig. 2 along
with the model predictions. Excellent agreement between the nu-
merical and analytical results is seen for λ=a/ao>≈0.4. The agree-
ment is better for stresses at the center of the tile than for the
interlayer shear stress, likely due to edge effects not accounted for
in the analytical model. Strictly speaking, there is a (usually weak)
corner singularity in the interlayer at the tile edge: the reported
values correspond to distances that are one interlayer thickness in-
side the outer edge.

It should be kept in mind that the shear lag approximation as-
sumes that the tile size is large in comparison to the interlayer or
tile thickness. Otherwise, the stress state in the tile cannot be ideal-
ized as one-dimensional. This implies that the shear-lag will not be
accurate for small values of λ. As illustrated in subsequent sections,
the shear lag model produces reasonable results for a/hf>≈5. Taking
this as a rule of thumb, the minimum value of λ for which one expects
the shear-lag approximation to be valid is given by:

λmin≈5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−v2f
� �

Eihf
2 1þ við ÞEf hi

vuut
: ð14Þ

2.3. Interlayer stresses

The shear stress distribution in the interlayer can be calculated
from Eq. (4) using Eq. (8), and is given by:

σ i
rz ¼

Eia 1þ vf
� �

θf−θs
� �

2 1þ við Þhi
I1 λ⋅�r½ �

λI0 λ½ �− 1−vf
� �

I1 λ½ �
: ð15Þ

The maximum occurs at the edge of the tile (�r ¼ 1). Dividing by
the characteristic stress in the tile, σo, the normalized peak shear
stress is given by:

σ̂ i
rz ¼

ao
hf

σ f
rz

σo
¼ λ⋅I1 λ½ �

λ⋅Io λ½ �− 1−vf
� �

I1 λ½ �
; ð16Þ

where ^ indicates the different normalization as compared to the tile
stresses. The pre-factor in Eq. (14) illustrates that an additional scal-
ing factor (other than a/ao and σo) factors into the shear stress in
the interlayer, i.e. ao/hf.

In the following discussion, direct stresses in the interlayer are
neglected. In reality, the direct stresses in the interlayer build from
the edges according to the exact same shear transfer mechanism as
above, only with the shear stress at the interlayer/substrate interface
generating the direct stresses. Using the same argument as above, one
expects the direct stresses to build in the interlayer according to a di-
mensionless size parameter given by:

λis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−við ÞEsa2
2 1þ vsð ÞEihihs

s
: ð17Þ

When this parameter is small (which notably occurs for thick
substrates), shear transfer between the interlayer and substrate oc-
curs over much smaller distances than the tile size, such that the
stresses in the majority of the interlayer are given by the blanket
film result:

σ i
r;θ ¼

Ei θs−θið Þ
1−vi

: ð18Þ
2.4. Energy release rates for debonding

Here, we assume that an interface crack grows from the outer
edge of the tile inwards, leaving a circular patch that remains bonded.
It is assumed that the debonded length is much greater than ao, i.e.
the length-scale associated with shear transfer, such that edge effects
are negligible. The stresses in the released bilayer outside the crack
front are taken to be zero since the released section is free to expand.
Strictly speaking, this is not true, as (1) debonding will not release
circumferential stress immediately in the crack wake, and (2) the
bilayer may have retained stresses due to tile/interlayer mismatch.
However, the current approximation is conservative in that it overes-
timates the amount of strain energy released by debonding.

In this scenario, the energy release rate for debonding is simply
the reduction in strain energy that results from a decrease in the
size of the bonded patch:

G ¼ 1
2πa

∂ Φf þΦi

� �
∂a ; ð19Þ

where Φf is the strain energy in the tile and Φi is the strain energy in
the interlayer. Here, we assume that debonding releases the strain
energy in the interlayer associated with shear-transfer. Direct stresses
in the interlayer do not affect debonding between the tile and the
interlayer, as they would not be released by debonding above the
interlayer. However, if one considers debonding between the
interlayer and substrate, the strain energy associated with these di-
rect stresses should be included, as it would increase the driving
force for debonding.

