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The Buckling and Postbuckling
of Fibrils Adhering to a Rigid
Surface
Recent experiments in which arrays of compliant fibrils are compressed axially against a
rigid surface and then released have shown that there is load-displacement hysteresis
during this process, accompanied by buckling and unbuckling of the fibrils. Furthermore,
the adhesive performance of the system is decreased by such prior buckling. We present
a model describing the buckling and postbuckling characteristics of a fibril with an as-
pect ratio of 10 or greater. The possibility during buckling of partial detachment of the
end of the fibril is taken into account. The results are presented and discussed for both
load and displacement control and the load-displacement hysteresis is identified. It is
found that due to instabilities sudden spreading and shrinkage of the adhered area at the
end of the fibril can accompany the hysteresis. Numerical results are provided to substan-
tiate the findings and possible reasons for the observed influence of buckling on adhesive
performance are reviewed. [DOI: 10.1115/1.4023107]

1 Introduction

Many animals use adhesive contact to stick to rough or smooth
surfaces. Most of them, like geckos, spiders or flies, have devel-
oped fibrillar structures. According to the “contact splitting
principle,” these structures allow for a better adhesive perform-
ance with decreasing fibril radii [1]. Based on this finding, there
are current efforts to develop artificial dry adhesives based on
fibrillar structures (e.g., see Ref. [2]).

Another important factor, besides the resistance of the adhesive
bond against pull-off, is the adaptability of adhesive systems to
rough surfaces. Ideally, the adhesive material would deform plas-
tically to establish a good contact over the whole surface. How-
ever, an aim is that the process of attachment and detachment
should be repeated for a high number of cycles without any decay
in adhesive performance. Hence, plasticity is to be avoided and
the adaptability of compliant fibrillar systems is an advantage. In
this regard, buckling of fibrils is an asset for adaptive contact.
When the critical buckling load of a fibril is exceeded, large com-
pressive strains are possible without significant increase in the
applied load. Thus, an array of microscopic fibrils can behave on
the macroscopic scale as a nonlinear elastic system having proper-
ties similar to a plastic material in that extensive crushing is possi-
ble without significant elevation in stress. In contrast to plasticity,
unloading of a buckled, elastic, fibrillar system is reversible and,
in principle, permits re-use for adhesion without damage. These
considerations are predicated on the ability of the fibril to retain
its adhesion after it has buckled, and to recover an unbuckled
shape without damage upon being unloaded. In contrast, recent
results suggest that buckling of fibrils leads to a reduction of adhe-
sion when the system is separated thereafter [3]. In addition, ex-
perimental results indicate that while the unbuckled shape of a
fibril is recoverable upon unloading, there is load-displacement

hysteresis in the process [4,5]. It has been observed that unbuck-
ling takes place at a different load than buckling. This is attribut-
able to the fact that the ends of the fibrils detach from the
compressing surface and lose adhesion to it during buckling and
postbuckling. This phenomenon changes the boundary conditions
on the end of the fibril and consequently modifies the load at
which the fibril will unbuckle. Hui et al. [4] developed a theoreti-
cal model for this process based on Euler–Bernoulli beam theory
and linear elastic fracture mechanics, which allows the determina-
tion of the buckling and unbuckling loads dependent on the extent
of detachment. We now extend this approach in order to predict
load-displacement curves during buckling and unbuckling of a
fibril. The resulting load-displacement curves give considerable
insight into the buckling, postbuckling and unbuckling behavior
of fibrils. Furthermore, the results suggest that effects of viscosity,
inertia and friction may play an important role in the buckling and
adhesion characteristics of fibrillar mats.

As noted above, Glassmaker et al. [3] reported that buckling
can be detrimental to fibrillar adhesion. Using a glass sphere, they
indented arrays of Polydimethylsiloxane(PDMS)-fibrils having a
rectangular cross-section with one dimension much greater than
the other one and then detached the probe from the fibrils. When
buckling of fibrils occurred, a decrease by up to a factor of 4 in
the effective work of adhesion and, thus, the pull-off force during
the detachment segment of the load cycle was observed. Such a
result is surprising, because one would expect that fibrils that
detach during buckling under compression would reattach when
the probe is being separated from the fibrils and they are able to
unbuckle. Apparently they do not, and possible reasons for this
phenomenon will be reviewed in the discussion of our results.

It is emphasized that this paper addresses the buckling behavior
of artificial fibrillar adhesives. Natural adhesive systems are far
more complex and we acknowledge that these may not be
described with the results given here. However, an exact repro-
duction of the structures found in nature seems to be illusive to
date, due to the limitations of current manufacturing methods.
Therefore, strong simplifications of these natural structures are
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necessary. This has led to the development of adhesive surfaces
being covered with straight fibrils. We believe that our considera-
tions are relevant for the understanding and further development
of these quite simple fibrillar surfaces. The physics of natural ad-
hesive devices of animals like geckos are discussed in detail, for
example, in the comprehensive works of Gao et al. [6], Gao and
Yao [7], and Yao and Gao [8]. The results given therein suggest
that many more concepts, like anisotropy of the fibrils material,
asymmetric fibrils, inclined fibrils, size reduction of the fibril cross
section and hierarchical structures, can strongly improve the adhe-
sive performance. However, consideration of these aspects is
beyond the scope of this paper.

2 Model of Buckling

Our model describes the behavior of a single fibril compressed
by a platen as shown in Fig. 1. The fibril tip at its upper end is par-
tially adhered to the platen, which is a rigid, smooth surface. For
simplicity, the fibril has a rectangular cross-section and the platen
is allowed to move freely in the lateral direction while its rotation
is prohibited. On the other fibril end, the lower one in the figure,
the boundary condition is taken to be fully clamped with no lateral
motion or rotation. Nevertheless, all formulae in the analysis (see
Appendix A) are developed in terms of “shape functions,” which
represent the given boundary conditions. Thus, the end conditions
can be easily adjusted by using appropriate shape functions. For
example, the lateral displacement at the adhered end of the fibril,
the upper end in the figure, may be eliminated if so desired. As a
consequence, conditions that are common in experiments with a
fibrillar bed probed by an indenter may be readily duplicated.
Here, the laterally free boundary condition at the fibril tip is cho-
sen for reasons of simplicity. Furthermore, photographs of the
buckling process [4,9] indicate that the fibrils in the experiments
buckle like expected for the laterally free boundary condition (we
suspect that this is due to the experimental setup or the compli-
ance of the backing layer on which the fibrils are patterned). Addi-
tionally, it is noted that the results obtained for the laterally
constrained case are qualitatively similar.

The undeformed length of the fibril is l0 and l denotes the dis-
tance between the tips of the fibril in the deformed configuration.
This directly yields the relative axial displacement u¼ l0� l
between the fibril ends, which is also the displacement of the
platen. This parameter is taken to be positive when the platen is
moved downwards to place the fibril in compression. We define a
positive applied load, F, to be one that applies compression to the
fibril. Fibril deflections in the lateral direction are identified as
w(z), where z is the axial coordinate parallel to the undeformed
fibril. The fibril tip adjacent to the platen is partially attached, and
partially detached, and the detachment is assumed to be a rectan-

gle of length a across the fibril and all the way through the fibril
thickness. The width of the fibril is b and its thickness is h. The
product E*I is the bending stiffness of the fibril, where E* is the
generalized elastic modulus, equal to the Young’s modulus E of
the material in plane stress and E=ð1� �2Þ in plane strain, where
� is Poisson’s ratio.

In our model, the bending behavior of the fibril is approximated as
that of an Euler–Bernoulli beam. This limits the aspect ratio, l0/b,
which can be analyzed to approximately l0/b� 10. Furthermore, we
use d2w/dz2 as the curvature of the fibril, so that the rotation, dw/dz,
has to stay small enough for this approximation to remain valid.

