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SERS + Microfluidics Chrysafis Andreou SERS and Microfluidics
» Offer quick specific trace analyte detection. Mehran Hooneicmi
» Enable the detection of a wide range of analytes. Why SERS:
» Operate in a variety of different contexts (airborne, biological3, etc.) » Single bio-friendly laser source
» Are susceptible to fouling by Ag-nanoparticles (AgNPs). » Very low laser intensities
» Benefit from single-use testing. » Extremely good multiplexing capabilities
> Face challenges quantifying analyte concentration. > Encapsulate AgNPs in discrete » Ratiometric approach

picoliter droplets.

Prevent device fouling by AgNPs.

» Generate multiple discrete
reaction volumes.

» Control the mean number of
AgNPs in the droplets.
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» Normal and cancer cells incubated
with SERS biotags engineered for
specific cell surface expressions.

» SERS interrogation in a flow-focusing
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Electrophoresis of Nanoparticles AC Electrokinetic Micromixer Microfluidics for Fundamentadl

in Nanochannels Marin Sigurdson Biological Research

Yu Wei Liu A 3D micromixer is developed for improving bioassays. Numerical smodeling is The Meinhart lab enjoys an on going
combined with experimental measurement to evaluate the mixer. collaboration with the Rothman Lab

= in the department of Molecular 10”,'n Ranter |
B Eieeostatiepotestia %\ Cellular and Developmental Biology
| at UCSB. This collaboration is

Eric terry

 (Calculate mobility of nanoparticles in nanochannels

» We Solve coupled Poisson, Stokes, and
Nernst-Planck equations by COMSOL.

» Refined mesh is used near the surfaces to
capture the influence of electric double
layers.

» Confinement effect is investigated with
different zeta potentials, electrolyte
CO n Ce nt ratl O n S . N Flow Streamline
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: : in which vias have been drilled into
tools available to b|0|ogy the sides and onto which a metal

researchers. The current focus of strip has been deposited. Channels
(d) o\ - this collaboration is a temperature are constructed using soft
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_ 17 e Figure. (a) AC electrothermal flow is created when - il e N [ |7 "
50 nm particle produces localized heating. Switching the voltage breaks up the vortices and "
T results in mixing.(b) Experimental Mixing testbed: programmable, blinking AC Internal capture region of the microfluidic device
electrothermal flow. (c) Voltage is applied to electrodes (orange), which produces i The embryos are captured and oriented by the
T -1 | fluid circulation in mixing chamber. (d) PIV: sequential images are taken of 100 200 300 400 500 600 700 800 900 ° pillars which are on top of the dark strip shown.
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Electralyte congentration (V) | | | | fluorescent tracer particles in the flow; cross correlation yields 2D, 2 component Length (um) The dark strip is a platinum electrode that heats

velocity field. (e) Finally, these are combined with a numerical model to produce False COIO””%'mafhe of;empelrstu_re the immediate surroundings when current flows,
flow trajectories, which are used to evaluate the mixer. measurements In the channel during  which creates a tunable temperature gradient.

operation.

0.06—

=110

¢, =-0.04]]

~

¢ =-0.08],