In terms of the normalized tile size λ=a/ao, a suitable normalized
energy release rate is given by:

�G ¼ G
Go

¼ 1
2πλ

∂ �Φf þ �Φi

� �
∂λ ð20Þ

where Go is the strain energy density per unit thickness of the tile,
given by:

Go ¼
1−vf
� �

σ2
ohf

2Ef
; ð21Þ

�Φf ¼ �Φ f = Goa
2
o

� �
and �Φi ¼ Φi= Goa

2
o

� �
. According to the present as-

sumptions, Go is the energy release rate for debonding in the limit
of infinite tile size, i.e. large values of λ. This is higher by a factor of
(1+vf) than the classical result for plane strain debonding that does
not release stresses parallel to the crack front, which illustrates that
the estimate is conservative.

Using these definitions, the total strain energy in the tile where the
interface is bonded is given by:

�Φ f ¼
2EfΦf

1−vf
� �

σ2
ohf a

2
o

¼ 2π⋅λ2

1−vf
∫1
0 1þ vf
� �

�σ 2
r þ �σ 2

θ

� �
−vf �σ r þ �σ θð Þ2

h i
⋅�r⋅d�r ; ð22Þ

where the dimensionless stresses are given above. The total strain en-
ergy in the interlayer is given by:

�Φ i ¼
2EfΦi

1−vf
� �

σ2
ohf a

2
o

¼ 2π 1−vf
� �

⋅λ2∫1
0σ̂

2

rz
⋅�r⋅d�r ; ð23Þ

where it should be noted that σ̂ rz is defined such that it is only a func-
tion of λ. Hence, the strain energy in the interlayer depends only on
the variables Φf(vf,λ), and thus scales with the interlayer properties



Fig. 3. Energy release rate (G/Go) for debonding as a function of a tile size, λ=a/ao,
showing the contributions from the energy released in the interlayer and the energy
released from the tile.
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only through the dimensionless size λ. This is important to note be-
cause it implies that the strain energy in the interlayer cannot be
neglected purely on the basis that it may be much thinner or more
compliant than the film.

Thus, the normalized strain energy release rate can be computed
using Eq. (18) with Eqs. (20) and (21), after substituting Eqs. (10),
(11) and (14) for the stresses. It is instructive to separate the total en-
ergy release into contributions arising from the tile and from the
interlayer, i.e. �G ¼ �Gf þ �Gi, where the components are simply the
terms corresponding to the derivatives of each strain energy term:

�Gf ¼
c1I

3
o þ c2I1I

2
o þ c3I1I

2
o þ c4I

3
1

2 λIo− 1−vf
� �

I1
� �3 ð24Þ

c1 ¼ 1−vf
� �

2þ vf
� �

λ3 ð25Þ

c2 ¼ λ −12 −1þ vf
� �

þ λ2 1þ vf
� �2� �

ð26Þ

c3 ¼ λ2 −λ2 1þ vf
� �

þ 3 −1þ vf
� �

3þ vf
� �� �

ð27Þ

c4 ¼ −4þ 2λ2 þ λ4 þ vf 8þ λ4−2 2þ λ2
� �

vf
� �

ð28Þ

�Gi ¼
b1I1I

2
o þ b2I

3
1 þ b3I

3
o þ b4I

2
1Io

λIo− 1−vf
� �

I1
� �3 ð29Þ

b1 ¼ λ2 4þ λ2−4vf
� �

1þ vf
� �3 ð30Þ

b2 ¼ λ2 −12 −1þ vf
� �

þ λ2 1þ vf
� �2� �

ð31Þ

b3 ¼ λ3 −1þ vf
� �

1þ vf
� �3 ð32Þ

b4 ¼ λ 1þ vf
� �3

4þ −4þ λ2
� �

vf
� �

ð33Þ

where Io and I1 are the modified Bessel's functions of the first kind, to
be evaluated at λ.