The adhering ligament on the tip of the fibril is allowed to
detach, with such a detachment seen as an interface crack. The ad-
hesive behavior is assumed to be completely reversible. Thus, the
work of adhesion is the same during detachment and attachment.
Nevertheless, the approach can be easily extended to cases involv-
ing adhesion hysteresis as discussed below. It is assumed that the
tangential tractions on the adhering ligament vanish. This corre-
sponds to a no friction boundary condition, a somewhat unrealistic
assumption. However, we believe that the general behavior of the
fibril is not strongly influenced by the neglect of friction. The
results of Spuskanyuk et al. [10] indicate that the effect of friction
is only pronounced for relatively short detachments, probably
attributed to the corner singularity. Note that we do not imply that
friction is unimportant during detachment of the fibril tip in ten-
sion, where large distortions can introduce significant frictional
shear stresses that influence pull-off. We concern ourselves with
partial detachment of the fibril tip during compression and fibril
buckling, where we believe the influence of friction on the proc-
esses involved is less important. Furthermore, we assume that any
zone of inelastic material behavior in the fibril is small compared
to a and b� a, so that linear elastic fracture mechanics can be uti-
lized. Moreover, the surface adjacent to the adhering tip is mod-
eled as a rigid surface. Thus, complications associated with the
presence of an interface crack between two differing elastic mate-
rials are avoided. Given these assumptions, standard fracture
mechanics solutions for a crack in an isotropic linear elastic mate-
rial can be used to determine the stress intensity factor (see Ap-
pendix A). The detachment is modeled as one side of such a
crack. The mode I stress intensity factor, K, is utilized to charac-
terize the detachment driving force. In contrast to the use of the
(always positive) energy release rate G, this allows for the exclu-
sion of physically meaningless solutions with an overclosure of
the detachment, i.e., those with a negative K. The relationship
between the stress intensity factor and the energy release rate is

G ¼ K2

2E�
(1)

the relationship relevant to an interface crack (and thus, an adhe-
sion) between a rigid and a compliant surface, where frictional
shear stresses are neglected. The factor 2 in the denominator takes
into account the fact that only one surface of the crack deforms.

The influence of the detachment on the elasticity of the system
is taken into account by including additional compliance at the
fibril tip, i.e., springs are introduced at the fibril tip connecting it
to the platen, with stiffness calibrated to the extent of the detach-
ment (see Appendix A). This approach was previously used by
Hui et al. [4] to calculate the buckling loads of fibrils dependent
on the detachment length. The influence of shear compliance asso-
ciated with the presence of a detachment will be neglected here,
consistent with our use of Euler–Bernoulli beam theory.

For a given load, F, the unknowns in the solution are detach-
ment length a and axial displacement u. Under displacement con-
trol, u is specified and we have to determine F. This requires two
equations: the first represents the “detachment equilibrium,”
which incorporates the requirement that the energy release rate G
of the system has to be equal to the work of adhesion Wad for all
admissible states, other than those for which a¼ 0 and a¼ b and
the second equation is derived from the law of conservation of

Fig. 1 Model for buckling of the fibril: (a) undeformed configu-
ration; (b) deformed configuration
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mass, used to ensure that the buckled length of the fibril is consist-
ent with its undeformed length [11].

3 Results

Details of the analysis can be found in the Appendix A. For
clarity, we present here only the main results. For this purpose,
the following normalized quantities are defined:

j2
0 ¼

Fl20
E�I

�K ¼ K

E�
ffiffiffi
b
p

�Kad ¼
ffiffiffiffiffiffiffiffiffiffi
2Wad

bE�

r
�a ¼ a

b

(2)

Since the resulting equations are nonlinear, the solution is
obtained numerically. The results for an aspect ratio of l0/b¼ 10
are shown in Fig. 2 as normalized load j2

0 versus normalized axial
displacement u/l0. Each result depicted in Fig. 2 involves an
unbuckled or buckled configuration, having a detachment at the
fibril end where it touches the platen. The load and displacement
are consistent with each other through the requirement that the
deformed length of the fibril, possibly in a buckled state, is consist-
ent with the undeformed length in terms of the axial stress and
strain it suffers (i.e., conservation of mass). The load and fibril con-
figuration, including the detachment length, combine to determine
the stress intensity factor experienced at the detachment front. Lines
of equal normalized stress intensity factor �K ¼ �Kad are drawn as
continuous lines for detachments which are associated with a stable
detachment equilibrium under displacement control, while a dotted
line indicates an unstable detachment equilibrium. In the latter
case, the detachment must extend or contract but cannot remain as
it is. These lines indicate the paths that a given fibril will follow, or
try to follow, during buckling or unbuckling at a given work of ad-
hesion. The linear elastic line corresponding to the absence of buck-
ling and limiting buckling loads are drawn as thick lines. The upper
almost horizontal limit corresponds to the case of a fully attached
fibril (�a ¼ 0) buckling without detaching from the platen and with-
out it rotating, while the lower almost horizontal limit represents a
boundary condition in which the fibril tip is free to rotate without
resistance. Note that these curves have a slightly positive slope.
This is caused by the reduction of the distance between the ends of
the fibril in compression, which in turn increases the buckling load.
The dashed lines, drawn with alternating dots and dashes, are asso-
ciated with detachments of constant size (i.e., equal values of �a).
These lines represent the paths followed by the system when the
fibril buckles, but the detachment is able to neither lengthen or

shorten. It is straightforward to identify the stability of the detach-
ment equilibrium based on these curves. If we take, e.g., point B in
Fig. 2 and increase (decrease) the detachment length by going verti-
cally downward (upward) at a constant displacement u/l0, the nor-
malized stress intensity �K increases (decreases), which means that
the detachment equilibrium is unstable if displacement control is
applied and the work of adhesion is constant on the whole adhering
surface. Consequently, the detachment needs to grow (shrink)
dynamically. We do not resolve this dynamic behavior in our con-
siderations. Rather, it is assumed that the state of the system is
always associated with a stable detachment equilibrium. Therefore,
once an unstable detachment equilibrium is detected, the system
experiences a sudden jump to a state being associated with a stable
detachment equilibrium. Note that such a treatment of the problem
is only possible if the stable detachment equilibrium is unique. In
the following, we refer to the transition between an unstable and a
stable detachment equilibrium with “dynamic detachment/
reattachment.”

It is notable that in the vicinity of point D in Fig. 2 some con-
tours of constant �K ¼ �Kad intersect each other (e.g., the contours
�Kad ¼ 0 and �Kad ¼ 0:01). The same holds true for lines of con-
stant detachment length (not visible in this plot). This implies that
the solutions in this region are not uniquely characterized by the
displacement u/l0 and the normalized force j2

0, i.e., configurations
with different adhesion energies and detachment lengths may lead
to the same combination of end point displacement and applied
load. Consequently, one has to take the adhesion energy and
detachment length into account to distinguish between such cases.
Furthermore, in this area of the figure, it is no longer easily possi-
ble to examine the stability of the detachment equilibrium graphi-
cally. Instead, it is advantageous to calculate the change in
detachment driving force for a small change in detachment length,
i.e., if the detachment driving force increases (decreases) for an
infinitesimal increase (decrease) in detachment length, the state is
unstable (see also Appendix A).

Great care was taken to represent the correct asymptotic behav-
ior for the detachment-related fibril tip compliances for long
detachment lengths. Nevertheless, we cannot exclude the possibil-
ity that the phenomenon of intersecting contours for equal stress
intensity factor and equal detachment length is caused by inaccu-
rate curve fits in results used to obtain the fibril tip compliances or
other numerical errors due to the singular nature of the fibril tip
compliances for �a! 1.

3.1 Fibril Behavior Under Displacement Control. To dis-
cuss the general behavior during a load cycle under displacement
control, we assume an initial detachment of normalized length
�ainit ¼ 0:2. Such a flaw could be caused by a radius at the edge of
the fibril, though it is larger than seems likely from such a source.
The critical normalized stress intensity factor �Kad is taken to be
zero on the initially detached surface and �Kad ¼ 0:01 on the ini-
tially adhered surface. The latter value corresponds to a work of
adhesion equal to 0.05 J/m2 for a 500 micron wide fibril of PDMS
having a generalized Young’s modulus of E*¼ 2 MPa. Note that
typical fibril dimensions are much smaller. However, fibrils with a
width on the order of 10 microns and an aspect ratio of 10 would
detach at very large deformations, which cannot be predicted
accurately with the presented theory. Thus, the results can be
interpreted quantitatively only for materials which are at least one
order of magnitude stiffer than PDMS, when realistic geometries
are considered. The same restriction is imposed by the use of lin-
ear elastic fracture mechanics since for small and compliant fibrils
of PDMS the cohesive (adhesive) zone can reach the order of the
fibril width. Nevertheless, finite element simulations indicated the
same qualitative behavior as described here also for fibril proper-
ties which are typically used in experiments, e.g., a fibril width of
20 microns and an aspect ratio of 3.

The path in Fig. 2 followed by the fibril starts at the origin
where there is no applied load, and then compression is applied asFig. 2 Load-displacement curves for an aspect ratio of 10
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the platen moves downwards until the fibril buckles. Prior to
buckling, the path followed is thus, the linear elastic line from the
origin to the point I, where buckling, i.e., instability of the funda-
mental equilibrium path occurs. It is assumed that the initial
detachment has no influence on buckling when the fibril is first
compressed. This is equivalent to allowing the detached fibril sur-
face on its tip to make contact with the platen in compression
even though they are not adhered. Instability, therefore, first
occurs when the load reaches the critical value for buckling asso-
ciated with a fibril end that is fully constrained against rotation,
i.e., the upper buckling limit shown in Fig. 2. As a consequence,
the path in Fig. 2 followed by the fibril after buckling consists of
the upper buckling limit that is almost horizontal and passes
through the point A in Fig. 2. As the path is traversed from I to A,
the distance between the fibril ends is reduced, which leads to an
increase of the buckling amplitude. However, the axial load barely
increases during this postbuckling behavior.

We assume that buckling takes place in the direction, which
tends to open the detachment and cause the nonadhered surface of
the fibril tip to move away from the platen. At first this leads to a
decrease of the compressive tractions on the detachment surface,
and the postbuckling behavior at first occurs with the fibril tip still
constrained against rotation. This causes the path in Fig. 2 fol-
lowed by the fibril to move from the buckling point at I in Fig. 2
towards the point marked A, as previously noted. At or near point
A in Fig. 2 the tractions on the detached segment of the tip of the
fibril fall to zero and the detached segment is finally able to sepa-
rate itself from the platen. As a consequence, the detachment
unzips with increasing axial displacement until it is entirely open.
Thereafter, the load-deflection curve for the fibril under displace-
ment control follows the line for constant detachment length
�a ¼ 0:2 from point A in Fig. 2 to point B so that the axial dis-
placement of the fibril tip and hence, the buckling amplitude is
increased further. As the path from A to B in Fig. 2 is followed,
the stress intensity factor increases, and hence the energy release
rate at the detachment front increases as well.

At point B in Fig. 2 the detachment tip energy release rate
becomes equal to the work of adhesion, and therefore the detached
length is capable of growing. As previously discussed, the detach-
ment equilibrium at this point is unstable in displacement control.
But now, shrinking of the detachment is prohibited because the
work of adhesion is assumed to be zero for detachments shorter
than �a ¼ 0:2. Consequently, the detachment rapidly grows until
the fibril is almost completely detached from the platen. Since the
system is under displacement control, the load falls dramatically
while the detachment is extending, and the system follows the
path from B to C in Fig. 2. Note that at point C in Fig. 2, the
detachment is approximately 95% of the way across the fibril tip.
At point C the energy release rate is once more equal to the work
of adhesion, and extension of the detachment is arrested. Note
again, that we neglect the role of inertia and dissipation in this
process; we further comment on this in Sec. 4. After the point C is
reached the state is stable once more and we can move the platen
downwards to increase the axial fibril displacement to further
compress the fibril and increase the buckling amplitude. This will
cause the system to follow the line for �Kad ¼ 0:01 to the right of
point C in Fig. 2, with the load falling slightly as the buckling am-
plitude and the detachment length both increase. Note that the rel-
evant line is not visible in Fig. 2 as the lines for constant �K ¼ �Kad

converge in this region of the diagram. Note also, that the predic-
tions of the model will become invalid at a certain point because
of excessive deformations leading to a violation of the infinitesi-
mal strain assumptions involved in the presented model. In addi-
tion, the fact that we require the rotation of the fibril to remain
modest limits the extent of validity of our solution. Furthermore,
the fibril will eventually be compacted under extreme crushing by
the platen, causing the axial force to increase again as indicated
by the dashed line for �Kad ¼ 0:01, which is drawn schematically
to the right of the diagram in Fig. 2. The associated increase in
system stiffness and compressive load can be seen clearly in the

experimental results of Hui et al. [4]. It is unclear when this phe-
nomenon takes over relative to the buckling and postbuckling
events summarized in Fig. 2.

If, instead, at point C in Fig. 2 the platen is raised and the fibril
tip displacement is decreased, the system follows the curve in Fig.
2 corresponding to �Kad ¼ 0:01, from points C to D. It does so
because the path from C to D with �Kad ¼ 0:01 involves stable con-
figurations of the detachment, meaning that an increase in detach-
ment length when the fibril tip is held stationary leads to
reductions in the stress intensity factor and detachment tip energy
release rate. Note that the process of following the path in Fig. 2
from points C to D involves a slight reduction in length of the
detached segment of the fibril tip, due to the detachment readher-
ing to the platen. This process continues until the point D in Fig. 2
is reached. Above point D in Fig. 2, there are no solutions other
than the linear elastic line for an unbuckled fibril. Therefore,
under displacement control, the system has no option other than to
unbuckle with the detachment zipping shut in a dynamic process
so that the fibril tip readheres again completely, or almost com-
pletely, to the platen. As a consequence, the system now follows a
path in Fig. 2 from point D to point H. Further raising of the
platen once point H is reached causes a decrease in the axial dis-
placement of the fibril tip, leading to elastic unloading from point
H in Fig. 2 towards the origin. Note that we have demonstrated
that load-displacement hysteresis exists for adhesive fibrillar sys-
tems compressed beyond buckling and then released, with the
hysteresis loop under displacement control consisting of the cycle
from H to I to A to B to C to D to H.