Fig. 3 illustrates the energy release rate for debonding at the tile/
interlayer interface as a function of tile size for vf=1/3: all other pa-
rameters are accounted for in the normalizations (i.e. Go and ao). It is
interesting to note that the energy released by relaxation of the shear
stresses in the interlayer is dominant for tile sizes less than λ~1. This
is because the peak shear stress in the interlayer decreases with tile
size slower than the tile stress, as shown in Fig. 2B.

3. Failure mechanism maps

The present model enables the prediction of three different failure
modes: (i) yielding of the tile, (ii) yielding of the interlayer, and (iii)
tile/interlayer debonding. Here, we use σc to denote the critical value
of σo=Ef(θs−θf)/(1−vf) that triggers failure. We present results
wherein the critical value is scaled by the yield stress of the tile, σc/σY.
Hence, with regard to tile yielding, the quantity σc/σY corresponds to
the ratio of the allowable misfit strain to the biaxial yield strain, as in
(θs−θf)c/�Y, where �Y≡(1−vf)σY/Ef. With this normalization, the criti-
cal stress σc/σY for tile yielding asymptotes to unity for large tile sizes;
values above unity reflect the fractional gain in allowable misfit strains
that arise from reducing the tile size.

To provide a common basis to compare critical thermal loads for
each mechanism, the critical stresses corresponding to interlayer
yielding and debonding are also normalized by σY. The following
three dimensionless equations define the critical values of σo that
trigger each mechanism:

σ c
o

σY
¼ Ft λ; vf

� �
tile yielding ð34Þ

σ c
o

σY
¼ ΣR⋅Fi λ; vf

� �
interlayer yielding ð35Þ

σ c
o

σY
¼ ΓR⋅Fd λ; vf

� �
debonding ð36Þ

where the functions Ft and Fi are the reciprocals of the right-hand
sides of Eqs. (12) and (16), respectively. Fd ¼ 1=

ffiffiffiffi
�G

p
, where �G is de-

fined via Eqs. (24)–(33). ΣR and ΓR are two dimensionless parameters
that are functions of material properties, given as:

ΣR ¼ τiY
σY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ við ÞEf hi
1−v2f
� �

Eihf
;

vuut ð37Þ

ΓR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GcEf
σ2

Yhf

s
: ð38Þ

Here, τYi is the yield stress in shear of the interlayer, such that ΣR is
a measure of the relative yield strengths of the interlayer and tile. Gc

is the critical energy release rate for the interface between the tile and
the interlayer, such that ΓR is a measure of the interface's resistance to
debonding relative to the tile yield strength. Thus, for all three mech-
anisms, the critical stress is only a function of σc= f(λ, ΣR,ΓR,vf). The
dependence on the Poisson's ratio is rather weak: vf=1/3 is used to
generate the illustrative results in this paper.

Fig. 4 illustrates the allowable tile stress σc/σY as a function of tile
size for several different values of the material parameters ΣR and ΓR.
The trend of increasing critical stress with decreasing tile size is
exhibited for all failure mechanisms, and is a consequence of the de-
crease in stress associated with the free edges of the tile. These figures
illustrate that dramatic increases in critical stresses are possible by re-
ducing the tile size. The kinks in the curves are a result of a transition
in active failure mechanism. For example, in Fig. 4A, for ΓR=1 and
ΣR=1.5, tile yield is the active constraint for λ≳3.5, while interlayer
yielding is active for smaller tile sizes. For values ΣR≲1.5, interlayer



A B

Fig. 4. Critical misfit stress σc/σY as a function of tile size λ=a/ao, determined by the minimum value required to trigger anymechanism. The toughness parameter is ΓR ¼
ffiffiffiffiffiffiffiffiffi
2GcEf
σ2