The description of the process of applying compressive loading
to buckle a fibril and the removal of the load, with displacement
control utilized, can be repeated for various values of �ainit and
�Kad, with detail differences in the behavior revealed. For example,
in cases where the detachment length is greater than �ainit � 0:5,
an additional instability can occur in displacement control at the
point marked J in Fig. 2 due to the involute in the curve represent-
ing the path for a fixed value of �a. In the case of a system with
�ainit ¼ 0:8 and �Kad ¼ 0:03, the resulting load jump will take the
system from the point J to the point marked L on the lower branch
of the curve for �a ¼ 0:8. As above, this involves a reduction in the
applied load and an increase in the buckling amplitude. Further
compression of the fibril will induce the system to travel along the
line for constant �a ¼ 0:8 until the point M in Fig. 2 is reached,
where the detachment tip energy release rate is equal to the work
of adhesion. Further compression of the fibril will cause the
detachment on its tip to extend, but in this case the detachment
equilibrium is stable and the system will follow a path in Fig. 2
given by the line for a constant �Kad ¼ 0:03, such that the applied
load gradually diminishes. Reversal of the direction of motion of
the platen, i.e., it is now raised in the configuration depicted in
Fig. 1, allows the detachment on the fibril tip to reduce in length
with the system retracing its path along the line of constant
�Kad ¼ 0:03. When the point M in Fig. 2 is reached once more,
what happens next depends on whether the system is limited to a
detachment no smaller than �a ¼ 0:8. If this is the case, then as the
tip axial displacement is reduced, the system will stably follow
the path in Fig. 2 associated with a detachment of length �a ¼ 0:8,
with the load gradually increasing. This will continue until the
point in Fig. 2 equivalent to D is reached. Then, the system jumps
on a path in Fig. 2 vertically upwards, a response analogous to
that involved in the jump the previous system experiences in
going from points D to H in Fig. 2. If a detachment of length less
than �a ¼ 0:8 is permitted, the detachment equilibrium of the sys-
tem with �ainit ¼ 0:8 initially and �Kad ¼ 0:03 again becomes unsta-
ble when it returns to the point M in Fig. 2 having been
compressed beyond the level associated with that point. As a
result of this instability, the system experiences a jump involving
a path that takes it vertically upwards in Fig. 2 from the point M
until the upper buckling line is reached, in which case the fibril tip
is (almost) completely reattached to the platen, with either a very
small or no detachment remaining. Obviously the applied load has
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jumped up to a level slightly above the initial critical value for
buckling. Thereafter, as the platen is further raised and the fibril
tip axial displacement is reduced, the buckling amplitude steadily
diminishes and the applied load reduces slightly, until the point I
in Fig. 2 is reached, at which stage unbuckling occurs. The exam-
ple just given illustrates the fact that dynamic detachment closure
during unloading does not necessarily bring the system back to a
point on the elastic loading line for unbuckled fibrils, i.e., not to a
point like H in Fig. 2. In the case of �Kad ¼ 0:02 the system will
jump to a point in Fig. 2 on the upper buckling limit line adjacent
to the point A.

Furthermore, it is also possible to construct the load-
displacement hysteresis for a fibril experiencing irreversible adhe-
sive behavior, i.e., adhesion hysteresis. In the extreme case, it can
be assumed that the detachment extends with a value of �Kad > 0,
but diminishes in length with �Kad ¼ 0. For the example above, in
which �ainit ¼ 0:2 and �Kad for extension of the detachment is 0.01,
the system follows the same path in Fig. 2 as before until the point
C is reached. Thereafter, it follows a line in Fig. 2 of constant
detachment length from point C towards the point D after the
loading direction is reversed until the curve corresponding to
�Kad ¼ 0 is reached. Subsequently, the system proceeds on this
curve in Fig. 2 until the point at which it becomes vertical, just
above point D in Fig. 2. From here, under displacement control,
there are no solutions involving a buckled configuration if the
axial displacement of the end of the fibril is to be reduced, i.e., the
platen in Fig. 1 is to be moved upwards. Therefore, the fibril must
unbuckle and dynamic closure of the detachment occurs. We note
that, in this case, adhesion hysteresis has made almost no differ-
ence to the loading and unloading behavior of the system, and the
load-displacement response is almost identical with and without
adhesion hysteresis.

3.2 Fibril Behavior Under Load Control. Under load con-
trol the load-displacement curves can be constructed in an analo-
gous way. Consider again the case where �ainit ¼ 0:2 and
�Kad ¼ 0:01. This system will still follow a path from the origin to
the point I when the fibril is first compressed, and will buckle at
point I. After buckling, the axial displacement will increase signif-
icantly while the buckling amplitude grows larger, and the system
will follow the path in Fig. 2 from I to A. The applied load rises
slightly during this postbuckling phase from points I to A, so the
process remains stable. However, in the vicinity of A, the detach-
ment on the fibril will begin to separate from the platen, but the
stress intensity factor at this stage is zero. From A onwards, all
relevant, feasible equilibrium locations having �Kad ¼ 0 and
0 < �a � 0:2 or 0 < �Kad � 0:01 and �a ¼ 0:2 or �Kad ¼ 0:01 and
�a > 0:2 are associated with a load smaller than that applied at the
point A in Fig. 2. For the system to reach these equilibrium loca-
tions, the applied force would have to be reduced, forbidden under
load control. Therefore, at constant applied load, the system will
experience a sudden, dynamic axial displacement jump to further
compress the fibril, while its buckling amplitude also increases
dramatically. This process involves a path in Fig. 2 that takes the
system horizontally from point A rightwards out of the range
depicted in the diagram. Given the assumptions of our model,
including infinitesimal strain and the validity of Euler–Bernoulli
beam theory, there is no satisfactory solution in force control that
will terminate the associated dynamic response of the fibril.
Instead, compaction of the fibril will occur, resulting in a crushed
fibril that supports the load being applied by the platen. The corre-
sponding point is labeled N on the schematically drawn continua-
tion of the contour �Kad ¼ 0:01 for large deformations on the right
of the graph in Fig. 2.

Further increase of the applied load will encounter a very stiff
response of the system, since the fibril is now fully compacted and
deforms in a manner akin to a solid layer of material. If the load is
now decreased, reducing the compression being applied to the
compacted fibril, a path as indicated by the dashed line to the right

of the diagram in Fig. 2 will be followed. It is assumed that the
equilibrium states on this line are stable. Note also that we
exclude for this discussion any additional adhesion between the
side-faces of the fibril and the platen as well as sticking due to self
contact of the fibril. The path schematically drawn as the dashed
line downwards from N in Fig. 2 will be followed while the com-
paction of the fibril is decreased during decrease of the applied
load. At the minimum of this path, at point P in Fig. 2, the only
possible solution for further decrease of the applied load can be
found on the line corresponding to axial compression of the
unbuckled fibril, i.e., the line from the origin to I. Thus, the fibril
has no option other than to straighten up immediately to the point
marked R in Fig. 2. This process is accompanied by a significant
axial displacement jump of the fibril tip that involves the platen
moving upwards in the configuration depicted in Fig. 1. Further
reduction of load then allows the system to follow a path in Fig. 2
that takes it back to the origin, at which stage it is, of course, free
of applied load and it has returned to its original length.

The same approach as we have just described can be used to
trace out the loading and unloading behavior of a compressed
fibril under load control subject to different values of the initial
detachment length and work of adhesion, where, of course, the
details of what happens and the exact load-displacement hystere-
sis will vary from case to case. The characteristics of the behavior
of the system under load control for these other cases will be quite
similar to the events we have just described. Specifically, after the
surfaces involved in the initial detachment separate at or near
point A in Fig. 2, the situation is almost always unstable, and the
amplitude of buckling together with the axial displacement of the
fibril tip increase dramatically. Only for very small initial detach-
ments and a high work of adhesion is a small stable increase of
the applied load likely after opening of the initial detachment.

It should be noted here that the described compaction behavior
during subsequent dynamic collapse involves a violation of most
of the assumptions built into our model, and a more realistic treat-
ment may require the relaxation of the restriction to infinitesimal
strains, the use of something other than Euler–Bernoulli beam
theory, the inclusion of the effects introduced by transverse shear
stress in the behavior of the fibril, and the possibility of contact.

Note that for aspect ratios greater than 10 the appearance of the
diagram equivalent to Fig. 2 will change little, with the upper and
lower buckling limits, representing the cases of buckling with the
fibril tip fully constrained against rotation and able to rotate freely
without constraint, remaining approximately in the same location
in the resulting figure. Furthermore, the lines representing the
equilibrium states in the buckled configuration associated with a
given initial detachment length and a given value of �Kad will have
a similar appearance to those in Fig. 2 even when the aspect ratio
of the fibril is longer than 10. The only major change is that the
slope of the linear elastic loading and unloading line from the ori-
gin to the buckling point will be different, dependent on the fibril
aspect ratio. Therefore, there is little difference in the behavior of
the system for higher aspect ratios of the fibril compared to that
which we have already described. However, the physical result is
that the buckling all happens at smaller axial compressions when
the aspect ratio of the fibril is greater than 10, with the buckling
loads scaling in proportion to b2=l20.

3.3 Numerical Results. Figure 3 shows a finite element
result for the displacement controlled load cycle described above
in which �Kad ¼ 0:01 and �ainit ¼ 0:2. The finite element results are
plotted along with the Euler–Bernoulli beam theory solution. The
numerical procedure is presented in detail in Appendix B. The nu-
merical and Euler–Bernoulli beam theory results for this example
are found to be virtually identical. Furthermore, the finite element
analysis successfully predicts the dynamic detachment of the fibril
tip from the platen, i.e., the precipitous drop in the load at the right
hand end of the graph. On the other hand, the finite element analy-
sis no longer converges after a small amount of dynamic
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reattachment of the fibril tip to the platen has occurred, i.e., at the
location marked “No convergence” in Fig. 3. This is due to short-
comings of the solution procedure, which cannot treat the sudden
reattachment of the fibril tip properly. Note the excellent accuracy
of the Euler–Bernoulli beam theory solution compared to the fi-
nite element results. Given the idealizations involved in beam
theory, we suspect that some error compensation is involved in
the outcome.

4 Discussion

Euler–Bernoulli beam theory and finite element method results
were presented describing the behavior of an adhering fibril in
compression. Due to the increasing compressive load, the fibril
buckles, leading to the detachment of the initially attached surface
on its tip. Reattachment takes place upon unloading of the fibril
when it unbuckles. Both events are found to be dynamic processes
given the boundary conditions, leading to a significant hysteresis
in the load-displacement curve. The prediction of jumps in the
applied force or the displacement is consistent with experimental
results [4,5]. We note that our model is restricted to cases where
fibrils have an aspect ratio of around 10 or greater, a condition
that is not met in most experiments on fibrils adhered to sub-
strates, as this ratio is usually no more than 3 in the experiments
[4,5]. The restriction to an aspect ratio of 10 or greater ensures the
validity of Euler–Bernoulli beam theory. Moreover, we assume
plane strain behavior of the fibril in the Euler–Bernoulli beam
theory analysis, mainly to simplify the geometry of the detached
surface on the fibril tip. In contrast, the fibrils used in the experi-
ments usually have a cross-section that invalidates our plane strain
assumption, except the results of Sharp et al. [5] with platelike
fibrils, having a rectangular cross-section with one dimension
much greater than the other one. Nevertheless, we believe that the
phenomena we identify in the behavior of such long, plane strain,
adhering fibrils under compression is relevant to the response of
the stalkier rectangular or cylindrical fibrils that are used in the
experiments. This conjecture was also supported by further finite
element simulations. However, discussion of these simulations is
beyond the scope of the paper due to the difficulties arising from
excessive deformations, contact of the side faces of the fibril with
the platen and self-contact of the fibril.

In the experiments, a PDMS surface, patterned with stalky
fibrils, is brought into contact with a smooth, stiff probe so that
the tips of the fibrils adhere to it. After contact is made, the tip of
an adhering fibril is nominally fully attached to the probe surface,
without a detached segment. However, fibrils generally have an
edge radius around the circumference of the tip, acting as a very

small detachment at the perimeter of the adhesion between the
fibril and the probe surface. When such a fibril buckles under
compressive load, it will behave as we have described above, but
following the path of response relevant to the case having a very
small initial detachment. We now describe the response of such a
fibril in both displacement and in load control to suggest what is
happening in the experiments when the fibrils of a patterned sur-
face simultaneously buckle and unbuckle. Note that we describe
the behavior that we believe occurs between a set of fibrils pat-
terned onto a flat surface when it is compressed against a flat
probe. Often the probe is spherical, introducing further complica-
tions in the processes of fibril attachment, buckling, unbuckling
and detachment. However, we neglect such complications at pres-
ent and concentrate on phenomena we believe arise in the case of
fibrils on a flat surface adhering to a stiff, flat probe.

In the case of displacement control, the response of fibrils with
a very small detachment will be quite analogous to the behavior
for displacement control described above. That is, buckling will
occur at the point I marked in Fig. 2, and as the distance between
the tips of the fibrils and their bases is reduced during
postbuckling behavior, the load will rise slightly as the path
towards A in Fig. 2 is followed. Thereafter, the detached segment
separates, which may lead to a decrease in the applied force. In
the next step, the energy release rate at the detachment front
increases. However, during this stage of postbuckling, due to the
very small size of the pre-existing detachment, the load will
remain very close to the level indicated by the upper thick, almost
horizontal line to the right of A in Fig. 2 that gives the post buck-
ling behavior of a fibril whose tip is completely attached to the
platen. This behavior will persist to a relatively large displacement
of the tip of the fibril, continuing until the energy release rate rises
to the critical level that permits the detachment to grow. Prior to
this happening, large deformation and rotation of the fibril may
induce contact of the fibril with the surface at its base, leading to
crushing effects and a rise in the necessary applied load. Let us
assume that such effects are absent. In that case, when critical
growth of the detachment commences, it will dynamically extend
until the fibril tip is almost completely detached from the probe,
and the load will fall to a level quite close to that indicated by the
thick, almost horizontal line in Fig. 2 that signifies the buckling
load of a fibril whose tip is free to rotate when buckling first
occurs. If the fibril is further compressed, the applied load will
remain at this level until self contact, or contact with the adjacent
surface occurs, upon which the applied load will rise again due to
crushing of the fibril. Now, when the direction of motion of the
fibril tip is reversed (i.e., the probe is retracted in the experiment),
the applied load will reduce as crushing of the fibril is relaxed, but
then it will rise again after self contact or contact with the adjacent
surfaces is eliminated and the detached surface partially readheres
in a stable manner, enabling the system to follow a line equivalent
to the line from C to D in Fig. 2. Finally, at a point equivalent to
D in Fig. 2, dynamic reattachment will occur and the load will
jump either to a point close to the upper buckling limit line or to a
point on the elastic loading and unloading line in Fig. 2, then fall
back to zero as the path to the origin is followed.

It is notable that we have predicted hysteresis that can lead to a
history dependent behavior of the set of fibrils when they are com-
pressed and then the compression is reversed, even though the ma-
terial behavior is assumed elastic and the adhesive contact is
described by a reversible constitutive law. This behavior is caused
by nonlinear geometric effects introduced by the fibril buckling
and unbuckling. These nonlinear geometric effects lead to the
occurrence of instabilities and the resulting dynamic behavior
induces dissipative processes, which are not further resolved in
the presented model.

Note that if retraction of the probe is continued after the load
has been reduced to zero, so that the fibrils are extended, eventu-
ally detachment under tension will occur, breaking the adhesion.
This will take place due to the presence of the very small detach-
ments we have assumed in this case, characterized by results that

Fig. 3 Finite element result in comparison with the
Euler–Bernoulli beam theory solution for aspect ratio 10,
�Kad 5 0:01, �ainit 5 0:2
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have been provided by Spuskanyuk et al. [10] for the detachment
of such fibrils with small edge defects in their adhesion. As a con-
sequence, the adhesion is likely to be quite robust and the pull-off
load to be relatively high. Note however, that the pull-off load
will have been unaffected by the fact that the fibrils went through
a process of buckling and unbuckling and that hysteresis was pres-
ent in the compression cycle. This is a point we return to below.