Y hf

r
, while

the strength parameter is ΣR ¼ τY
σY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þvið ÞEf hi
1−v2

f

� �
Eihf

s
. The line pattern indicates the active failure mechanism at the critical misfit stress.
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yielding occurs at the lowest misfit strain for all tile sizes, and hence
no kink exists. Similarly, for ΣR≳1.8 and ΓR≲1, the interlayer is strong
enough such that interlayer yielding does not occur prior to either tile
yielding or debonding. Similar transitions are seen in Fig. 4B; for low
values of ΓR, debonding is the active mechanism: once ΓR is high
enough (e.g. ΓR≳1 for ΣR=2), the critical stress is dictated by either
tile yielding or interlayer yielding.

The trends in active failure mechanism as a function of tile size can
be broadly illustrated by constructing a contour plot of the critical
stress values as a function of λ and ΓR, as shown in Fig. 5A, and λ
and ΓR, as shown in Fig. 5B. In both figures, the remaining material
property is held constant. Naturally, the largest value of σc occurs at
the smallest tile sizes. There is a narrow range of either ΣR or ΓR
where all three failure mechanisms are possible: roughly,
1.7≲ΣR≲2 and 1≲ΓR≲1.4. If either material property falls out of this
range, there are only two possible failure mechanisms for any tile
size. For example, for ΓR≳1.4 and ΣR≲2, the failure mechanism tran-
sitions from tile yielding at large tile sizes to interlayer yielding at
smaller tile sizes. Similarly, for ΣR≳2 and ΓR≲1, the failure mecha-
nism transitions from tile yielding at large tile size to debonding at
smaller tile size.

The material properties needed to avoid failure for a given tile size
are illustrated in Fig. 6, which presents an alternative view of the (λ,
A

Fig. 5. Contours of the critical misfit stress, σo
c/σY as a function of tile size λ=a/ao and the m

indicate active failure mechanism at the critical value of misfit stress.
ΣR,ΓR) design space. Here, the size is fixed to be λ=1.5 while the
other parameters are varied. In Fig. 6A, interlayer yielding (ΣR) con-
trols the critical stress until a critical value dictated by the interface
toughness (ΓR) is reached: once both parameters are large enough,
tile yielding becomes the active mechanism (i.e. the plateau in
Fig. 6A). Similarly, in Fig. 6B, interface toughness (ΓR) controls
strength until the mechanism switches over to interlayer yielding
(i.e. ΣR controlled). Again, when both properties are sufficiently
large, tile yielding is the active constraint.

A central design exercise for tiling systems pertains to finding the
maximum allowable tile size that will avoid failure, given minimum
bounds on the material properties of the system (i.e. estimates for
the lower bounds for ΣR and ΓR). Fig. 7 plots contours of the critical
stress for two tile sizes as a function of (ΣR,ΓR). The critical stresses in-
crease to a maximum at the intersection of the three constraints; the
critical stress value at this intersection increases with decreasing tile
size, as expected. Decreasing the tile size shifts the “tile yielding” pla-
teau upwards and to the right, as seen by comparing Fig. 7A and B.
This implies that, in order to realize the higher critical stress allowed
for the given tile size, (i.e. utilize the increased range in misfit strains
that are allowed) one must increase both material properties. Of
course, if the tile size is decreased while the properties and critical
stress are held fixed, the shift in the tile yielding region merely
B

aterial parameters controlling various failure mechanisms, ΓR and ΣR. Colored regions
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Fig. 6. Critical misfit stress σc/σY as a function of the material parameters ΣR and ΓR for fixed tile size λ=a/ao=2, determined by the minimum value required to trigger any mech-
anism. The line pattern indicates the active failure mechanism at the critical misfit stress.
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indicates that this failure mode is less likely, as it is moved further
from the application point.