Now consider the more complicated case of compression of a
system of fibrils under load control, but where there is a very
small initial detachment. The behavior is the same as under dis-
placement control until the point marked A in Fig. 2 is reached.
At this stage, the very small detachment at the end of the buckled
fibril becomes fully opened and the energy release rate at its tip
begins to rise above zero. If the initial detachment is small
enough, this increase of the energy release rate is associated with
an increasing applied load (in contrast to the examples above,
where the increase of energy release rate is associated with a
decreasing applied load). In that case, a small stable increase of
the applied load is possible, while following a line quite close to
the upper thick line in Fig. 2, until the energy release rate is finally
equal to the work of adhesion. It can be shown that this critical
state is unstable under load control and thus there is no stable so-
lution other than one involving fibrillar self contact, contact of the
fibril with the adjacent surfaces at its base and tip, and therefore
crushing of the fibrils. This will occur with a very large jump in
the motion of the fibril tips towards the fibril bases until sufficient
fibril crushing has occurred to build up the equilibrium applied
load to the requisite level. Further increase of the applied load
will induce a very stiff behavior, involving quite small motions of
the fibril tip, since such response requires further elastic crushing
of the fibrils. When the applied load is thereafter reduced, the stiff
response will be reversed and will continue until fibril self contact
or its contact with the adjacent surfaces at its tip or base are elimi-
nated, so that the load-displacement path has a steep slope involv-
ing little probe displacement until the load has fallen to the level
close to the thick, almost horizontal line in Fig. 2 that denotes the
buckling load and postbuckling response of a fibril whose tip is
free to rotate. When the load is then reduced below this level, sud-
den unbuckling of the fibrils will occur. They will reattach to the
stiff surface, and the distance between the stiff surface and the
base of the fibrils will suddenly increase through a significant re-
traction of the probe. This returns the system to the linear elastic
loading and unloading line at or near the point R in Fig. 2, and
when the applied load is further reduced, the displacement of the
tip will fall to zero. As before, when the fibrils are subject to ten-
sion, they will extend and finally detach by the mechanism charac-
terized by Spuskanyuk et al. [10], controlled by the very small
initial detachment under consideration. Note that the pull-off load
will be unaffected by the prior buckling and unbuckling of the
fibrils, the fact of hysteresis in the load cycle, and the question of
whether displacement or load control was utilized.

All the models and numerical computations described so far
neglect the dynamic effects that accompany instabilities associ-
ated with buckling and unbuckling of fibrils and the sudden exten-
sion or elimination of detachments on their tips. However, during
such dynamic detachment extension and elimination, potential
energy is released. This energy must be somehow absorbed, with
kinetic energy and dissipation being the possible destinations.
Consequently, inertia, viscosity and other mechanisms that absorb
or dissipate energy will play an important role in the behavior of a
surface patterned with fibrils that adheres to a stiff probe and is
caused by compression to buckle and unbuckle. We note that both
inertia and dissipative processes introduce a characteristic time
into the behavior, signifying the rate at which the system can
respond, given the dominance of either momentum or dissipation.

For example, if the fibrils are pulled very quickly away from
the probe that is compressing them and that had caused them to
buckle, full reattachment of their tips to the probe may not be pos-
sible. As a result, the adhesion of the fibril tips to the probe will
not be fully redeveloped and separation of the fibril tips from its

surface will be achieved easily. This situation would result in sud-
den pull-off of the fibrils from the probe at low force as has been
observed by Paretkar et al. [9]. Thus, the pull-off force for fibrils
that have been buckled in compression in this manner and then
separated from the probe surface will be quite low compared to
when the tips are fully adhered over their entire end, as will be the
case when the fibrils never buckle, or when the retraction speed of
the probe is low. Similar effects can be expected when dissipation
dominates such as when the viscous component of the fibril me-
chanical response absorbs much energy during deformation. Other
effects are possible, due to the fact that fibrils can communicate
mechanically with each other through deformations of the compli-
ant surface upon which they are patterned. For example, if the
released energy is not completely absorbed or dissipated in the
fibril itself, the work can be transferred to other fibrils, possibly
resulting in cascades of fibril buckling and unbuckling, and tip
detachment and attachment, even for fibrils compressed against
spherical shapes or uneven surfaces. If some fibrils are in tension
and others are in compression in such a situation, as is usually the
case when a stiff, spherical probe is compressed against a flat sur-
face patterned with fibrils, the released potential energy during
dynamic detachment or attachment for those fibrils in compres-
sion that are experiencing postbuckling behavior can enhance the
likelihood of pull-off for those fibrils still in tension elsewhere.

Glassmaker et al. [3] observed that the effective work of adhe-
sion and thus the pull-off force for fibrils patterned on flat surfaces
during indentation by a stiff, spherical probe differed significantly
between cases where fibril buckling did and did not occur. In the
case where buckling did occur, the pull-off force for the spherical
probe was sometimes dramatically decreased, perhaps consistent
with our argument that rate effects combined with buckling can
reduce the adhesion of fibrils to the probe. However, Noderer
et al. [12] report that buckling is not detrimental to adhesion if the
fibrillar surface is film-terminated. A possible reason for this ob-
servation is, that the terminating film eliminates edge defects and
reduces stress concentrations in the interface between fibrils and
indenter. Therefore, the fibrils may not detach during buckling. In
the case that the fibrils detach nevertheless, it is likely that the ter-
minating film enhances their reattachment upon unbuckling.

Note that lateral sliding of adhered fibril tips relative to the
probe may occur due to the dynamics associated with sudden
detachment extension and elimination as well as because of lateral
forces that can be present in the buckled configuration of a fibril.
This feature would strongly influence adhesion and probably
decrease the pull-off force. It is notable that load-displacement
curves obtained by Sharp et al. [5] during compression by a flat in-
denter of platelike fibrils having a rectangular cross-section and
patterned on a flat surface show a slightly positive displacement
offset after a compressive load cycle. This may indicate lateral
sliding of the fibrils on the probe surface, though other explana-
tions for this phenomenon are possible (e.g., fibrils having nonuni-
form length). Also, in the pull-off experiments of Glassmaker
et al. [3] lateral sliding may have been a source for the measured
decay in adhesive performance of previously buckled fibrils.
Given the fact that the longer side of the cross-section of the fibrils
in these experiments is only one order of magnitude smaller than
the radius of the spherical indenter, it seems possible that lateral
sliding occurred during buckling due to the distortion of the fibrils
caused by the curvature of the indenter. We expect that a film ter-
mination of the fibrillar surface (as examined by Noderer et al.
[12]) can reduce or eliminate lateral sliding effects.

Other effects of friction are possible, such as the generation of
residual stresses in a fibril near its adhered end due to its tip slid-
ing on the probe surface to which it is adhered, with relaxation of
the residual stresses being resisted by friction. Furthermore, after
a fibril tip has detached during fibril buckling, the load carrying
ligament of the fibril tip that is still attached to the compressing
probe is subject to high stress. The resulting strain, combined with
high shear stress on the remaining ligament of the fibril tip that is
still attached to the stiff, compressing probe surface can result in
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significant residual stress when the fibril tip is later more fully
reattached to the probe surface. The strain energy associated with
this residual stress, along with possible stress concentrations, can
be expected to ease subsequent fibril pull-off.

Note also that we have neglected the compliance of the sub-
strate upon which the fibrils are patterned. The elasticity of the
substrate may have a strong influence on the boundary conditions
at the fibril ends and therefore on the appearance of the load-
displacement curves and the occurrence of the instabilities that we
have described. This fact has to be kept in mind if the results pre-
sented here are compared with experimental data.

5 Conclusions

The behavior in buckling and postbuckling is analyzed for a
fibril having a rectangular cross-section and that is compressed by
a rigid platen to which one of its ends adheres while its other end
is firmly attached to a rigid foundation. The platen is free to move
sideways without constraint. The results are obtained by use of
Euler–Bernoulli theory so that they are valid only for slender
fibrils, and the specific case of one having an aspect ratio of 10 is
studied. The initial buckling occurs at the load consistent with the
buckling of a column whose ends are forbidden to rotate. Later,
during postbuckling, the compressive load at one side of the
adhered tip relaxes to zero and then tends to become tensile, lim-
ited by the adhesive properties of the tip. Such a situation leads to
this side of the fibril tip separating from the platen, and extension
of the detachment as further postbuckling displacement occurs.
Eventually, the fibril has buckled so much that it makes contact
with itself or with the platen and foundation and continued com-
pression involves fibril crushing. As the material is assumed to be
elastic, the buckling reverses when allowed to do so. The complex
behavior involved leads to hysteresis loops in the load deflection
curves, with the details depending on whether load or displace-
ment control is invoked. Rate effects from various sources can in-
hibit the reversibility of the process as can deformation of the
foundation caused by the buckling and unbuckling of neighboring
fibrils. These effects are thought to contribute to the irreversibility
of fibril adhesion upon buckling that is observed in experiments.
Additionally, transfer of energy from fibrils experiencing dynamic
postbuckling behavior to other fibrils being in tension may also
lead to an apparent decrease in adhesive performance.
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Appendix A: Model for Postbuckling Behavior

A simplified beam model for an adhering fibril is shown in
Fig. 4. The notation is defined in the figure. Furthermore, we use
the abbreviation dðÞ=dz ¼ ðÞ0.

Since a plane configuration of thickness h is assumed, the geomet-
ric moment of inertia I and the cross sectional area A are given by

I ¼ b3h

12

A ¼ bh

(A1)

The detachment is taken into account by the compliance matrix
sðaÞ, where a is the length of the detachment on the end of the
fibril. This matrix includes only the additional compliance due to
the detachment because the compliance of the completely adhered
configuration is already included in the beam model. The addi-
tional displacement, udet, due to the detachment and the end rota-
tion, udet, can be expressed as

udet

udet

� �
¼

sFF sMF

sMF sMM

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

s að Þ

F

M

� �
(A2)

Note that the symmetry of the matrix s has been used.
The boundary conditions for the bending problem are

wjz¼0 ¼ 0

w0jz¼0 ¼ 0

P ¼ 0 or wjz¼l ¼ 0

(A3)

where the last condition depends on the lateral boundary condition
at the fibrils tip. If the lateral displacement is not constrained (con-
figuration as in Fig. 4), the shear force P has to be zero, while in
the opposite case no sidewards deflection is allowed.

Furthermore, continuity of rotations requires

udet ¼ sMFFþ sMMM ¼ w0jz¼l (A4)

The differential equation for the problem can be derived by
establishing the quasistatic balance of moments according to
Fig. 4(c)):

w00þ F

E�I
w ¼ F

E�I
wj jz¼l�

M

E�I
þ P

E�I
l� zð Þ (A5)

Here the relationship Mb¼�E*Iw00, which connects the bending
moment Mb with the approximated curvature of the beam, is used.

The solutions, which satisfy the boundary conditions (A3), are
given by

w ¼ Cw0 z; kð Þ

w0 ¼
1� cos kzð Þ if P ¼ 0

kl� sin klð Þ½ � cos kzð Þ � 1½ � � cos klð Þ � 1½ � kz� sin kzð Þ½ � if w z¼lj ¼0

(

k ¼
ffiffiffiffiffiffiffi
F

E�I

r (A6)

Fig. 4 (a) Undeformed configuration, (b) deformed configura-
tion, (c) free body diagram
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where the “shape function” w0 is dependent on the set of boundary
conditions. The constant C is connected to the end moment
M ¼ �E�Iw00jz¼l at the fibril tip. By substituting Eqs. (A6) into
(A4) we can determine C:

C ¼ sMFF

w00jz¼l þ sMME�Iw000 jz¼l

(A7)

This reduces the variables of the problem to F, l (or u) and a.
Since one of these parameters is prescribed, two equations are
required.

The first equation can be found by postulating conservation of
mass. In standard Euler–Bernoulli beam theory this is equivalent
to the requirement that the arc length of the beam is changed only
due to axial forces. In our problem, the length is additionally
changed by the extra deformations due to the detachment. This
yields the equation

Dl0¼ 0¼ l0�
ðl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cw00
� �2

q
dz|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

arc-length deformed beam

� Fl0
E�A|{z}

axial compression

� sFFFþ sMFMð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
udet

� l0� l�1

2
C2

ð1

0

w020 dz�F
l0

E�A
þ sFF

� 	
þ sMF �C �E�Iw000 z¼lj

(A8)

where Dl0 identifies the function given by the right hand side. A
Taylor-series expansion is used for the integrand in Eq. (10). A
virtually identical approach was previously used by Begley and
Barker [11]. The approximation is very good even for relatively
large deformations. The error stays well below 1% for w0< 0.5.
This causes no limitation on validity, since the curvature approxi-
mation with w00 is only good within 10% as long as the slope of
the deflected beam stays below w0 � 0.3.

The second equation represents the equilibrium condition at the
detachment tip (“detachment equilibrium”). For an admissible
state, the energy release rate of the system has to be equal to the
work of adhesion. Expressed in terms of stress intensity factors,
this gives the requirement for an increment of a

DK ¼ 0 ¼
ffiffiffiffiffi
E�

h

r ffiffiffiffiffiffiffiffiffiffiffi
dsMM

da

r
M �

ffiffiffiffiffiffiffiffiffi
dsFF

da

r
F

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�Wad

p

¼
ffiffiffiffiffi
E�

h

r
�

ffiffiffiffiffiffiffiffiffiffiffi
dsMM

da

r
� C � E�Iw000 z¼lj �

ffiffiffiffiffiffiffiffiffi
dsFF

da

r
F

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E�Wad

p
(A9)

where the first term in brackets corresponds to the stress intensity
factor due to the moment M and the second term to the stress inten-
sity factor due to the force F. Note that the stress intensity factor due
to the force F is always negative, while the moment M opens the
detachment. The last term is the critical stress intensity factor, which
is determined from the work of adhesion by using the relationship
between energy release rate and stress intensity factor Eq. (1).

We apply the normalizations and definitions

z ¼ z

l
; �l ¼ l

l0

; D�l0 ¼
Dl0
l0
; �a ¼ a

b
; �b ¼ b

l0
; �C ¼ C

l

j2 ¼ k2l2 ¼ Fl2

E�I

�sFF ¼
E�A

b
sFF; �sMF ¼

E�I

b2
sMF; �sMM ¼

E�I

b
sMM

D �K ¼ DK

E�
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Inserting the expressions for I and A into Eqs. (A9)–(A11) finally
gives us the following nonlinear equations:
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D �K ¼ 0 ¼ � �C €w0j�z¼1
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with

�C ¼
�b2

�l
� j2�sMF

�l _w0j�z¼1 þ �b €w0j�z¼1�sMM
(A13)

The integral in Eq. (A11) can be found analytically given the
function w0 in Eq. (A6). Equations (A11) and (A12) are dependent
on the normalized detachment length �a, the normalized distance �l
between both ends of the fibril in the deformed configuration, and
the normalized force j2. We prescribe one of these quantities and
solve numerically for the other two. For the results presented here,
detachment lengths �a are prescribed and we solve the equations
for �l and j2.