The lower corner of the “tile yielding” space represents the mini-
mum combination of (ΣR, ΓR) that will avoid all three failure mecha-
nisms for that tile size, provided the actual misfit strains are set
equal to the critical ones at that size. Put another way, given lower
bounds on the material parameters, the intersection of the three re-
gions indicates the maximum allowable misfit stress for a given tile
size. One can solve for the intersection point using the solutions
above, and generate a single plot that illustrates the maximum possi-
ble critical strain for a given tile size, and the associated lower bounds
on the properties needed for design (Fig. 8).

This figure can be used to rapidly identify the active constraint and
maximum allowable tile size for a set of properties. For example, con-
sider the case where the design requires that the allowable misfit
stress is σc=5σY. The maximum tile size that can be used is λ=0.8,
provided the interface toughness yields at least ΓR=4.5, and the
interlayer yield strength produces at least ΣR=3. As a second exam-
ple, suppose materials are chosen such that ΓR=2, and ΣR=5. A tile
size of λ=0.5 avoids interlayer yielding at the maximum possible
misfit stress, but at that size, ΓR is less than the minimum required
(i.e. the minimum ΓR at that size is 7). For the tile size λ=1.5,
which corresponds to the maximum for the given ΓR, the required
ΣR is less than that stated for the problem, so this size is acceptable.
Thus, for this example interface debonding is the active constraint,
A

Fig. 7. Contours of the critical misfit stress, σo
c/σY and the material parameters controlling va

failure mechanism at the critical value of misfit stress.
and λ=1.5 is the maximum possible tile size, provided the misfit
stress is equal to the maximum possible at this size.

Finally, as an illustration of the underlying scaling implied by the
models, consider a model system comprising a 0.2 mm thick tile
with (Ef,vf)=(200GPa, 0.2) bonded to a substrate with a 0.02 mm
thick interlayer with (Ei,vi)=(4GPa, 0.4). (This is consistent with a
ceramic feature bonded with epoxy to the substrate.) The characteris-
tic shear transfer length in this case is ao~0.8 mm, and one can expect
the present shear lag model to be accurate for tile sizes at least five
times the thickness, or ~1 mm: this implies the present models are
accurate for λ≥∼1.3. Fig. 2 reveals that the present model (accurate-
ly) predicts stresses in the range of 25–100% of the blanket film result,
thus illustrating that the shear lag model is applicable for meaningful
tile sizes, in a regime where the finite-sized tile result is very different
from the blanket film result. A similar but more macroscopic example
is a 1 cm thick steel tile used to spread head, bonded with a thicker
polymer layer for thermal insulation 1 mm thick, yields ao~3.8 cm,
again with λmin=1.3. For this application, the model applies for
tiles greater than 5 cm, for which the stresses are again 25% of the in-
finite tile result.

4. Conclusion

Closed-form analytical solutions have been presented for the
stresses and displacements of an axisymmetric tile bonded with a
B

rious failure mechanisms (ΓR and ΣR) for fixed tile sizes. Colored regions indicate active



Fig. 8. Maximum possible critical misfit stress as a function of tile size, and the associated
required minimum values of the material parameters ΓR and ΣR.
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compliant interlayer to a substrate. The analysis enables predictions
for the energy release-rates associated with a convergent delamina-
tion front that moves from the outer edge inwards. The solutions
can be utilized to construct failure mechanism maps, which indicate
active failure mechanisms as a function of material properties and
tile size. The solutions indicate that failure mechanisms depend on
the single sizing parameter λ=a/ao, that incorporates material and
geometric information to describe the length-scale over which shear
transfer occurs. Together with λ, two key dimensionless parameters
are presented that control the transitions from one mechanism to an-
other: these are essentially measures of the relative importance of the
interface fracture toughness to tile yield strength, and the interlayer
shear strength relative to the tile yield strength. Taken together, the
solutions and key scaling factors provide a broad basis for tiling sys-
tem design.
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