The stability of a solution for the case of displacement control
(�l ¼ constant) can be examined based on the derivative
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(A14)

The detachment equilibrium is stable if this quantity is negative
und unstable if it is positive. For a vanishing derivative, higher
order contributions must be examined.

In the case of load control we have to rewrite Eqs. (A11) and
(A12) in terms of j0 ¼ j=�l instead of j. This is necessary,
because the quantity j depends itself on the longitudinal displace-
ment l0� l. The derivative for the stability criterion then
becomes:

dD �K
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(A15)

The compliances �sFF, �sMM, and �sMF are deduced from fracture
mechanics solutions for an edge cracked plate of width b. The
shape functions for the stress intensity factor solutions from Tada
et al. [13] are integrated and functionally fitted to get normalized
compliances, which read as follows:

�sMM ¼
�a2

1� �að Þ2
5:912� 19:751�aþ 41:94�a2 � 55:509�a3
�

þ39:497�a4 � 11:429�a5
�
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�a2

1� �að Þ2
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�
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�

�sMF ¼
�a2

1� �að Þ2
�0:987þ 2:461�a� 5:105�a2 þ 6:497�a3
�

�4:449�a4 þ 1:253�a5
�

(A16)
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Great care was taken to represent the correct asymptotic behavior
for �a! 1. This is necessary to ensure a robust numerical solution
of the nonlinear equations for deep detachments, because of the
divergence of the compliances. Comparison of the compliance
based stress intensity factor solutions with the results from [13]
yields deviations less than 0.5% for all detachment lengths. Since
the formulae in Ref. [13] are claimed to have 0.5% accuracy, the
overall accuracy of the compliance based stress intensity factors
should be better than 1%.

The procedure presented is valid only for an open detachment.
For a completely attached fibril with �a ¼ 0 the compliances due
to the detachment are zero, and this state controls the initial buck-
ling. In this case, we get from Eq. (A4) the boundary condition

_w0j�z¼1 ¼ 0 (A17)

The solution for initial buckling consistent with this boundary
condition is j2 ¼ j2

buckling ¼ p2 for the case without lateral con-
straint and j2 ¼ j2

buckling ¼ 4p2 for completely clamped boundary
conditions. With this in hand, we can prescribe �l and get �C2 from
Eq. (A11):

�C2 ¼

2
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1� �l� 1

12
j2
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�b2
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� 	
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0

_w0ð Þ2d�z
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The quadratic form arises from the undetermined buckling direc-
tion. It is obvious, that this equation has only a real root if the
condition

12ð1� �lÞ
�l2

�b2
� j2

buckling (A19)

is met. This condition governs the existence of buckling. If the
displacements are too small (�l too close to 1), the criterion is not
fulfilled and consequently a buckled shape is not possible. Then
the only valid solution is the compression of a straight bar. In this
case force and axial displacement are simply connected through

j2 ¼ 12ð1� �lÞ
�l2

�b2
(A20)

Note that j2 depends itself on the displacement. Thus, it is advan-
tageous for the interpretation of the results, to rewrite Eq. (A20)
in terms of j0 ¼ j=�l:

j2
0 ¼ 12ð1� �lÞ 1

�b2
(A21)

This is the expected linear elastic relationship between force and
displacement for a straight bar.

Appendix B: Finite Element Model

To obtain numerical results, a two dimensional plane strain fi-
nite element model of a fibril was developed. The main features
are schematically depicted in Fig. 5(a).

The mesh is built from 8-noded reduced integration elements.
At the adhering surface the elements have uniform size. The tran-
sition between the fine mesh of this region and the coarser mesh
of the remaining model is realized with multi point constraints.

The nonadhering end of the fibril at the top of the model in
Fig. 5 is constrained to move as dictated by a rigid body. This
rigid body is not allowed to rotate.

The adhering surface at the bottom of the model is assumed to
be frictionless. Thus, nodes on the attached ligament are not
allowed to move in the x2-direction, while movement in the
x1-direction is unconstrained.

Axial compression is prescribed by the displacement u2 of the
rigid body at the top, while its lateral displacement u1 is set to zero.

The propagation of the detachment is implemented by eliminat-
ing the displacement boundary condition for the nodes on the
adhering end of the fibril. During closure of the detachment, these
displacement boundary conditions are reactivated.

The simulation is conducted with the commercial finite element
software ABAQUS.

In a first step, buckling is initiated by increasing the axial dis-
placement �u2 slightly above its critical value. A small rotation
of the rigid body is used to introduce the necessary imperfection
inducing buckling. After buckling is initiated, this rotation is
removed in a second step.

Thereafter, the axial displacement is incremented in small
steps. After each step the behavior of the detachment is evaluated.
For this purpose two separate finite element calculations are con-
ducted (except in the cases of a completely adhered fibril and a
completely detached fibril). The procedure is schematically shown
in Fig. 5(b). The initial state for both calculations is the result
from the previous displacement increment step, for which the
strain energy W and detachment length a are known. Note, that
the detachment length is always measured in the undeformed con-
figuration. During the first calculation, the detachment is extended
by one element. This increases the detachment length by the

Fig. 5 (a) Finite element model; (b) evaluation of detachment behavior
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element width le to the new detachment length aop. The strain
energy for the new state Wop is then used to determine the energy
release rate Gop. The detachment closure calculation is treated
analogously. In the case of zero detachment length only opening
of the detachment is simulated and for a completely detached
fibril only detachment closure is computed.

Since no contact is modeled, all computed energy release rates
are positive. To identify overclosure of the detachment the dis-
placement of the first nonmidside node on the detached surface
behind the detachment tip is examined. If this node penetrates the
line x2¼ 0, the energy release rate is set to an arbitrary negative
value to indicate overclosure of the detachment.

Finally, the computed energy release rates are compared with the
given work of adhesion Wad(a), which can be dependent of the
detachment length a, e.g., the adhesion energy is zero for the initial
detachment but is greater than zero elsewhere. In the cases of
Gop<Wad(aop), Gcl<Wad(acl) or Gop¼Wad(aop) or Gcl¼Wad(acl)
the detachment length remains unchanged and the next axial dis-
placement increment is applied. For Gop>Wad(aop), Gcl>Wad(acl)
the detachment is propagated element by element until the energy
release rate drops below Wad. In order to avoid oscillations in
detachment length in the course of the simulation, the last detach-
ment propagation increment is always undone before the next dis-
placement step. Closure of the detachment in the case of
Gop<Wad(aop), Gcl<Wad(acl) is treated in the same way. For zero
detachment length Gcl>Wad is assumed and for a completely
detached fibril Gop<Wad is taken. Note that it is not possible to
determine the direction of detachment propagation for the case
Gop>Wad(aop), Gcl<Wad(acl) with a static analysis. However, this
situation was not encountered.

Initially, the adhering tip of the fibril is completely attached. To
introduce an initial detachment of length ainit, the work of adhe-
sion is defined to be zero on the corresponding surface. On the
remaining surface the work of adhesion is taken to be greater than
zero and uniform.

With the procedure described sudden detachment and attachment
due to the occurrence of an unstable detachment equilibrium can be
taken into account during displacement controlled hysteresis. To

obtain accurate results it is necessary to choose the displacement
and detachment length increments sufficiently small. The latter
requires an adequate mesh refinement.

The calculations are done for a linear elastic isotropic material
even though the effect of nonlinear geometry is included to allow
for buckling. The Poisson’s ratio is set to 0.45.
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